Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoProcessor | |
from PIL import Image | |
# Define constants | |
MODEL_NAME = "microsoft/Phi-3.5-vision-instruct" | |
DESCRIPTION = "# [Phi-3.5-vision Demo](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)" | |
DEVICE = "cuda" | |
# Load model and processor | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True, torch_dtype="auto").to(DEVICE).eval() | |
processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
def run_example(image, text_input, model_id): | |
# Prepare prompt and image for processing | |
prompt = f"{text_input}\n" | |
image = Image.fromarray(image).convert("RGB") | |
# Process input | |
inputs = processor(prompt, image, return_tensors="pt").to(DEVICE) | |
generate_ids = model.generate(**inputs, max_new_tokens=1000, eos_token_id=processor.tokenizer.eos_token_id) | |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] | |
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
return response | |
css = """ | |
#output { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
# Set up the Gradio interface | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Tab(label="Phi-3.5 Input"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Picture") | |
text_input = gr.Textbox(label="Question") | |
submit_btn = gr.Button(value="Submit") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Output Text") | |
submit_btn.click(run_example, inputs=[input_img, text_input, MODEL_NAME], outputs=output_text) | |
demo.launch(debug=True) |