File size: 5,723 Bytes
1cc6224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189472c
1cc6224
 
 
 
 
 
 
 
0cbc713
1cc6224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d377cf
1cc6224
 
2ffbbf1
1cc6224
 
 
 
 
add3f9d
1cc6224
2bc0e39
1cc6224
 
 
2bc0e39
 
 
 
 
 
 
1cc6224
 
fa39afe
581a310
fa39afe
add3f9d
 
 
 
fa39afe
1cc6224
4a54dd3
3ee0296
1cc6224
 
 
 
 
 
0ed0253
fa39afe
1cc6224
36f1ffb
189472c
1cc6224
add3f9d
1cc6224
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os

os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt"  # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'

openai.api_key = os.environ["OPENAI_API_KEY"]

# Attempt to load the necessary models and provide feedback on success or failure
try:
    retrieval_model = SentenceTransformer(retrieval_model_name)
    print("Models loaded successfully.")
except Exception as e:
    print(f"Failed to load models: {e}")

def load_and_preprocess_text(filename):
    """
    Load and preprocess text from a file, removing empty lines and stripping whitespace.
    """
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            segments = [line.strip() for line in file if line.strip()]
        print("Text loaded and preprocessed successfully.")
        return segments
    except Exception as e:
        print(f"Failed to load or preprocess text: {e}")
        return []

segments = load_and_preprocess_text(filename)

def find_relevant_segment(user_query, segments):
    """
    Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
    This version finds the best match based on the content of the query.
    """
    try:
        # Lowercase the query for better matching
        lower_query = user_query.lower()
        
        # Encode the query and the segments
        query_embedding = retrieval_model.encode(lower_query)
        segment_embeddings = retrieval_model.encode(segments)
        
        # Compute cosine similarities between the query and the segments
        similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
        
        # Find the index of the most similar segment
        best_idx = similarities.argmax()
        
        # Return the most relevant segment
        return segments[best_idx]
    except Exception as e:
        print(f"Error in finding relevant segment: {e}")
        return ""

def generate_response(user_query, relevant_segment):
    """
    Generate a response emphasizing the bot's capability in providing chess information.
    """
    try:
        system_message = "You are a celebrity chatbot with a coy, sassy attitude specialized in creating shorts lists of the names of celebrities that match the all of the physical characteristics provided by the user."
        user_message = f"Here's the information on chess: {relevant_segment}"
        messages = [
            {"role": "system", "content": system_message},
            {"role": "user", "content": user_message}
        ]
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=messages,
            max_tokens=250,
            temperature=0.2,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=0
        )
        return response['choices'][0]['message']['content'].strip()
    except Exception as e:
        print(f"Error in generating response: {e}")
        return f"Error in generating response: {e}"

def query_model(question):
    """
    Process a question, find relevant information, and generate a response.
    """
    if question == "":
        return "Welcome to CelebrityFinder! Give me some physical attributes of a celebrity, and I'll give you some names that match your description."
    relevant_segment = find_relevant_segment(question, segments)
    if not relevant_segment:
        return "I need more details, there is not enough to go on to select the celebrity you want."
    response = generate_response(question, relevant_segment)
    return response

# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# 💋 Welcome to CelebrityFinder!

## I'm an AI-driven assistant that provides the names of celebrities based on the physical attributes you provide. Created by Matt Getz of the 2024 Kode With Klossy LA Camp. 
"""

topics = """
### Ask about celebrities based on any of the attributes below!
- Hair color
- Skin color
- Height
- Level of Attractiveness
- Age
- Prominent Facial Features
"""

placeholder = """
####  
"""
goodbye_message = """
*CelebrityFinder is a perfect expert and can be expected to provide information that is 100% accurate*
*Any errors in the output are YOUR FAULT and CelebrityFinder will sue you for negligence*
"""

# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme='mgetz/Celeb_glitzy') as demo:
    gr.Image("craiyon_140344_Generic_Handsome_celebrity_man_face.png", show_label = False, show_share_button = False, show_download_button = False, width=500, height=500)
    gr.Markdown(welcome_message)  # Display the formatted welcome message
    with gr.Row():
        with gr.Column():
            gr.Markdown(topics)  # Show the topics on the left side
    with gr.Row():
        with gr.Column():
            question = gr.Textbox(label="Celebrity Attributes", placeholder="Describe the celebrity you want")
            gr.Markdown(placeholder)
            submit_button = gr.Button("Submit")
            gr.Markdown(placeholder)
            answer = gr.Textbox(label="CelebrityFinder Response", placeholder="CelebrityFinder will give you some celebs that match your description here", interactive=False, lines=10)
            submit_button.click(fn=query_model, inputs=question, outputs=answer)
    gr.Markdown(goodbye_message)

# Launch the Gradio app to allow user interaction
demo.launch(share=True)