Maxx0 commited on
Commit
feff724
·
1 Parent(s): 9ab153d

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -82
app.py DELETED
@@ -1,82 +0,0 @@
1
- # Import required libraries
2
- import PyPDF2
3
- from getpass import getpass
4
- from haystack.nodes import PreProcessor, PromptModel, PromptTemplate, PromptNode, AnswerParser
5
- from haystack.document_stores import InMemoryDocumentStore
6
- from haystack import Document, Pipeline
7
- from haystack.nodes import BM25Retriever
8
- from pprint import pprint
9
- import streamlit as st
10
- import logging
11
- from dotenv import load_dotenv
12
- load_dotenv()
13
-
14
- import logging
15
- logging.basicConfig(level=logging.DEBUG)
16
-
17
- # Function to extract text from a PDF
18
- def extract_text_from_pdf(pdf_path):
19
- text = ""
20
- with open(pdf_path, "rb") as pdf_file:
21
- pdf_reader = PyPDF2.PdfReader(pdf_file)
22
- for page_num in range(len(pdf_reader.pages)):
23
- page = pdf_reader.pages[page_num]
24
- text += page.extract_text() or ""
25
- return text
26
-
27
- # Extract text from the PDF file
28
- pdf_file_path = "Data/MR. MPROFY.pdf"
29
- pdf_text = extract_text_from_pdf(pdf_file_path)
30
- if not pdf_text:
31
- raise ValueError("No text extracted from PDF.")
32
-
33
- # Create a Haystack document
34
- doc = Document(content=pdf_text, meta={"name": "MR. MPROFY"})
35
-
36
- # Initialize Document Store
37
- document_store = InMemoryDocumentStore(use_bm25=True)
38
- document_store.write_documents([doc])
39
-
40
- # Initialize Retriever
41
- retriever = BM25Retriever(document_store=document_store, top_k=2)
42
-
43
- # Define QA Template
44
- qa_template = PromptTemplate(
45
- prompt="""
46
- Hi, I'm Mprofier, your friendly AI assistant. I'm here to provide direct and concise answers to your specific questions.
47
- I won’t ask any follow-up questions myself.
48
- If I can't find the answer in the provided context, I'll simply state that I don't have enough information to answer.
49
- Context: {join(documents)};
50
- Question: {query}
51
- Answer:
52
- """,
53
- output_parser=AnswerParser()
54
- )
55
-
56
- # Initialize Prompt Node
57
- prompt_node = PromptNode(
58
- model_name_or_path="mistralai/Mixtral-8x7B-Instruct-v0.1",
59
- api_key=HF_TOKEN,
60
- default_prompt_template=qa_template,
61
- max_length=500,
62
- model_kwargs={"model_max_length": 5000}
63
- )
64
-
65
- # Build Pipeline
66
- rag_pipeline = Pipeline()
67
- rag_pipeline.add_node(component=retriever, name="retriever", inputs=["Query"])
68
- rag_pipeline.add_node(component=prompt_node, name="prompt_node", inputs=["retriever"])
69
-
70
- # Streamlit Function for Handling Input and Displaying Output
71
- def run_streamlit_app():
72
- st.title("Mprofier - AI Assistant")
73
- query_text = st.text_input("Enter your question:")
74
-
75
- if st.button("Get Answer"):
76
- response = rag_pipeline.run(query=query_text)
77
- answer = response["answers"][0].answer if response["answers"] else "No answer found."
78
- st.write(answer)
79
-
80
- # Start the Streamlit application
81
- if __name__ == "__main__":
82
- run_streamlit_app()