Spaces:
Sleeping
Sleeping
File size: 1,156 Bytes
69c5acc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import gradio as gr
import time
import whisper
# =============== User defined data =======================
model_type = "base"
# =================== Model loading ===================
model = whisper.load_model(model_type)
# =================== Inference python ===================
def transcribe(audio):
# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(model.device)
# detect the spoken language
_, probs = model.detect_language(mel)
print(f"Detected language: {max(probs, key=probs.get)}")
# decode the audio
options = whisper.DecodingOptions(fp16 = False)
result = whisper.decode(model, mel, options)
return result.text
# =================== Run UI ===================
gr.Interface(
title = 'OpenAI Whisper ASR Gradio Web UI',
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath")
],
outputs=[
"textbox"
],
live=True).launch(enable_queue=True)
|