Spaces:
Sleeping
Sleeping
File size: 1,428 Bytes
2a9bd05 2186efb 2a9bd05 2186efb 2a9bd05 2186efb 2a9bd05 2186efb 2a9bd05 2186efb 2a9bd05 2186efb 2a9bd05 2186efb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import gradio as gr
import pandas as pd
LEADERBOARD_FILE = "results.csv"
def load_leaderboard():
return pd.read_csv(LEADERBOARD_FILE)
def display_data(data_type="Overall"):
df = load_leaderboard()
if data_type == "Overall":
new_df = pd.DataFrame({
"Model": df["Model"],
"Safe Score": df["Overall Safe Tasks Score"],
"Harm Score": df["Overall Harm Tasks Score"],
"Refusal Rate": df["Refusal Rate"],
"Normalized Safety Score": df["Normalized Safety Score"],
"Open": df["Open"]
})
else:
new_df = pd.DataFrame({
"Model": df["Model"],
"Safe Score": df[data_type],
"Harm Score": "",
"Refusal Rate": "",
"Normalized Safety Score": "",
"Open": df["Open"]
})
return new_df.sort_values(by="Safe Score", ascending=False)
with gr.Blocks() as demo:
gr.Markdown("# SafeArena Leaderboard")
data_type_dropdown = gr.Dropdown(
label="Data Type",
choices=["Overall", "Bias", "Cybercrime", "Harassment", "Misinformation", "Illegal Activity"],
value="Overall"
)
table = gr.Dataframe(value=display_data("Overall"), interactive=False)
data_type_dropdown.change(
fn=display_data,
inputs=data_type_dropdown,
outputs=table
)
demo.launch(share=True) |