MaziyarPanahi commited on
Commit
dcf6d05
·
verified ·
1 Parent(s): a68639a
Files changed (1) hide show
  1. app.py +43 -17
app.py CHANGED
@@ -7,15 +7,15 @@ import subprocess
7
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
8
 
9
  models = {
10
- "microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
11
 
12
  }
13
 
14
  processors = {
15
- "microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True)
16
  }
17
 
18
- DESCRIPTION = "[Phi-3.5-vision Demo](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)"
19
 
20
  kwargs = {}
21
  kwargs['torch_dtype'] = torch.bfloat16
@@ -25,23 +25,49 @@ assistant_prompt = '<|assistant|>\n'
25
  prompt_suffix = "<|end|>\n"
26
 
27
  @spaces.GPU
28
- def run_example(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instruct"):
29
  model = models[model_id]
30
  processor = processors[model_id]
31
 
32
  prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
33
  image = Image.fromarray(image).convert("RGB")
34
-
35
- inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
36
- generate_ids = model.generate(**inputs,
37
- max_new_tokens=1000,
38
- eos_token_id=processor.tokenizer.eos_token_id,
39
- )
40
- generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
41
- response = processor.batch_decode(generate_ids,
42
- skip_special_tokens=True,
43
- clean_up_tokenization_spaces=False)[0]
44
- return response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
  css = """
47
  #output {
@@ -53,11 +79,11 @@ css = """
53
 
54
  with gr.Blocks(css=css) as demo:
55
  gr.Markdown(DESCRIPTION)
56
- with gr.Tab(label="Phi-3.5 Input"):
57
  with gr.Row():
58
  with gr.Column():
59
  input_img = gr.Image(label="Input Picture")
60
- model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct")
61
  text_input = gr.Textbox(label="Question")
62
  submit_btn = gr.Button(value="Submit")
63
  with gr.Column():
 
7
  subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
8
 
9
  models = {
10
+ "Qwen/Qwen2-VL-2B-Instruct": AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
11
 
12
  }
13
 
14
  processors = {
15
+ "Qwen/Qwen2-VL-2B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
16
  }
17
 
18
+ DESCRIPTION = "[Qwen2-VL-2B Demo](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct)"
19
 
20
  kwargs = {}
21
  kwargs['torch_dtype'] = torch.bfloat16
 
25
  prompt_suffix = "<|end|>\n"
26
 
27
  @spaces.GPU
28
+ def run_example(image, text_input=None, model_id="Qwen/Qwen2-VL-2B-Instruct"):
29
  model = models[model_id]
30
  processor = processors[model_id]
31
 
32
  prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
33
  image = Image.fromarray(image).convert("RGB")
34
+ messages = [
35
+ {
36
+ "role": "user",
37
+ "content": [
38
+ {
39
+ "type": "image",
40
+ "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
41
+ },
42
+ {"type": "text", "text": "Describe this image."},
43
+ ],
44
+ }
45
+ ]
46
+
47
+ # Preparation for inference
48
+ text = processor.apply_chat_template(
49
+ messages, tokenize=False, add_generation_prompt=True
50
+ )
51
+ image_inputs, video_inputs = process_vision_info(messages)
52
+ inputs = processor(
53
+ text=[text],
54
+ images=image_inputs,
55
+ videos=video_inputs,
56
+ padding=True,
57
+ return_tensors="pt",
58
+ )
59
+ inputs = inputs.to("cuda")
60
+
61
+ # Inference: Generation of the output
62
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
63
+ generated_ids_trimmed = [
64
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
65
+ ]
66
+ output_text = processor.batch_decode(
67
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
68
+ )
69
+
70
+ return output_text
71
 
72
  css = """
73
  #output {
 
79
 
80
  with gr.Blocks(css=css) as demo:
81
  gr.Markdown(DESCRIPTION)
82
+ with gr.Tab(label="Qwen2-VL-2B Input"):
83
  with gr.Row():
84
  with gr.Column():
85
  input_img = gr.Image(label="Input Picture")
86
+ model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="Qwen/Qwen2-VL-2B-Instruct")
87
  text_input = gr.Textbox(label="Question")
88
  submit_btn = gr.Button(value="Submit")
89
  with gr.Column():