import json import numpy as np from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity import re class SHLRecommender: def __init__(self, data_path='shl_assessments_complete.json'): with open(data_path) as f: self.data = json.load(f) self.model = SentenceTransformer('all-MiniLM-L6-v2') self._prepare_data() def _parse_duration(self, duration_str): """Parse duration string and return maximum minutes""" if not duration_str or duration_str.lower() == 'not specified': return float('inf') # Treat as no duration limit # Extract numbers from duration string numbers = re.findall(r'\d+', duration_str) if not numbers: return float('inf') # Return the highest number in case of ranges return max(map(int, numbers)) def _prepare_data(self): """Prepare assessment data for recommendation""" self.assessments = self.data['assessments'] # Create text for embedding self.texts = [] for assessment in self.assessments: text = f"{assessment['name']} {assessment['description']} " text += f"Skills: {', '.join(assessment.get('skills_tested', []))} " text += f"Use cases: {', '.join(assessment.get('use_cases', []))}" self.texts.append(text) # Generate embeddings self.embeddings = self.model.encode(self.texts) def recommend(self, query, top_k=5, category=None, duration_max=None): """Get recommendations based on query and filters""" query_embedding = self.model.encode([query]) similarities = cosine_similarity(query_embedding, self.embeddings)[0] results = [] for idx, score in enumerate(similarities): assessment = self.assessments[idx] # Apply filters if category and assessment['category'] != category: continue if duration_max is not None: duration = self._parse_duration(assessment['duration']) if duration > duration_max: continue results.append({ **assessment, 'score': float(score) }) # Sort by similarity score results.sort(key=lambda x: x['score'], reverse=True) return results[:top_k] def get_categories(self): """Get list of available categories""" return self.data['metadata']['categories']