Spaces:
Build error
Build error
Improve model loading with device-specific configuration and error handling
Browse files- Add try-except block for robust model loading
- Implement separate loading strategies for CUDA and CPU devices
- Include low CPU memory usage option for CUDA
- Add informative print statements for device and loading status
- Enhance error handling during model initialization
app.py
CHANGED
@@ -16,15 +16,30 @@ print("Cargando modelo y tokenizer...")
|
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
model_name = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Define the function that calls the model
|
30 |
def call_model(state: MessagesState):
|
|
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
model_name = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
|
18 |
|
19 |
+
try:
|
20 |
+
# Load the model in BF16 format for better performance and lower memory usage
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
22 |
+
|
23 |
+
if device == "cuda":
|
24 |
+
print("Usando GPU para el modelo...")
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
model_name,
|
27 |
+
torch_dtype=torch.bfloat16,
|
28 |
+
device_map="auto",
|
29 |
+
low_cpu_mem_usage=True
|
30 |
+
)
|
31 |
+
else:
|
32 |
+
print("Usando CPU para el modelo...")
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(
|
34 |
+
model_name,
|
35 |
+
device_map={"": device},
|
36 |
+
torch_dtype=torch.float32
|
37 |
+
)
|
38 |
+
|
39 |
+
print(f"Modelo cargado exitosamente en: {device}")
|
40 |
+
except Exception as e:
|
41 |
+
print(f"Error al cargar el modelo: {str(e)}")
|
42 |
+
raise
|
43 |
|
44 |
# Define the function that calls the model
|
45 |
def call_model(state: MessagesState):
|