Spaces:
Running
on
Zero
Running
on
Zero
Added streaming output and error handling
Browse files
app.py
CHANGED
@@ -1,34 +1,81 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
4 |
from qwen_vl_utils import process_vision_info
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import subprocess
|
8 |
import numpy as np
|
9 |
import os
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
|
14 |
# Model and Processor Loading (Done once at startup)
|
15 |
MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct"
|
16 |
-
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
|
|
|
|
|
|
|
17 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
18 |
|
19 |
DESCRIPTION = "[Qwen2-VL-2B Demo](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct)"
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
@spaces.GPU
|
22 |
-
def qwen_inference(
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
messages = [
|
33 |
{
|
34 |
"role": "user",
|
@@ -36,15 +83,17 @@ def qwen_inference(media_path, text_input=None):
|
|
36 |
{
|
37 |
"type": media_type,
|
38 |
media_type: media_path,
|
39 |
-
**({"fps": 8.0} if media_type == "video" else {}),
|
40 |
},
|
41 |
{"type": "text", "text": text_input},
|
42 |
],
|
43 |
}
|
44 |
]
|
45 |
|
46 |
-
text = processor.apply_chat_template(
|
47 |
-
|
|
|
|
|
48 |
inputs = processor(
|
49 |
text=[text],
|
50 |
images=image_inputs,
|
@@ -53,11 +102,18 @@ def qwen_inference(media_path, text_input=None):
|
|
53 |
return_tensors="pt",
|
54 |
).to("cuda")
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
css = """
|
63 |
#output {
|
@@ -73,12 +129,16 @@ with gr.Blocks(css=css) as demo:
|
|
73 |
with gr.Tab(label="Image/Video Input"):
|
74 |
with gr.Row():
|
75 |
with gr.Column():
|
76 |
-
input_media = gr.File(
|
|
|
|
|
77 |
text_input = gr.Textbox(label="Question")
|
78 |
submit_btn = gr.Button(value="Submit")
|
79 |
with gr.Column():
|
80 |
output_text = gr.Textbox(label="Output Text")
|
81 |
|
82 |
-
submit_btn.click(
|
|
|
|
|
83 |
|
84 |
demo.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
4 |
from qwen_vl_utils import process_vision_info
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import subprocess
|
8 |
import numpy as np
|
9 |
import os
|
10 |
+
from threading import Thread
|
11 |
+
import uuid
|
12 |
+
import io
|
13 |
|
14 |
# Model and Processor Loading (Done once at startup)
|
15 |
MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct"
|
16 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
17 |
+
MODEL_ID,
|
18 |
+
trust_remote_code=True,
|
19 |
+
torch_dtype=torch.float16
|
20 |
+
).to("cuda").eval()
|
21 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
22 |
|
23 |
DESCRIPTION = "[Qwen2-VL-2B Demo](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct)"
|
24 |
|
25 |
+
image_extensions = Image.registered_extensions()
|
26 |
+
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
|
27 |
+
|
28 |
+
|
29 |
+
def identify_and_save_blob(blob_path):
|
30 |
+
"""Identifies if the blob is an image or video and saves it accordingly."""
|
31 |
+
try:
|
32 |
+
with open(blob_path, 'rb') as file:
|
33 |
+
blob_content = file.read()
|
34 |
+
|
35 |
+
# Try to identify if it's an image
|
36 |
+
try:
|
37 |
+
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
|
38 |
+
extension = ".png" # Default to PNG for saving
|
39 |
+
media_type = "image"
|
40 |
+
except (IOError, SyntaxError):
|
41 |
+
# If it's not a valid image, assume it's a video
|
42 |
+
extension = ".mp4" # Default to MP4 for saving
|
43 |
+
media_type = "video"
|
44 |
+
|
45 |
+
# Create a unique filename
|
46 |
+
filename = f"temp_{uuid.uuid4()}_media{extension}"
|
47 |
+
with open(filename, "wb") as f:
|
48 |
+
f.write(blob_content)
|
49 |
+
|
50 |
+
return filename, media_type
|
51 |
+
|
52 |
+
except FileNotFoundError:
|
53 |
+
raise ValueError(f"The file {blob_path} was not found.")
|
54 |
+
except Exception as e:
|
55 |
+
raise ValueError(f"An error occurred while processing the file: {e}")
|
56 |
+
|
57 |
+
|
58 |
@spaces.GPU
|
59 |
+
def qwen_inference(media_input, text_input=None):
|
60 |
+
if isinstance(media_input, str): # If it's a filepath
|
61 |
+
media_path = media_input
|
62 |
+
if media_path.endswith(tuple([i for i, f in image_extensions.items()])):
|
63 |
+
media_type = "image"
|
64 |
+
elif media_path.endswith(video_extensions):
|
65 |
+
media_type = "video"
|
66 |
+
else:
|
67 |
+
try:
|
68 |
+
media_path, media_type = identify_and_save_blob(media_input)
|
69 |
+
print(media_path, media_type)
|
70 |
+
except Exception as e:
|
71 |
+
print(e)
|
72 |
+
raise ValueError(
|
73 |
+
"Unsupported media type. Please upload an image or video."
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
print(media_path)
|
78 |
+
|
79 |
messages = [
|
80 |
{
|
81 |
"role": "user",
|
|
|
83 |
{
|
84 |
"type": media_type,
|
85 |
media_type: media_path,
|
86 |
+
**({"fps": 8.0} if media_type == "video" else {}),
|
87 |
},
|
88 |
{"type": "text", "text": text_input},
|
89 |
],
|
90 |
}
|
91 |
]
|
92 |
|
93 |
+
text = processor.apply_chat_template(
|
94 |
+
messages, tokenize=False, add_generation_prompt=True
|
95 |
+
)
|
96 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
97 |
inputs = processor(
|
98 |
text=[text],
|
99 |
images=image_inputs,
|
|
|
102 |
return_tensors="pt",
|
103 |
).to("cuda")
|
104 |
|
105 |
+
streamer = TextIteratorStreamer(
|
106 |
+
processor, skip_prompt=True, **{"skip_special_tokens": True}
|
107 |
+
)
|
108 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
109 |
+
|
110 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
111 |
+
thread.start()
|
112 |
+
|
113 |
+
buffer = ""
|
114 |
+
for new_text in streamer:
|
115 |
+
buffer += new_text
|
116 |
+
yield buffer
|
117 |
|
118 |
css = """
|
119 |
#output {
|
|
|
129 |
with gr.Tab(label="Image/Video Input"):
|
130 |
with gr.Row():
|
131 |
with gr.Column():
|
132 |
+
input_media = gr.File(
|
133 |
+
label="Upload Image or Video", type="filepath"
|
134 |
+
)
|
135 |
text_input = gr.Textbox(label="Question")
|
136 |
submit_btn = gr.Button(value="Submit")
|
137 |
with gr.Column():
|
138 |
output_text = gr.Textbox(label="Output Text")
|
139 |
|
140 |
+
submit_btn.click(
|
141 |
+
qwen_inference, [input_media, text_input], [output_text]
|
142 |
+
)
|
143 |
|
144 |
demo.launch(debug=True)
|