Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,34 @@
|
|
1 |
import os
|
2 |
import threading
|
3 |
-
from collections import defaultdict
|
4 |
-
|
5 |
import gradio as gr
|
6 |
-
from transformers import
|
7 |
-
AutoModelForCausalLM,
|
8 |
-
AutoTokenizer,
|
9 |
-
TextIteratorStreamer,
|
10 |
-
)
|
11 |
-
|
12 |
-
# Define model paths
|
13 |
-
model_name_to_path = {
|
14 |
-
"LeCarnet-3M": "MaxLSB/LeCarnet-3M",
|
15 |
-
"LeCarnet-8M": "MaxLSB/LeCarnet-8M",
|
16 |
-
"LeCarnet-21M": "MaxLSB/LeCarnet-21M",
|
17 |
-
}
|
18 |
-
|
19 |
-
# Load Hugging Face token
|
20 |
-
hf_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN", "default_token") # Use default to avoid errors
|
21 |
-
|
22 |
-
# Preload models and tokenizers
|
23 |
-
loaded_models = defaultdict(dict)
|
24 |
-
|
25 |
-
for name, path in model_name_to_path.items():
|
26 |
-
try:
|
27 |
-
loaded_models[name]["tokenizer"] = AutoTokenizer.from_pretrained(path, token=hf_token)
|
28 |
-
loaded_models[name]["model"] = AutoModelForCausalLM.from_pretrained(path, token=hf_token)
|
29 |
-
loaded_models[name]["model"].eval()
|
30 |
-
except Exception as e:
|
31 |
-
print(f"Error loading {name}: {str(e)}")
|
32 |
-
|
33 |
-
def respond(message, history, model_name, max_tokens, temperature, top_p):
|
34 |
-
history = history + [(message, "")]
|
35 |
-
yield history
|
36 |
-
|
37 |
-
tokenizer = loaded_models[model_name]["tokenizer"]
|
38 |
-
model = loaded_models[model_name]["model"]
|
39 |
|
40 |
-
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
generate_kwargs = dict(
|
49 |
**inputs,
|
@@ -58,61 +43,80 @@ def respond(message, history, model_name, max_tokens, temperature, top_p):
|
|
58 |
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
|
59 |
thread.start()
|
60 |
|
61 |
-
|
62 |
for new_text in streamer:
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
def
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
with gr.Column(scale=4):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
chatbot = gr.Chatbot(
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
81 |
)
|
82 |
-
|
83 |
-
submit_btn = gr.Button("Send")
|
84 |
-
examples = gr.Examples(
|
85 |
examples=[
|
86 |
["Il était une fois un petit garçon qui vivait dans un village paisible."],
|
87 |
["Il était une fois une grenouille qui rêvait de toucher les étoiles chaque nuit depuis son étang."],
|
88 |
["Il était une fois un petit lapin perdu"],
|
89 |
],
|
90 |
-
inputs=
|
91 |
-
|
92 |
-
|
93 |
-
with gr.Column(scale=1, min_width=200):
|
94 |
-
model_dropdown = gr.Dropdown(
|
95 |
-
choices=["LeCarnet-3M", "LeCarnet-8M", "LeCarnet-21M"],
|
96 |
-
value="LeCarnet-8M",
|
97 |
-
label="Select Model"
|
98 |
)
|
99 |
-
max_tokens = gr.Slider(1, 512, value=512, step=1, label="Max New Tokens")
|
100 |
-
temperature = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
|
101 |
-
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p")
|
102 |
|
103 |
-
#
|
104 |
-
|
105 |
-
|
106 |
-
inputs=[
|
107 |
-
outputs=[chatbot, user_input],
|
108 |
-
)
|
109 |
-
|
110 |
-
# Enter key press
|
111 |
-
user_input.submit(
|
112 |
-
fn=submit,
|
113 |
-
inputs=[user_input, chatbot, model_dropdown, max_tokens, temperature, top_p],
|
114 |
-
outputs=[chatbot, user_input],
|
115 |
)
|
|
|
116 |
|
117 |
if __name__ == "__main__":
|
118 |
-
demo.queue(
|
|
|
|
1 |
import os
|
2 |
import threading
|
|
|
|
|
3 |
import gradio as gr
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# Hugging Face token
|
7 |
+
hf_token = os.environ["HUGGINGFACEHUB_API_TOKEN"]
|
8 |
|
9 |
+
# Global model & tokenizer
|
10 |
+
tokenizer = None
|
11 |
+
model = None
|
12 |
+
|
13 |
+
# Load selected model
|
14 |
+
def load_model(model_name):
|
15 |
+
global tokenizer, model
|
16 |
+
full_model_name = f"MaxLSB/{model_name}"
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(full_model_name, token=hf_token)
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(full_model_name, token=hf_token)
|
19 |
+
model.eval()
|
20 |
+
|
21 |
+
# Initialize default model
|
22 |
+
load_model("LeCarnet-8M")
|
23 |
+
|
24 |
+
# Streamer for real-time generation
|
25 |
+
streamer = None
|
26 |
+
|
27 |
+
# Streaming generation function
|
28 |
+
def respond(message, max_tokens, temperature, top_p):
|
29 |
+
global streamer
|
30 |
+
inputs = tokenizer(message, return_tensors="pt")
|
31 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
32 |
|
33 |
generate_kwargs = dict(
|
34 |
**inputs,
|
|
|
43 |
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
|
44 |
thread.start()
|
45 |
|
46 |
+
response = ""
|
47 |
for new_text in streamer:
|
48 |
+
response += new_text
|
49 |
+
yield response
|
50 |
+
|
51 |
+
# User input handler
|
52 |
+
def user(message, chat_history):
|
53 |
+
chat_history.append([message, None])
|
54 |
+
return "", chat_history
|
55 |
+
|
56 |
+
# Bot response handler
|
57 |
+
def bot(chatbot, max_tokens, temperature, top_p):
|
58 |
+
message = chatbot[-1][0]
|
59 |
+
response_generator = respond(message, max_tokens, temperature, top_p)
|
60 |
+
for response in response_generator:
|
61 |
+
chatbot[-1][1] = response
|
62 |
+
yield chatbot
|
63 |
+
|
64 |
+
# Model selector handler
|
65 |
+
def update_model(model_name):
|
66 |
+
load_model(model_name)
|
67 |
+
return []
|
68 |
+
|
69 |
+
# Gradio UI
|
70 |
+
with gr.Blocks(title="LeCarnet - Chat Interface") as demo:
|
71 |
with gr.Row():
|
72 |
+
# Left column: Options
|
73 |
+
with gr.Column(scale=1, min_width=150):
|
74 |
+
gr.Markdown("### 🧠 Model Settings")
|
75 |
+
model_selector = gr.Dropdown(
|
76 |
+
choices=["LeCarnet-3M", "LeCarnet-8M", "LeCarnet-21M"],
|
77 |
+
value="LeCarnet-8M",
|
78 |
+
label="Select Model"
|
79 |
+
)
|
80 |
+
max_tokens = gr.Slider(1, 512, value=512, step=1, label="Max New Tokens")
|
81 |
+
temperature = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
|
82 |
+
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p Sampling")
|
83 |
+
clear_button = gr.Button("🗑️ Clear Chat")
|
84 |
+
|
85 |
+
# Right column: Chat + Image
|
86 |
with gr.Column(scale=4):
|
87 |
+
gr.Markdown("### 🤖 LeCarnet Chatbot")
|
88 |
+
model_logo = gr.Image(
|
89 |
+
value="media/le-carnet.png",
|
90 |
+
label="Model Logo",
|
91 |
+
height=100,
|
92 |
+
width=100,
|
93 |
+
interactive=False
|
94 |
+
)
|
95 |
chatbot = gr.Chatbot(
|
96 |
+
bubble_full_width=False,
|
97 |
+
height=500
|
98 |
+
)
|
99 |
+
msg_input = gr.Textbox(
|
100 |
+
placeholder="Type your message and press Enter...",
|
101 |
+
label="User Input"
|
102 |
)
|
103 |
+
gr.Examples(
|
|
|
|
|
104 |
examples=[
|
105 |
["Il était une fois un petit garçon qui vivait dans un village paisible."],
|
106 |
["Il était une fois une grenouille qui rêvait de toucher les étoiles chaque nuit depuis son étang."],
|
107 |
["Il était une fois un petit lapin perdu"],
|
108 |
],
|
109 |
+
inputs=msg_input,
|
110 |
+
label="Example Prompts"
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
)
|
|
|
|
|
|
|
112 |
|
113 |
+
# Event handlers
|
114 |
+
model_selector.change(fn=update_model, inputs=[model_selector], outputs=[])
|
115 |
+
msg_input.submit(fn=user, inputs=[msg_input, chatbot], outputs=[msg_input, chatbot], queue=False).then(
|
116 |
+
fn=bot, inputs=[chatbot, max_tokens, temperature, top_p], outputs=[chatbot]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
)
|
118 |
+
clear_button.click(fn=lambda: None, inputs=None, outputs=chatbot, queue=False)
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
+
demo.queue()
|
122 |
+
demo.launch()
|