logicsame commited on
Commit
75f1c35
·
1 Parent(s): ecf4166

Initial commit

Browse files
Files changed (2) hide show
  1. app.py +17 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+
4
+ # Load the model and tokenizer from Hugging Face
5
+ model_id = "huggingface/llama-2-7b-chat"
6
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
7
+ model = AutoModelForCausalLM.from_pretrained(model_id)
8
+
9
+ st.title("Food Nutrition Analysis with LLaMA")
10
+
11
+ user_input = st.text_area("Enter food label text:")
12
+
13
+ if st.button("Analyze"):
14
+ inputs = tokenizer(user_input, return_tensors="pt")
15
+ outputs = model.generate(**inputs)
16
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
17
+ st.write(response)
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ transformers
2
+ torch
3
+ streamlit # If you're using Streamlit