Update website.py
Browse files- website.py +9 -1
website.py
CHANGED
@@ -1,12 +1,19 @@
|
|
1 |
from huggingface_hub import hf_hub_download
|
2 |
import gradio as gr
|
|
|
3 |
import tensorflow as tf
|
4 |
import numpy as np
|
5 |
from dateutil.utils import today
|
|
|
6 |
|
7 |
model_path = hf_hub_download(repo_id="MaxJalo/CardioAI", filename="cardioai_model.keras")
|
8 |
model = tf.keras.models.load_model(model_path)
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def webai(user_input):
|
12 |
user_input_clear = user_input
|
@@ -22,7 +29,8 @@ def webai(user_input):
|
|
22 |
# 47 1 168 87 120 80 2 1 1 1 1
|
23 |
# 37 0 185 75 120 80 2 1 1 1 0
|
24 |
return f"{round(predicted_result_scaled[0][0] * 100, 2)}%"
|
25 |
-
|
|
|
26 |
def pomoch(age, gender, height, weight, ap_hi, ap_lo, cholesterol, gluc, smoke, alco, active):
|
27 |
X = [int(age), gender, int(height), int(weight), int(ap_hi), int(ap_lo), float(cholesterol), float(gluc), smoke,
|
28 |
alco, active]
|
|
|
1 |
from huggingface_hub import hf_hub_download
|
2 |
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
import tensorflow as tf
|
5 |
import numpy as np
|
6 |
from dateutil.utils import today
|
7 |
+
from datasets import load_dataset
|
8 |
|
9 |
model_path = hf_hub_download(repo_id="MaxJalo/CardioAI", filename="cardioai_model.keras")
|
10 |
model = tf.keras.models.load_model(model_path)
|
11 |
|
12 |
+
heart = load_dataset("MaxJalo/CardioAI", split = 'train')
|
13 |
+
data = pd.DataFrame(heart, columns=["age","gender","height","weight","ap_hi","ap_lo","cholesterol","gluc","smoke","alco","active",'cardio'])
|
14 |
+
X_for_train = data.drop(['cardio'], axis=1).values
|
15 |
+
X_min = np.min(X_for_train, axis=0)
|
16 |
+
X_max = np.max(X_for_train, axis=0)
|
17 |
|
18 |
def webai(user_input):
|
19 |
user_input_clear = user_input
|
|
|
29 |
# 47 1 168 87 120 80 2 1 1 1 1
|
30 |
# 37 0 185 75 120 80 2 1 1 1 0
|
31 |
return f"{round(predicted_result_scaled[0][0] * 100, 2)}%"
|
32 |
+
|
33 |
+
|
34 |
def pomoch(age, gender, height, weight, ap_hi, ap_lo, cholesterol, gluc, smoke, alco, active):
|
35 |
X = [int(age), gender, int(height), int(weight), int(ap_hi), int(ap_lo), float(cholesterol), float(gluc), smoke,
|
36 |
alco, active]
|