Spaces:
Running
on
Zero
Running
on
Zero
MaziyarPanahi
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
# Define constants
|
6 |
+
MODEL_NAME = "microsoft/Phi-3.5-vision-instruct"
|
7 |
+
DESCRIPTION = "# [Phi-3.5-vision Demo](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)"
|
8 |
+
DEVICE = "cuda"
|
9 |
+
|
10 |
+
# Load model and processor
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").to(DEVICE).eval()
|
12 |
+
processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
13 |
+
|
14 |
+
def run_example(image, text_input, model_id):
|
15 |
+
# Prepare prompt and image for processing
|
16 |
+
prompt = f"{text_input}\n"
|
17 |
+
image = Image.fromarray(image).convert("RGB")
|
18 |
+
|
19 |
+
# Process input
|
20 |
+
inputs = processor(prompt, image, return_tensors="pt").to(DEVICE)
|
21 |
+
generate_ids = model.generate(**inputs, max_new_tokens=1000, eos_token_id=processor.tokenizer.eos_token_id)
|
22 |
+
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
23 |
+
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
24 |
+
|
25 |
+
return response
|
26 |
+
|
27 |
+
css = """
|
28 |
+
#output {
|
29 |
+
height: 500px;
|
30 |
+
overflow: auto;
|
31 |
+
border: 1px solid #ccc;
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
# Set up the Gradio interface
|
36 |
+
with gr.Blocks(css=css) as demo:
|
37 |
+
gr.Markdown(DESCRIPTION)
|
38 |
+
with gr.Tab(label="Phi-3.5 Input"):
|
39 |
+
with gr.Row():
|
40 |
+
with gr.Column():
|
41 |
+
input_img = gr.Image(label="Input Picture")
|
42 |
+
text_input = gr.Textbox(label="Question")
|
43 |
+
submit_btn = gr.Button(value="Submit")
|
44 |
+
with gr.Column():
|
45 |
+
output_text = gr.Textbox(label="Output Text")
|
46 |
+
submit_btn.click(run_example, inputs=[input_img, text_input, MODEL_NAME], outputs=output_text)
|
47 |
+
|
48 |
+
demo.launch(debug=True)
|