Mattral commited on
Commit
0dac492
·
verified ·
1 Parent(s): bc9e607

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +76 -0
app.py CHANGED
@@ -1,4 +1,78 @@
1
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  from transformers import AutoTokenizer, AutoModelForCausalLM
3
  import torch
4
  import os
@@ -96,3 +170,5 @@ if user_input:
96
  # Update session state
97
  st.session_state.messages.append({"role": "user", "content": user_input})
98
  st.session_state.messages.append({"role": "assistant", "content": response})
 
 
 
1
  import streamlit as st
2
+ from huggingface_hub import InferenceClient
3
+ import os
4
+ from dotenv import load_dotenv
5
+
6
+ # Load environment variables
7
+ load_dotenv()
8
+ api_key = os.getenv("api_key")
9
+
10
+ # App title and description
11
+ st.title("I am Your GrowBuddy 🌱")
12
+ st.write("Let me help you start gardening. Let's grow together!")
13
+
14
+ # Initialize Hugging Face InferenceClient
15
+ model_name = "unsloth/gemma-2-2b" # Use the appropriate model
16
+ client = InferenceClient(model=model_name, token=api_key)
17
+
18
+ # Initialize session state messages
19
+ if "messages" not in st.session_state:
20
+ st.session_state.messages = [
21
+ {"role": "assistant", "content": "Hello there! How can I help you with gardening today?"}
22
+ ]
23
+
24
+ # Display conversation history
25
+ for message in st.session_state.messages:
26
+ with st.chat_message(message["role"]):
27
+ st.write(message["content"])
28
+
29
+ # Create a text area to display logs
30
+ log_box = st.empty()
31
+
32
+ # Function to generate response using Hugging Face's remote model
33
+ def generate_response(prompt):
34
+ try:
35
+ log_box.text_area("Debugging Logs", "Generating output...", height=200)
36
+
37
+ # Generate output from the Hugging Face API
38
+ response = client.text_generation(prompt, max_new_tokens=100, temperature=0.7, do_sample=True)
39
+
40
+ # Print and log the response to understand the structure
41
+ log_box.text_area("Debugging Logs", f"Response: {response}", height=200)
42
+
43
+ # Check for proper response structure
44
+ if isinstance(response, list) and len(response) > 0 and "generated_text" in response[0]:
45
+ output_text = response[0]["generated_text"]
46
+ else:
47
+ raise ValueError("Unexpected response structure from Hugging Face API.")
48
+
49
+ log_box.text_area("Debugging Logs", f"Decoded response: {output_text}", height=200)
50
+ return output_text
51
+ except Exception as e:
52
+ st.error(f"Error during text generation: {str(e)}")
53
+ log_box.text_area("Error Details", str(e), height=200)
54
+ return "Sorry, I couldn't process your request."
55
+
56
+
57
+ # User input field for gardening questions
58
+ user_input = st.chat_input("Type your gardening question here:")
59
+
60
+ if user_input:
61
+ with st.chat_message("user"):
62
+ st.write(user_input)
63
+
64
+ with st.chat_message("assistant"):
65
+ with st.spinner("Generating your answer..."):
66
+ response = generate_response(user_input)
67
+ st.write(response)
68
+
69
+ # Update session state
70
+ st.session_state.messages.append({"role": "user", "content": user_input})
71
+ st.session_state.messages.append({"role": "assistant", "content": response})
72
+
73
+
74
+ '''
75
+ import streamlit as st
76
  from transformers import AutoTokenizer, AutoModelForCausalLM
77
  import torch
78
  import os
 
170
  # Update session state
171
  st.session_state.messages.append({"role": "user", "content": user_input})
172
  st.session_state.messages.append({"role": "assistant", "content": response})
173
+
174
+ '''