MaziyarPanahi's picture
Update app.py
0fccda8 verified
raw
history blame
5.93 kB
import gradio as gr
import time
import requests
import json
import os
API_URL = os.getenv("API_URL")
API_KEY = os.getenv("API_KEY")
print(f"API_URL: {API_URL}")
print(f"API_KEY: {API_KEY}")
url = f"{API_URL}/v1/chat/completions"
# The headers for the HTTP request
headers = {
"accept": "application/json",
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}",
}
def is_valid_json(data):
try:
parsed_data = json.loads(data)
return True, parsed_data
except ValueError as e:
return False, str(e)
with gr.Blocks() as demo:
markup = gr.Markdown(
"""
# Mistral 7B Instruct v0.2
This is a demo of the Mistral 7B Instruct quantized model in GGUF (Q2) hosted on K8s cluster.
The original models can be found [MaziyarPanahi/Mistral-7B-Instruct-v0.2-GGUF](https://huggingface.co/MaziyarPanahi/Mistral-7B-Instruct-v0.2-GGUF)"""
)
chatbot = gr.Chatbot(height=500)
msg = gr.Textbox(lines=1, label="User Message")
clear = gr.Button("Clear")
with gr.Row():
with gr.Column(scale=2):
system_prompt_input = gr.Textbox(
label="System Prompt",
placeholder="Type system prompt here...",
value="You are a helpful assistant.",
)
temperature_input = gr.Slider(
label="Temperature", minimum=0.0, maximum=1.0, value=0.9, step=0.01
)
max_new_tokens_input = gr.Slider(
label="Max New Tokens", minimum=0, maximum=1024, value=256, step=1
)
with gr.Column(scale=2):
top_p_input = gr.Slider(
label="Top P", minimum=0.0, maximum=1.0, value=0.95, step=0.01
)
top_k_input = gr.Slider(
label="Top K", minimum=1, maximum=100, value=50, step=1
)
repetition_penalty_input = gr.Slider(
label="Repetition Penalty",
minimum=1.0,
maximum=2.0,
value=1.1,
step=0.01,
)
def update_globals(
system_prompt, temperature, max_new_tokens, top_p, top_k, repetition_penalty
):
global global_system_prompt, global_temperature, global_max_new_tokens, global_top_p, global_repetition_penalty, global_top_k
global_system_prompt = system_prompt
global_temperature = temperature
global_max_new_tokens = max_new_tokens
global_top_p = top_p
global_top_k = top_k
global_repetition_penalty = repetition_penalty
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(
history,
system_prompt,
temperature,
max_new_tokens,
top_p,
top_k,
repetition_penalty,
):
print(f"History in bot: {history}")
print(f"System Prompt: {system_prompt}")
print(f"Temperature: {temperature}")
print(f"Max New Tokens: {max_new_tokens}")
print(f"Top P: {top_p}")
print(f"Top K: {top_k}")
print(f"Repetition Penalty: {repetition_penalty}")
history_messages = [{"content": h[0], "role": "user"} for h in history if h[0]]
history[-1][1] = ""
sys_msg = [
{
"content": (
system_prompt if system_prompt else "You are a helpful assistant."
),
"role": "system",
}
]
history_messages = sys_msg + history_messages
print(history_messages)
data = {
"messages": history_messages,
"stream": True,
"temprature": temperature,
"top_k": top_k,
"top_p": top_p,
"seed": 42,
"repeat_penalty": repetition_penalty,
"chat_format": "mistral-instruct",
"max_tokens": max_new_tokens,
"response_format": {
"type": "json_object",
},
}
# Making the POST request and streaming the response
response = requests.post(
url, headers=headers, data=json.dumps(data), stream=True
)
for line in response.iter_lines():
# Filter out keep-alive new lines
if line:
data = line.decode("utf-8").lstrip("data: ")
# Check if the examples are valid
valid_check = is_valid_json(data)
if valid_check[0]:
try:
# Attempt to parse the JSON dataa
# json_data = json.loads(data)
json_data = valid_check[1]
delta_content = (
json_data.get("choices", [{}])[0]
.get("delta", {})
.get("content", "")
)
if delta_content: # Ensure there's content to print
history[-1][1] += delta_content
time.sleep(0.05)
yield history
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {e} date: {data}")
msg.submit(
user, [msg, chatbot], [msg, chatbot], queue=True, concurrency_limit=10
).then(
bot,
inputs=[
chatbot,
system_prompt_input,
temperature_input,
max_new_tokens_input,
top_p_input,
top_k_input,
repetition_penalty_input,
],
outputs=chatbot,
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue(default_concurrency_limit=20, max_size=20, api_open=False)
if __name__ == "__main__":
demo.launch(show_api=False, share=False)