Spaces:
Sleeping
Sleeping
File size: 5,723 Bytes
1cc6224 189472c 1cc6224 0cbc713 1cc6224 0d377cf 1cc6224 2ffbbf1 1cc6224 add3f9d 1cc6224 2bc0e39 1cc6224 2bc0e39 1cc6224 fa39afe 581a310 fa39afe add3f9d fa39afe 1cc6224 4a54dd3 3ee0296 1cc6224 0ed0253 fa39afe 1cc6224 36f1ffb 189472c 1cc6224 add3f9d 1cc6224 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt" # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
"""
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
This version finds the best match based on the content of the query.
"""
try:
# Lowercase the query for better matching
lower_query = user_query.lower()
# Encode the query and the segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
# Compute cosine similarities between the query and the segments
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# Find the index of the most similar segment
best_idx = similarities.argmax()
# Return the most relevant segment
return segments[best_idx]
except Exception as e:
print(f"Error in finding relevant segment: {e}")
return ""
def generate_response(user_query, relevant_segment):
"""
Generate a response emphasizing the bot's capability in providing chess information.
"""
try:
system_message = "You are a celebrity chatbot with a coy, sassy attitude specialized in creating shorts lists of the names of celebrities that match the all of the physical characteristics provided by the user."
user_message = f"Here's the information on chess: {relevant_segment}"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=250,
temperature=0.2,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response['choices'][0]['message']['content'].strip()
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
if question == "":
return "Welcome to CelebrityFinder! Give me some physical attributes of a celebrity, and I'll give you some names that match your description."
relevant_segment = find_relevant_segment(question, segments)
if not relevant_segment:
return "I need more details, there is not enough to go on to select the celebrity you want."
response = generate_response(question, relevant_segment)
return response
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# 💋 Welcome to CelebrityFinder!
## I'm an AI-driven assistant that provides the names of celebrities based on the physical attributes you provide. Created by Matt Getz of the 2024 Kode With Klossy LA Camp.
"""
topics = """
### Ask about celebrities based on any of the attributes below!
- Hair color
- Skin color
- Height
- Level of Attractiveness
- Age
- Prominent Facial Features
"""
placeholder = """
####
"""
goodbye_message = """
*CelebrityFinder is a perfect expert and can be expected to provide information that is 100% accurate*
*Any errors in the output are YOUR FAULT and CelebrityFinder will sue you for negligence*
"""
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme='mgetz/Celeb_glitzy') as demo:
gr.Image("craiyon_140344_Generic_Handsome_celebrity_man_face.png", show_label = False, show_share_button = False, show_download_button = False, width=500, height=500)
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
with gr.Column():
gr.Markdown(topics) # Show the topics on the left side
with gr.Row():
with gr.Column():
question = gr.Textbox(label="Celebrity Attributes", placeholder="Describe the celebrity you want")
gr.Markdown(placeholder)
submit_button = gr.Button("Submit")
gr.Markdown(placeholder)
answer = gr.Textbox(label="CelebrityFinder Response", placeholder="CelebrityFinder will give you some celebs that match your description here", interactive=False, lines=10)
submit_button.click(fn=query_model, inputs=question, outputs=answer)
gr.Markdown(goodbye_message)
# Launch the Gradio app to allow user interaction
demo.launch(share=True)
|