Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,142 +1,99 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import time
|
4 |
-
import json
|
5 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
import gradio as gr
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
def
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
def add_message(user_input, state_value):
|
101 |
-
history = state_value["conversation_contexts"]["default"]["history"]
|
102 |
-
settings = state_value["conversation_contexts"]["default"]["settings"]
|
103 |
-
selected_model = settings["model"]
|
104 |
-
|
105 |
-
# Add user message
|
106 |
-
history.append({"role": "user", "content": user_input, "key": str(uuid.uuid4())})
|
107 |
-
yield {"chatbot": gr.update(value=history)}
|
108 |
-
|
109 |
-
# Start assistant response
|
110 |
-
history.append({
|
111 |
-
"role": "assistant",
|
112 |
-
"content": [],
|
113 |
-
"key": str(uuid.uuid4()),
|
114 |
-
"header": f'<img src="/file=media/le-carnet.png" style="width:20px;height:20px;margin-right:8px;"> <span>{selected_model}</span>',
|
115 |
-
"loading": True
|
116 |
-
})
|
117 |
-
yield {"chatbot": gr.update(value=history)}
|
118 |
-
|
119 |
-
try:
|
120 |
-
# Generate model response
|
121 |
-
prompt = "\n".join([msg["content"] for msg in history if msg["role"] == "user"])
|
122 |
-
response = generate_response(prompt)
|
123 |
-
|
124 |
-
# Update assistant message
|
125 |
-
history[-1]["content"] = [{"type": "text", "content": response}]
|
126 |
-
history[-1]["loading"] = False
|
127 |
-
yield {"chatbot": gr.update(value=history)}
|
128 |
-
except Exception as e:
|
129 |
-
history[-1]["content"] = [{
|
130 |
-
"type": "text",
|
131 |
-
"content": f'<span style="color: red;">{str(e)}</span>'
|
132 |
-
}]
|
133 |
-
history[-1]["loading"] = False
|
134 |
-
yield {"chatbot": gr.update(value=history)}
|
135 |
-
|
136 |
-
input.submit(fn=add_message, inputs=[input, state], outputs=[chatbot])
|
137 |
-
|
138 |
-
# Load default model on startup
|
139 |
-
load_model(DEFAULT_SETTINGS["model"])
|
140 |
-
|
141 |
if __name__ == "__main__":
|
142 |
-
demo.queue(
|
|
|
|
1 |
import os
|
2 |
+
import threading
|
|
|
|
|
|
|
3 |
import gradio as gr
|
4 |
+
from transformers import (
|
5 |
+
AutoModelForCausalLM,
|
6 |
+
AutoTokenizer,
|
7 |
+
TextIteratorStreamer,
|
8 |
+
)
|
9 |
+
|
10 |
+
# Configuration
|
11 |
+
MODEL_NAMES = ["LeCarnet-3M", "LeCarnet-8M", "LeCarnet-21M"]
|
12 |
+
HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN") or os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
13 |
+
MEDIA_PATH = "media/le-carnet.png" # Relative path to logo
|
14 |
+
|
15 |
+
# Pre-load all tokenizers and models
|
16 |
+
models = {}
|
17 |
+
tokenizers = {}
|
18 |
+
for name in MODEL_NAMES:
|
19 |
+
hub_id = f"MaxLSB/LeCarnet-{name.split('-')[-1]}M"
|
20 |
+
tokenizers[name] = AutoTokenizer.from_pretrained(hub_id, token=HF_TOKEN)
|
21 |
+
models[name] = AutoModelForCausalLM.from_pretrained(hub_id, token=HF_TOKEN)
|
22 |
+
models[name].eval()
|
23 |
+
|
24 |
+
|
25 |
+
def respond(
|
26 |
+
prompt: str,
|
27 |
+
chat_history,
|
28 |
+
selected_model: str,
|
29 |
+
max_tokens: int,
|
30 |
+
temperature: float,
|
31 |
+
top_p: float,
|
32 |
+
):
|
33 |
+
"""
|
34 |
+
Generate a streaming response from the chosen LeCarnet model,
|
35 |
+
prepending the logo and model name in the chat bubble.
|
36 |
+
"""
|
37 |
+
tokenizer = tokenizers[selected_model]
|
38 |
+
model = models[selected_model]
|
39 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
40 |
+
|
41 |
+
streamer = TextIteratorStreamer(
|
42 |
+
tokenizer,
|
43 |
+
skip_prompt=False,
|
44 |
+
skip_special_tokens=True,
|
45 |
+
)
|
46 |
+
|
47 |
+
generate_kwargs = dict(
|
48 |
+
**inputs,
|
49 |
+
streamer=streamer,
|
50 |
+
max_new_tokens=max_tokens,
|
51 |
+
do_sample=True,
|
52 |
+
temperature=temperature,
|
53 |
+
top_p=top_p,
|
54 |
+
eos_token_id=tokenizer.eos_token_id,
|
55 |
+
)
|
56 |
+
|
57 |
+
# Start generation in background thread
|
58 |
+
thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
|
59 |
+
thread.start()
|
60 |
+
|
61 |
+
prefix = f"<img src='{MEDIA_PATH}' alt='logo' width='20' style='vertical-align: middle;'/> <strong>{selected_model}</strong>: "
|
62 |
+
accumulated = ""
|
63 |
+
first = True
|
64 |
+
for new_text in streamer:
|
65 |
+
if first:
|
66 |
+
# include prefix only once at start
|
67 |
+
accumulated = prefix + new_text
|
68 |
+
first = False
|
69 |
+
else:
|
70 |
+
accumulated += new_text
|
71 |
+
yield accumulated
|
72 |
+
|
73 |
+
|
74 |
+
# Build Gradio ChatInterface
|
75 |
+
with gr.Blocks() as demo:
|
76 |
+
gr.Markdown("# LeCarnet: Short French Stories")
|
77 |
+
with gr.Row():
|
78 |
+
with gr.Column():
|
79 |
+
chat = gr.ChatInterface(
|
80 |
+
fn=respond,
|
81 |
+
additional_inputs=[
|
82 |
+
gr.Dropdown(MODEL_NAMES, value="LeCarnet-8M", label="Model"),
|
83 |
+
gr.Slider(1, 512, value=512, step=1, label="Max new tokens"),
|
84 |
+
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
|
85 |
+
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top‑p"),
|
86 |
+
],
|
87 |
+
title="LeCarnet Chat",
|
88 |
+
description="Type the beginning of a sentence and watch the model finish it.",
|
89 |
+
examples=[
|
90 |
+
["Il était une fois un petit garçon qui vivait dans un village paisible."],
|
91 |
+
["Il était une fois une grenouille qui rêvait de toucher les étoiles chaque nuit depuis son étang."],
|
92 |
+
["Il était une fois un petit lapin perdu"],
|
93 |
+
],
|
94 |
+
cache_examples=False,
|
95 |
+
)
|
96 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
if __name__ == "__main__":
|
98 |
+
demo.queue()
|
99 |
+
demo.launch()
|