Upload 5 files
Browse files- .env +1 -0
- .gitattributes +1 -0
- FinSight.jpg +3 -0
- README.md +17 -11
- main.py +72 -0
- requirements.txt +10 -0
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
OPENAI_API_KEY='enter your openapi key here'
|
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
FinSight.jpg filter=lfs diff=lfs merge=lfs -text
|
FinSight.jpg
ADDED
![]() |
Git LFS Details
|
README.md
CHANGED
@@ -1,11 +1,17 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# FinSight- Finance News Research Tool
|
2 |
+
FinSight is user-friendly news research tool designed for effortless information retrieval. Users can input article URLs and ask questions to receive relevant insights from the stock market and financial domain.
|
3 |
+
|
4 |
+

|
5 |
+
|
6 |
+
## Features
|
7 |
+
|
8 |
+
- Load URLs or upload text files containing URLs to fetch article content.
|
9 |
+
- Process article content through LangChain's UnstructuredURL Loader
|
10 |
+
- Construct an embedding vector using OpenAI's embeddings and leverage FAISS, a powerful similarity search library, to enable swift and effective retrieval of relevant information
|
11 |
+
- Interact with the LLM's (Chatgpt) by inputting queries and receiving answers along with source URLs.
|
12 |
+
|
13 |
+
## Project Structure
|
14 |
+
|
15 |
+
- main.py: The main Streamlit application script.
|
16 |
+
- requirements.txt: A list of required Python packages for the project.
|
17 |
+
- .env: Configuration file for storing your OpenAI API key.
|
main.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import pickle
|
4 |
+
import time
|
5 |
+
from langchain import OpenAI
|
6 |
+
from langchain.chains import RetrievalQAWithSourcesChain
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain.document_loaders import UnstructuredURLLoader
|
9 |
+
from langchain.embeddings import OpenAIEmbeddings
|
10 |
+
from langchain.vectorstores import FAISS
|
11 |
+
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
load_dotenv() # take environment variables from .env (especially openai api key)
|
14 |
+
|
15 |
+
st.title("RockyBot: News Research Tool π")
|
16 |
+
st.sidebar.title("News Article URLs")
|
17 |
+
|
18 |
+
urls = []
|
19 |
+
for i in range(3):
|
20 |
+
url = st.sidebar.text_input(f"URL {i+1}")
|
21 |
+
urls.append(url)
|
22 |
+
|
23 |
+
process_url_clicked = st.sidebar.button("Process URLs")
|
24 |
+
file_path = "faiss_store_openai.pkl"
|
25 |
+
|
26 |
+
main_placeholder = st.empty()
|
27 |
+
llm = OpenAI(temperature=0.9, max_tokens=500)
|
28 |
+
|
29 |
+
if process_url_clicked:
|
30 |
+
# load data
|
31 |
+
loader = UnstructuredURLLoader(urls=urls)
|
32 |
+
main_placeholder.text("Data Loading...Started...β
β
β
")
|
33 |
+
data = loader.load()
|
34 |
+
# split data
|
35 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
36 |
+
separators=['\n\n', '\n', '.', ','],
|
37 |
+
chunk_size=1000
|
38 |
+
)
|
39 |
+
main_placeholder.text("Text Splitter...Started...β
β
β
")
|
40 |
+
docs = text_splitter.split_documents(data)
|
41 |
+
# create embeddings and save it to FAISS index
|
42 |
+
embeddings = OpenAIEmbeddings()
|
43 |
+
vectorstore_openai = FAISS.from_documents(docs, embeddings)
|
44 |
+
main_placeholder.text("Embedding Vector Started Building...β
β
β
")
|
45 |
+
time.sleep(2)
|
46 |
+
|
47 |
+
# Save the FAISS index to a pickle file
|
48 |
+
with open(file_path, "wb") as f:
|
49 |
+
pickle.dump(vectorstore_openai, f)
|
50 |
+
|
51 |
+
query = main_placeholder.text_input("Question: ")
|
52 |
+
if query:
|
53 |
+
if os.path.exists(file_path):
|
54 |
+
with open(file_path, "rb") as f:
|
55 |
+
vectorstore = pickle.load(f)
|
56 |
+
chain = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=vectorstore.as_retriever())
|
57 |
+
result = chain({"question": query}, return_only_outputs=True)
|
58 |
+
# result will be a dictionary of this format --> {"answer": "", "sources": [] }
|
59 |
+
st.header("Answer")
|
60 |
+
st.write(result["answer"])
|
61 |
+
|
62 |
+
# Display sources, if available
|
63 |
+
sources = result.get("sources", "")
|
64 |
+
if sources:
|
65 |
+
st.subheader("Sources:")
|
66 |
+
sources_list = sources.split("\n") # Split the sources by newline
|
67 |
+
for source in sources_list:
|
68 |
+
st.write(source)
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain==0.0.284
|
2 |
+
python-dotenv==1.0.0
|
3 |
+
streamlit==1.22.0
|
4 |
+
unstructured==0.9.2
|
5 |
+
tiktoken==0.4.0
|
6 |
+
faiss-cpu==1.7.4
|
7 |
+
libmagic==1.0
|
8 |
+
python-magic==0.4.27
|
9 |
+
python-magic-bin==0.4.14
|
10 |
+
OpenAI == 0.28.0
|