Spaces:
Runtime error
Runtime error
feat(src): :rocket: Update code with diffusers info
Browse files- app.py +40 -41
- requirements.txt +3 -1
app.py
CHANGED
@@ -1,31 +1,37 @@
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import time
|
3 |
-
from pathlib import Path
|
4 |
from datetime import datetime
|
5 |
import gradio as gr
|
6 |
-
import random
|
7 |
-
import os
|
8 |
|
9 |
-
from hyvideo.utils.file_utils import save_videos_grid
|
10 |
from hyvideo.config import parse_args
|
11 |
-
from hyvideo.inference import HunyuanVideoSampler
|
12 |
-
from hyvideo.constants import NEGATIVE_PROMPT
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
device_map="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
)
|
25 |
-
|
|
|
26 |
|
27 |
def generate_video(
|
28 |
-
|
29 |
prompt,
|
30 |
resolution,
|
31 |
video_length,
|
@@ -38,38 +44,32 @@ def generate_video(
|
|
38 |
seed = None if seed == -1 else seed
|
39 |
width, height = resolution.split("x")
|
40 |
width, height = int(width), int(height)
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
prompt=prompt,
|
45 |
height=height,
|
46 |
-
width=width,
|
47 |
-
|
48 |
-
|
49 |
-
negative_prompt=negative_prompt,
|
50 |
-
infer_steps=num_inference_steps,
|
51 |
guidance_scale=guidance_scale,
|
52 |
-
|
53 |
-
flow_shift=flow_shift,
|
54 |
-
batch_size=1,
|
55 |
-
embedded_guidance_scale=embedded_guidance_scale
|
56 |
-
)
|
57 |
-
|
58 |
-
samples = outputs['samples']
|
59 |
-
sample = samples[0].unsqueeze(0)
|
60 |
|
|
|
61 |
save_path = os.path.join(os.getcwd(), "gradio_outputs")
|
62 |
os.makedirs(save_path, exist_ok=True)
|
63 |
|
64 |
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d-%H:%M:%S")
|
65 |
-
video_path = f"{save_path}/{time_flag}_seed{
|
66 |
-
|
|
|
|
|
67 |
print(f'Sample saved to: {video_path}')
|
68 |
|
69 |
return video_path
|
70 |
|
71 |
-
def create_demo(
|
72 |
-
|
73 |
|
74 |
with gr.Blocks() as demo:
|
75 |
gr.Markdown("# Hunyuan Video Generation")
|
@@ -119,7 +119,7 @@ def create_demo(model_path, save_path):
|
|
119 |
output = gr.Video(label="Generated Video")
|
120 |
|
121 |
generate_btn.click(
|
122 |
-
fn=lambda *inputs: generate_video(
|
123 |
inputs=[
|
124 |
prompt,
|
125 |
resolution,
|
@@ -141,7 +141,6 @@ if __name__ == "__main__":
|
|
141 |
server_name = os.getenv("SERVER_NAME", "0.0.0.0")
|
142 |
server_port = int(os.getenv("SERVER_PORT", "8081"))
|
143 |
args = parse_args()
|
144 |
-
|
145 |
-
model = "tencent/HunyuanVideo"
|
146 |
demo = create_demo(model, args.save_path)
|
147 |
demo.launch(server_name=server_name, server_port=server_port)
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers import BitsAndBytesConfig, HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
|
3 |
+
|
4 |
import os
|
5 |
import time
|
|
|
6 |
from datetime import datetime
|
7 |
import gradio as gr
|
|
|
|
|
8 |
|
|
|
9 |
from hyvideo.config import parse_args
|
|
|
|
|
10 |
|
11 |
+
|
12 |
+
def initialize_model(model):
|
13 |
+
quant_config = BitsAndBytesConfig(load_in_8bit=True)
|
14 |
+
|
15 |
+
transformer_8bit = HunyuanVideoTransformer3DModel.from_pretrained(
|
16 |
+
model,
|
17 |
+
subfolder="transformer",
|
18 |
+
quantization_config=quant_config,
|
19 |
+
torch_dtype=torch.bfloat16,
|
20 |
+
device_map="balanced",
|
21 |
+
)
|
22 |
+
|
23 |
+
# Cargar el pipeline
|
24 |
+
pipeline = HunyuanVideoPipeline.from_pretrained(
|
25 |
+
model,
|
26 |
+
transformer=transformer_8bit,
|
27 |
+
torch_dtype=torch.float16,
|
28 |
+
device_map="balanced",
|
29 |
)
|
30 |
+
|
31 |
+
return pipeline
|
32 |
|
33 |
def generate_video(
|
34 |
+
pipeline,
|
35 |
prompt,
|
36 |
resolution,
|
37 |
video_length,
|
|
|
44 |
seed = None if seed == -1 else seed
|
45 |
width, height = resolution.split("x")
|
46 |
width, height = int(width), int(height)
|
47 |
+
|
48 |
+
# Generar el video usando el pipeline
|
49 |
+
video = pipeline(
|
50 |
prompt=prompt,
|
51 |
height=height,
|
52 |
+
width=width,
|
53 |
+
num_frames=video_length,
|
54 |
+
num_inference_steps=num_inference_steps,
|
|
|
|
|
55 |
guidance_scale=guidance_scale,
|
56 |
+
).frames[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# Guardar el video
|
59 |
save_path = os.path.join(os.getcwd(), "gradio_outputs")
|
60 |
os.makedirs(save_path, exist_ok=True)
|
61 |
|
62 |
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d-%H:%M:%S")
|
63 |
+
video_path = f"{save_path}/{time_flag}_seed{seed}_{prompt[:100].replace('/','')}.mp4"
|
64 |
+
|
65 |
+
from diffusers.utils import export_to_video
|
66 |
+
export_to_video(video, video_path, fps=24)
|
67 |
print(f'Sample saved to: {video_path}')
|
68 |
|
69 |
return video_path
|
70 |
|
71 |
+
def create_demo(model, save_path):
|
72 |
+
pipeline = initialize_model(model)
|
73 |
|
74 |
with gr.Blocks() as demo:
|
75 |
gr.Markdown("# Hunyuan Video Generation")
|
|
|
119 |
output = gr.Video(label="Generated Video")
|
120 |
|
121 |
generate_btn.click(
|
122 |
+
fn=lambda *inputs: generate_video(pipeline, *inputs),
|
123 |
inputs=[
|
124 |
prompt,
|
125 |
resolution,
|
|
|
141 |
server_name = os.getenv("SERVER_NAME", "0.0.0.0")
|
142 |
server_port = int(os.getenv("SERVER_PORT", "8081"))
|
143 |
args = parse_args()
|
144 |
+
model = "hunyuanvideo-community/HunyuanVideo" # Actualizado el path del modelo
|
|
|
145 |
demo = create_demo(model, args.save_path)
|
146 |
demo.launch(server_name=server_name, server_port=server_port)
|
requirements.txt
CHANGED
@@ -2,7 +2,8 @@ torch==2.4.0
|
|
2 |
torchvision==0.19.0
|
3 |
torchaudio==2.4.0
|
4 |
opencv-python==4.9.0.80
|
5 |
-
diffusers==0.31.0
|
|
|
6 |
transformers==4.46.3
|
7 |
tokenizers==0.20.3
|
8 |
accelerate==1.1.1
|
@@ -15,6 +16,7 @@ imageio==2.34.0
|
|
15 |
imageio-ffmpeg==0.5.1
|
16 |
safetensors==0.4.3
|
17 |
gradio==5.0.0
|
|
|
18 |
# ninja
|
19 |
# git+https://github.com/Dao-AILab/[email protected]
|
20 |
# xfuser==0.4.0
|
|
|
2 |
torchvision==0.19.0
|
3 |
torchaudio==2.4.0
|
4 |
opencv-python==4.9.0.80
|
5 |
+
# diffusers==0.31.0
|
6 |
+
git+https://github.com/huggingface/diffusers
|
7 |
transformers==4.46.3
|
8 |
tokenizers==0.20.3
|
9 |
accelerate==1.1.1
|
|
|
16 |
imageio-ffmpeg==0.5.1
|
17 |
safetensors==0.4.3
|
18 |
gradio==5.0.0
|
19 |
+
bitsandbytes
|
20 |
# ninja
|
21 |
# git+https://github.com/Dao-AILab/[email protected]
|
22 |
# xfuser==0.4.0
|