testGardenModel / app.py
Mattral's picture
Update app.py
6dc632c verified
raw
history blame
3.71 kB
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
# App title and description
st.title("I am Your GrowBuddy 🌱")
st.write("Let me help you start gardening. Let's grow together!")
# Function to load model only once
def load_model():
try:
# If model and tokenizer are already in session state, return them
if "tokenizer" in st.session_state and "model" in st.session_state:
return st.session_state.tokenizer, st.session_state.model
else:
tokenizer = AutoTokenizer.from_pretrained("TheSheBots/UrbanGardening", use_auth_token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained("CopyleftCultivars/Gemma2B-NaturalFarmerV1", use_auth_token=HF_TOKEN)
# Store the model and tokenizer in session state
st.session_state.tokenizer = tokenizer
st.session_state.model = model
return tokenizer, model
except Exception as e:
st.error(f"Failed to load model: {e}")
return None, None
# Load model and tokenizer (cached)
tokenizer, model = load_model()
if not tokenizer or not model:
st.stop()
# Default to CPU, or use GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Initialize session state messages
if "messages" not in st.session_state:
st.session_state.messages = [
{"role": "assistant", "content": "Hello there! How can I help you with gardening today?"}
]
# Display conversation history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# Create a text area to display logs
log_box = st.empty()
# Function to generate response with debugging logs
def generate_response(prompt):
try:
# Tokenize input prompt with dynamic padding and truncation
log_box.text_area("Debugging Logs", "Tokenizing the prompt...", height=200)
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device)
# Display tokenized inputs
log_box.text_area("Debugging Logs", f"Tokenized inputs: {inputs['input_ids']}", height=200)
# Generate output from model
log_box.text_area("Debugging Logs", "Generating output...", height=200)
outputs = model.generate(inputs["input_ids"], max_new_tokens=100, temperature=0.7, do_sample=True)
# Display the raw output from the model
log_box.text_area("Debugging Logs", f"Raw model output (tokens): {outputs}", height=200)
# Decode and return response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Display the final decoded response
log_box.text_area("Debugging Logs", f"Decoded response: {response}", height=200)
return response
except Exception as e:
st.error(f"Error during text generation: {e}")
return "Sorry, I couldn't process your request."
# User input field for gardening questions
user_input = st.chat_input("Type your gardening question here:")
if user_input:
with st.chat_message("user"):
st.write(user_input)
with st.chat_message("assistant"):
with st.spinner("Generating your answer..."):
response = generate_response(user_input)
st.write(response)
# Update session state
st.session_state.messages.append({"role": "user", "content": user_input})
st.session_state.messages.append({"role": "assistant", "content": response})