File size: 473 Bytes
a6c03b1
c7bffdb
 
 
a6c03b1
 
 
 
3a30484
 
c664e6a
a6c03b1
c664e6a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import streamlit as st
from transformers import pipeline
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")

st.title("What's the category?")

text = st.text_input("Enter words")

if text is not None:
    candidate_labels = ['lifestyle', 'technology', 'entertainment', 'news']
    res = classifier(text, candidate_labels)

    for index, name in enumerate(res['labels']):
        st.text(f"{name} : {round(res['scores'][index], 3) * 100}%")