File size: 1,156 Bytes
69c5acc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import gradio as gr
import time
import whisper


# =============== User defined data =======================
model_type = "base"
# =================== Model loading ===================

model = whisper.load_model(model_type)

# =================== Inference python ===================


def transcribe(audio):

    # load audio and pad/trim it to fit 30 seconds
    audio = whisper.load_audio(audio)
    audio = whisper.pad_or_trim(audio)

    # make log-Mel spectrogram and move to the same device as the model
    mel = whisper.log_mel_spectrogram(audio).to(model.device)

    # detect the spoken language
    _, probs = model.detect_language(mel)
    print(f"Detected language: {max(probs, key=probs.get)}")

    # decode the audio
    options = whisper.DecodingOptions(fp16 = False)
    result = whisper.decode(model, mel, options)
    return result.text


# =================== Run UI ===================

gr.Interface(
    title = 'OpenAI Whisper ASR Gradio Web UI', 
    fn=transcribe, 
    inputs=[
        gr.inputs.Audio(source="microphone", type="filepath")
    ],
    outputs=[
        "textbox"
    ],
    live=True).launch(enable_queue=True)