import os import torch import threading import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer # Hugging Face token hf_token = os.environ["HUGGINGFACEHUB_API_TOKEN"] torch.set_num_threads(1) # Globals tokenizer = None model = None current_model_name = None # Load selected model def load_model(model_name): global tokenizer, model, current_model_name # Only load if it's a different model if current_model_name == model_name: return full_model_name = f"MaxLSB/{model_name}" print(f"Loading model: {full_model_name}") tokenizer = AutoTokenizer.from_pretrained(full_model_name, token=hf_token) model = AutoModelForCausalLM.from_pretrained(full_model_name, token=hf_token) model.eval() current_model_name = model_name print(f"Model loaded: {current_model_name}") # Initialize default model load_model("LeCarnet-8M") # Streaming generation function def respond(message, max_tokens, temperature, top_p, selected_model): # Ensure the correct model is loaded before generation load_model(selected_model) inputs = tokenizer(message, return_tensors="pt") streamer = TextIteratorStreamer(tokenizer, skip_prompt=False, skip_special_tokens=True) generate_kwargs = dict( **inputs, streamer=streamer, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_p=top_p, eos_token_id=tokenizer.eos_token_id, ) def run(): with torch.no_grad(): model.generate(**generate_kwargs) thread = threading.Thread(target=run) thread.start() response = "" for new_text in streamer: response += new_text yield f"**{current_model_name}**\n\n{response}" # User input handler def user(message, chat_history): chat_history.append([message, None]) return "", chat_history # Bot response handler - UPDATED to pass selected model def bot(chatbot, max_tokens, temperature, top_p, selected_model): message = chatbot[-1][0] response_generator = respond(message, max_tokens, temperature, top_p, selected_model) for response in response_generator: chatbot[-1][1] = response yield chatbot # Model selector handler def update_model(model_name): load_model(model_name) return model_name # Clear chat handler def clear_chat(): return None # Gradio UI with gr.Blocks(title="LeCarnet - Chat Interface") as demo: with gr.Row(): gr.HTML("""

LeCarnet Demo

""") msg_input = gr.Textbox( placeholder="Il était une fois un petit garçon", label="User Input", render=False ) with gr.Row(): with gr.Column(scale=1, min_width=150): model_selector = gr.Dropdown( choices=["LeCarnet-3M", "LeCarnet-8M", "LeCarnet-21M"], value="LeCarnet-8M", label="Select Model" ) max_tokens = gr.Slider(1, 512, value=512, step=1, label="Max New Tokens") temperature = gr.Slider(0.1, 2.0, value=0.4, step=0.1, label="Temperature") top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p Sampling") clear_button = gr.Button("Clear Chat") gr.Examples( examples=[ ["Il était une fois un petit phoque nommé Zoom. Zoom était très habile et aimait jouer dans l'eau."], ["Il était une fois un petit écureuil nommé Pipo. Pipo adorait grimper aux arbres."], ["Il était une fois un petit garçon nommé Tom. Tom aimait beaucoup dessiner."], ], inputs=msg_input, label="Example Prompts" ) with gr.Column(scale=4): chatbot = gr.Chatbot( bubble_full_width=False, height=500 ) msg_input.render() # Event Handlers model_selector.change( fn=update_model, inputs=[model_selector], outputs=[model_selector], ) msg_input.submit( fn=user, inputs=[msg_input, chatbot], outputs=[msg_input, chatbot], queue=False ).then( fn=bot, inputs=[chatbot, max_tokens, temperature, top_p, model_selector], # Pass model_selector outputs=[chatbot] ) clear_button.click( fn=clear_chat, inputs=None, outputs=chatbot, queue=False ) if __name__ == "__main__": demo.queue(default_concurrency_limit=10, max_size=10).launch(ssr_mode=False, max_threads=10)