File size: 7,539 Bytes
bcf4698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa2789b
624eca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcf4698
624eca2
 
 
 
 
 
 
 
 
 
f8935ce
 
624eca2
 
 
 
 
 
bcf4698
aa2789b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcf4698
09351b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from typing import Literal
from functools import partial
from content import *
import gradio as gr
import numpy as np
import pandas as pd
import pandas as pd

# This dataframe must contain the following columns:
# - model: the name of the model
# - language: the language of the model
# - dataset: the dataset used to evaluate the model
# - score: the score of the model on the (language, dataset) pair
# - model_type: the type of the model (e.g. "Chat Model", "Base Model")
df = pd.read_csv("data/raw_scores.csv")
choices_language = list(df["language"].unique())
choices_dataset = list(df["dataset"].unique())
choices_model_type = list(df["model_type"].unique())

# Utility functions for data processing
reduce_functions = {
    "Mean": lambda x: np.mean(x),
    "Median": lambda x: np.median(x),
    "Max": lambda x: np.max(x),
    "Min": lambda x: np.min(x),
}
map_functions = {
    "Raw": lambda x: x,
    "Rank": partial(pd.Series.rank, ascending=False, method="dense"),
    "Normalize": lambda x: (x - np.min(x)) / (np.max(x) - np.min(x)),
}
score_ascending = {
    "Raw": False,
    "Rank": True,
    "Normalize": False,
}


def prepare_dataframe(
    df: pd.DataFrame,
    filters: dict[str, list[str]],
    group_by: Literal["language", "dataset"],
    map_function: str,
    reduce_function: str,
) -> pd.DataFrame:
    # Filters contains a value subset for each column
    language = filters["language"]
    dataset = filters["dataset"]

    # Columns are divided into two groups: other_columns and group_by_columns, apart from `model` which should be the index
    other_columns = list(set(df.columns) - set(["language", "dataset", "score"]))
    group_by_columns = filters[group_by]

    # Step 1: Filter the dataframe based on the selected language and dataset
    for k, v in filters.items():
        df = df[df[k].isin(v)]
    # If dataframe is empty, return an empty dataframe
    if len(df) == 0:
        gr.Warning(
            f"No scores remain after the filter application. Please verify the checkboxes."
        )
        return pd.DataFrame(columns=other_columns)
    # Sanity check: All score exists for each (language,dataset) pair
    score_count = (
        df.drop_duplicates(subset=["model", "language", "dataset"])
        .groupby(["model"])["score"]
        .count()
    )
    invalid_models = score_count[
        score_count < len(language) * len(dataset)
    ].index.tolist()
    df = df[~df["model"].isin(invalid_models)]
    # Send a warning message if there are any invalid models
    for model in invalid_models:
        gr.Warning(
            f"<strong>{model}</strong> is lacking some scores thus hidden. Please report to the maintainers."
        )

    # Step 2: Process Scores
    # Step 2.0: Map the scores along each (language, dataset) pair
    df["score"] = df.groupby(["language", "dataset"])["score"].transform(
        map_functions[map_function]
    )
    # Step 2.1: Reduce the scores along the column other than `group_by`
    df = (
        df.groupby(other_columns + [group_by])
        .agg({"score": reduce_functions[reduce_function]})
        .reset_index()
    )
    # Step 2.2: Reduce the scores along `group_by` to get the overall score of each model
    reduced_col = df.groupby(other_columns).agg(
        {"score": reduce_functions[reduce_function]}
    )["score"]
    # Step 2.3: Pivot the dataframe, then concat the overall score
    df = df.pivot(index=other_columns, columns=group_by, values=["score"]).droplevel(
        0, 1
    )
    df["Overall Score"] = reduced_col

    # Step 3: Styling for display
    # - Sort the dataframe by the reduced score
    # - Sort the columns for better readability
    # - Highlight the maximum value in each column
    # - Format the score to 2 decimal places if it is a float
    other_columns.remove("model")
    df = (
        df.reset_index()[
            ["model"] + other_columns + ["Overall Score"] + group_by_columns
        ]
        .sort_values(by="Overall Score", ascending=score_ascending[map_function])
        .style.format(precision=2)
    )
    if score_ascending[map_function]:
        df = df.highlight_min(
            axis=0, color="#18864B", subset=["Overall Score"] + group_by_columns
        )
    else:
        df = df.highlight_max(
            axis=0, color="#18864B", subset=["Overall Score"] + group_by_columns
        )
    return df


with gr.Blocks(theme=gr.themes.Base()) as demo:
    # UI definition
    with gr.Row():
        with gr.Column():
            gr.Markdown(
                MARKDOWN_HEADER
            )
            checkbox_language = gr.CheckboxGroup(
                choices=choices_language,
                value=choices_language,
                label="Language(s)",
                interactive=True,
            )
            checkbox_dataset = gr.CheckboxGroup(
                choices=choices_dataset,
                value=choices_dataset,
                label="Dataset(s)",
                interactive=True,
            )
            checkbox_model_type = gr.CheckboxGroup(
                choices=choices_model_type,
                value=choices_model_type,
                label="Model Type(s)",
                interactive=True,
            )
            dropdown_map_function = gr.Dropdown(
                choices=map_functions.keys(),
                value="Raw",
                label="Map Function",
                interactive=True,
                info=MARKDOWN_MAP_FUNCTION
            )
            dropdown_reduce_function = gr.Dropdown(
                choices=reduce_functions.keys(),
                value="Mean",
                label="Reduce Function",
                interactive=True,
                info=MARKDOWN_REDUCE_FUNCTION
            )
            ratio_group_by = gr.Radio(
                choices=["language", "dataset"],
                value="language",
                label="Group by",
                interactive=True,
            )

            dataframe = gr.DataFrame(
                prepare_dataframe(
                    df=df,
                    filters={
                        "language": choices_language,
                        "dataset": choices_dataset,
                    },
                    group_by="language",
                    map_function="Raw",
                    reduce_function="Mean",
                ),
                interactive=False,
            )
            gr.Code(
                language="markdown",
                label="Citation",
                value=CITATION,
            )

    # Event listeners
    gr.on(
        triggers=[
            checkbox_model_type.change,
            checkbox_language.change,
            checkbox_dataset.change,
            ratio_group_by.change,
            dropdown_reduce_function.change,
            dropdown_map_function.change,
        ],
        fn=lambda model_type, language, dataset, group_by, map_function, reduce_function: prepare_dataframe(
            df=df,
            filters={
                "language": language,
                "dataset": dataset,
                "model_type": model_type,
            },
            group_by=group_by,
            map_function=map_function,
            reduce_function=reduce_function,
        ),
        inputs=[
            checkbox_model_type,
            checkbox_language,
            checkbox_dataset,
            ratio_group_by,
            dropdown_map_function,
            dropdown_reduce_function,
        ],
        outputs=[dataframe],
    )
if __name__ == "__main__":
    demo.launch()