|
import os |
|
|
|
import sys |
|
from torchvision.transforms import functional |
|
sys.modules["torchvision.transforms.functional_tensor"] = functional |
|
|
|
from basicsr.archs.srvgg_arch import SRVGGNetCompact |
|
from gfpgan.utils import GFPGANer |
|
from realesrgan.utils import RealESRGANer |
|
|
|
import torch |
|
import cv2 |
|
import gradio as gr |
|
|
|
|
|
|
|
if not os.path.exists('realesr-general-x4v3.pth'): |
|
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .") |
|
if not os.path.exists('GFPGANv1.2.pth'): |
|
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .") |
|
if not os.path.exists('GFPGANv1.3.pth'): |
|
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .") |
|
if not os.path.exists('GFPGANv1.4.pth'): |
|
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .") |
|
if not os.path.exists('RestoreFormer.pth'): |
|
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .") |
|
|
|
|
|
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') |
|
model_path = 'realesr-general-x4v3.pth' |
|
half = True if torch.cuda.is_available() else False |
|
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) |
|
|
|
|
|
|
|
|
|
|
|
def upscaler(img, version, scale): |
|
|
|
try: |
|
|
|
img = cv2.imread(img, cv2.IMREAD_UNCHANGED) |
|
if len(img.shape) == 3 and img.shape[2] == 4: |
|
img_mode = 'RGBA' |
|
elif len(img.shape) == 2: |
|
img_mode = None |
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
|
else: |
|
img_mode = None |
|
|
|
|
|
h, w = img.shape[0:2] |
|
if h < 300: |
|
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) |
|
|
|
|
|
face_enhancer = GFPGANer( |
|
model_path=f'{version}.pth', |
|
upscale=2, |
|
arch='RestoreFormer' if version=='RestoreFormer' else 'clean', |
|
channel_multiplier=2, |
|
bg_upsampler=upsampler |
|
) |
|
|
|
|
|
try: |
|
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) |
|
except RuntimeError as error: |
|
print('Error', error) |
|
|
|
|
|
try: |
|
if scale != 2: |
|
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 |
|
h, w = img.shape[0:2] |
|
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) |
|
except Exception as error: |
|
print('wrong scale input.', error) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) |
|
return output |
|
except Exception as error: |
|
print('global exception', error) |
|
return None, None |
|
|
|
if __name__ == "__main__": |
|
|
|
title = "Image Upscaler & Restoring [GFPGAN Algorithm]" |
|
|
|
demo = gr.Interface( |
|
upscaler, [ |
|
gr.Image(type="filepath", label="Input"), |
|
gr.Radio(['GFPGANv1.2', 'GFPGANv1.3', 'GFPGANv1.4', 'RestoreFormer'], type="value", label='version'), |
|
gr.Number(label="Rescaling factor"), |
|
], [ |
|
gr.Image(type="numpy", label="Output"), |
|
], |
|
title=title, |
|
allow_flagging="never" |
|
) |
|
|
|
demo.queue() |
|
demo.launch() |