File size: 46,276 Bytes
b9a1fab
 
 
 
3b1eb75
b9a1fab
 
 
 
 
 
 
 
 
3b1eb75
b9a1fab
 
 
 
 
 
 
 
3b1eb75
b9a1fab
 
 
 
 
 
 
 
 
 
3b1eb75
b9a1fab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b1eb75
b9a1fab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b1eb75
b9a1fab
 
 
 
 
e623e7e
b9a1fab
 
3b1eb75
 
 
 
 
b9a1fab
 
3b1eb75
 
b9a1fab
 
 
 
3b1eb75
b9a1fab
 
 
 
 
3b1eb75
b9a1fab
 
 
 
3b1eb75
b9a1fab
 
 
 
 
 
e623e7e
 
b9a1fab
 
 
 
 
 
 
 
 
 
 
 
 
e623e7e
b9a1fab
 
3b1eb75
b9a1fab
 
 
3b1eb75
b9a1fab
821ffc1
e623e7e
821ffc1
 
 
e623e7e
821ffc1
 
 
e623e7e
 
821ffc1
 
e623e7e
 
 
821ffc1
e623e7e
 
821ffc1
e623e7e
 
b9a1fab
 
 
 
3b1eb75
b9a1fab
 
 
 
 
 
3b1eb75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9a1fab
 
 
 
 
 
 
 
821ffc1
 
 
 
3b1eb75
e623e7e
821ffc1
e623e7e
 
821ffc1
3b1eb75
 
 
 
 
b9a1fab
3b1eb75
b9a1fab
 
 
 
3b1eb75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9a1fab
 
3b1eb75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9a1fab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "os.chdir('../')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'c:\\\\mlops project\\\\image-colorization-mlops'"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "%pwd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "from dataclasses import dataclass\n",
    "from pathlib import Path\n",
    "\n",
    "@dataclass(frozen=True)\n",
    "class DataTransformationConfig:\n",
    "    root_dir : Path\n",
    "    data_path_black : Path\n",
    "    data_path_grey : Path\n",
    "    BATCH_SIZE : int\n",
    "    IMAGE_SIZE : list\n",
    "    DATA_RANGE: int\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "from src.imagecolorization.constants import *\n",
    "from src.imagecolorization.utils.common import read_yaml, create_directories\n",
    "\n",
    "class ConfigurationManager:\n",
    "    def __init__(\n",
    "        self,\n",
    "        config_filepath = CONFIG_FILE_PATH,\n",
    "        params_filepath = PARAMS_FILE_PATH):\n",
    "\n",
    "        self.config = read_yaml(config_filepath)\n",
    "        self.params = read_yaml(params_filepath)\n",
    "\n",
    "        create_directories([self.config.artifacts_root])\n",
    "        \n",
    "        \n",
    "    def get_data_transformation_config(self) -> DataTransformationConfig:\n",
    "        config = self.config.data_transformation\n",
    "        params = self.params\n",
    "        \n",
    "        data_transformation_cofig = DataTransformationConfig(\n",
    "            root_dir= config.root_dir,\n",
    "            data_path_black=config.data_path_black,\n",
    "            data_path_grey=config.data_path_grey,\n",
    "            BATCH_SIZE=params.BATCH_SIZE,\n",
    "            IMAGE_SIZE=params.IMAGE_SIZE,\n",
    "            DATA_RANGE=params.DATA_RANGE\n",
    "        )\n",
    "        \n",
    "        return data_transformation_cofig"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import torch\n",
    "from torch.utils.data import Dataset\n",
    "from torchvision import transforms\n",
    "\n",
    "        \n",
    "        \n",
    "        \n",
    "class ImageColorizationDataset:\n",
    "    def __init__(self, dataset, image_size, transform = None):\n",
    "        self.dataset = dataset\n",
    "        self.transform = transform\n",
    "        self.image_size = tuple(image_size)\n",
    "        \n",
    "    def __len__(self):\n",
    "        return len(self.dataset[0])\n",
    "    \n",
    "    def __getitem__(self, idx):\n",
    "        L  = np.array(self.dataset[0][idx]).reshape(self.image_size)\n",
    "        L = transforms.ToTensor()(L)\n",
    "        \n",
    "        ab = np.array(self.dataset[1][idx])\n",
    "        ab = transforms.ToTensor()(ab)\n",
    "        \n",
    "        return ab , L"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "from torch.utils.data import DataLoader\n",
    "import gc\n",
    "import os\n",
    "import numpy as np\n",
    "import torch\n",
    "from src.imagecolorization.logging import logger\n",
    "\n",
    "class DataTransformation:\n",
    "    def __init__(self, config: DataTransformationConfig):\n",
    "        self.config = config\n",
    "        \n",
    "    def load_data(self):\n",
    "        ab_df = np.load(self.config.data_path_black)[:self.config.DATA_RANGE]\n",
    "        l_df = np.load(self.config.data_path_grey)[:self.config.DATA_RANGE]\n",
    "        dataset = (l_df, ab_df)\n",
    "        gc.collect()\n",
    "        return dataset\n",
    "    \n",
    "    def get_datasets(self, dataset):\n",
    "        train_dataset = ImageColorizationDataset(\n",
    "            dataset=dataset,\n",
    "            image_size=self.config.IMAGE_SIZE\n",
    "        )\n",
    "        test_dataset = ImageColorizationDataset(\n",
    "            dataset=dataset,\n",
    "            image_size=self.config.IMAGE_SIZE\n",
    "        )\n",
    "    \n",
    "        return train_dataset, test_dataset\n",
    "        \n",
    "        \n",
    "    \n",
    "    def save_datasets(self, train_dataset, test_dataset):\n",
    "        # Ensure the directory exists\n",
    "        os.makedirs(self.config.root_dir, exist_ok=True)\n",
    "\n",
    "        train_dataset_path = os.path.join(self.config.root_dir, 'train_dataset.pt')\n",
    "        test_dataset_path = os.path.join(self.config.root_dir, 'test_dataset.pt')\n",
    "\n",
    "        try:\n",
    "            # Save the datasets\n",
    "            torch.save(train_dataset, train_dataset_path)\n",
    "            torch.save(test_dataset, test_dataset_path)\n",
    "\n",
    "            logger.info(f\"Train dataset saved at: {train_dataset_path}\")\n",
    "            logger.info(f\"Test dataset saved at: {test_dataset_path}\")\n",
    "        except Exception as e:\n",
    "            logger.error(f\"Error saving datasets: {str(e)}\")\n",
    "            raise e"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-08-24 23:35:18,235: INFO: common: yaml file: config\\config.yaml loaded successfully]\n",
      "[2024-08-24 23:35:18,243: INFO: common: yaml file: params.yaml loaded successfully]\n",
      "[2024-08-24 23:35:18,245: INFO: common: created directory at: artifacts]\n",
      "[2024-08-24 23:35:34,541: INFO: 2411080742: Train dataset saved at: artifacts/data_transformation\\train_dataset.pt]\n",
      "[2024-08-24 23:35:34,552: INFO: 2411080742: Test dataset saved at: artifacts/data_transformation\\test_dataset.pt]\n",
      "Train dataset type: <class '__main__.ImageColorizationDataset'>\n",
      "Train dataset length: 5000\n",
      "First item in train dataset: (tensor([[[0.5059, 0.4941, 0.4941,  ..., 0.4902, 0.4863, 0.4863],\n",
      "         [0.4980, 0.4941, 0.4941,  ..., 0.4980, 0.4902, 0.4824],\n",
      "         [0.4980, 0.4980, 0.4980,  ..., 0.4902, 0.4941, 0.5020],\n",
      "         ...,\n",
      "         [0.4941, 0.4941, 0.4980,  ..., 0.4941, 0.4941, 0.4941],\n",
      "         [0.4941, 0.4980, 0.4941,  ..., 0.4941, 0.4941, 0.4941],\n",
      "         [0.4980, 0.4980, 0.5020,  ..., 0.4941, 0.4863, 0.4941]],\n",
      "\n",
      "        [[0.5333, 0.5255, 0.5294,  ..., 0.5176, 0.5255, 0.5294],\n",
      "         [0.5373, 0.5333, 0.5216,  ..., 0.5137, 0.5216, 0.5373],\n",
      "         [0.5412, 0.5255, 0.5255,  ..., 0.5137, 0.5137, 0.5216],\n",
      "         ...,\n",
      "         [0.5137, 0.5137, 0.5137,  ..., 0.5098, 0.5098, 0.5098],\n",
      "         [0.5137, 0.5137, 0.5176,  ..., 0.5098, 0.5098, 0.5098],\n",
      "         [0.5137, 0.5216, 0.5294,  ..., 0.5098, 0.5098, 0.5098]]]), tensor([[[0.9294, 0.5294, 0.2941,  ..., 0.1373, 0.1451, 0.2471],\n",
      "         [0.9176, 0.5961, 0.2824,  ..., 0.1608, 0.1922, 0.1843],\n",
      "         [0.8431, 0.8471, 0.4078,  ..., 0.2863, 0.1882, 0.3216],\n",
      "         ...,\n",
      "         [0.1569, 0.1765, 0.1490,  ..., 0.0431, 0.0314, 0.0314],\n",
      "         [0.1569, 0.2196, 0.1843,  ..., 0.0314, 0.0275, 0.0392],\n",
      "         [0.1647, 0.2353, 0.3098,  ..., 0.0471, 0.0510, 0.0588]]]))\n"
     ]
    }
   ],
   "source": [
    "try:\n",
    "    config = ConfigurationManager()\n",
    "    data_transformation_config = config.get_data_transformation_config()\n",
    "    data_transformation = DataTransformation(config=data_transformation_config)\n",
    "    \n",
    "    # Load the dataset\n",
    "    dataset = data_transformation.load_data()\n",
    "    \n",
    "    # Get the datasets using the loaded dataset\n",
    "    train_dataset, test_dataset = data_transformation.get_datasets(dataset)\n",
    "    \n",
    "    # Perform any further operations (e.g., saving the dataset)\n",
    "    data_transformation.save_datasets(train_dataset, test_dataset)\n",
    "    \n",
    "    # Print information about the train dataset\n",
    "    print(f\"Train dataset type: {type(train_dataset)}\")\n",
    "    print(f\"Train dataset length: {len(train_dataset)}\")\n",
    "    print(f\"First item in train dataset: {train_dataset[0]}\")\n",
    "    \n",
    "except Exception as e:\n",
    "    raise e"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\azizu\\AppData\\Local\\Temp\\ipykernel_28412\\4121028732.py:4: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n",
      "  test_dataset = torch.load('artifacts/data_transformation/test_dataset.pt')\n",
      "C:\\Users\\azizu\\AppData\\Local\\Temp\\ipykernel_28412\\4121028732.py:5: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n",
      "  train_dataset = torch.load('artifacts/data_transformation/train_dataset.pt')\n"
     ]
    }
   ],
   "source": [
    "from torch.utils.data import Dataset, DataLoader\n",
    "\n",
    "\n",
    "test_dataset = torch.load('artifacts/data_transformation/test_dataset.pt')\n",
    "train_dataset = torch.load('artifacts/data_transformation/train_dataset.pt')\n",
    "\n",
    "\n",
    "train_loader1 = DataLoader(\n",
    "    train_dataset,\n",
    "    shuffle=True,\n",
    "    batch_size=1\n",
    ")\n",
    "test_loader1 = DataLoader(\n",
    "    test_dataset,\n",
    "    shuffle=True,\n",
    "    batch_size=1\n",
    ")\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Train loader batch - ab shape: torch.Size([1, 2, 224, 224]), L shape: torch.Size([1, 1, 224, 224])\n",
      "Test loader batch - ab shape: torch.Size([1, 2, 224, 224]), L shape: torch.Size([1, 1, 224, 224])\n"
     ]
    }
   ],
   "source": [
    "# Print shapes for train dataloader\n",
    "for batch in train_loader1:\n",
    "    ab, L = batch\n",
    "    print(f\"Train loader batch - ab shape: {ab.shape}, L shape: {L.shape}\")\n",
    "    break  # We only need to check one batch\n",
    "\n",
    "# Print shapes for test dataloader\n",
    "for batch in test_loader1:\n",
    "     ab, L = batch\n",
    "     print(f\"Test loader batch - ab shape: {ab.shape}, L shape: {L.shape}\")\n",
    "     break  # We only need to check one batch"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "from skimage.color import rgb2lab, lab2rgb\n",
    "import gc\n",
    "import matplotlib.pylab as plt\n",
    "\n",
    "def lab_to_rgb(L, ab):\n",
    "    L = L * 100\n",
    "    ab = (ab - 0.5) * 128 * 2\n",
    "    Lab = torch.cat([L, ab], dim = 2).numpy()\n",
    "    rgb_img = []\n",
    "    for img in Lab:\n",
    "        img_rgb = lab2rgb(img)\n",
    "        rgb_img.append(img_rgb)\n",
    "        \n",
    "    return np.stack(rgb_img, axis = 0)\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "def display_progress(cond, real, fake, current_epoch = 0, figsize=(20,15)):\n",
    "    \"\"\"\n",
    "    Save cond, real (original) and generated (fake)\n",
    "    images in one panel \n",
    "    \"\"\"\n",
    "    cond = cond.detach().cpu().permute(1, 2, 0)   \n",
    "    real = real.detach().cpu().permute(1, 2, 0)\n",
    "    fake = fake.detach().cpu().permute(1, 2, 0)\n",
    "    \n",
    "    images = [cond, real, fake]\n",
    "    titles = ['input','real','generated']\n",
    "    print(f'Epoch: {current_epoch}')\n",
    "    fig, ax = plt.subplots(1, 3, figsize=figsize)\n",
    "    for idx,img in enumerate(images):\n",
    "        if idx == 0:\n",
    "            ab = torch.zeros((224,224,2))\n",
    "            img = torch.cat([images[0]* 100, ab], dim=2).numpy()\n",
    "            imgan = lab2rgb(img)\n",
    "        else:\n",
    "            imgan = lab_to_rgb(images[0],img)\n",
    "        ax[idx].imshow(imgan)\n",
    "        ax[idx].axis(\"off\")\n",
    "    for idx, title in enumerate(titles):    \n",
    "        ax[idx].set_title('{}'.format(title))\n",
    "    plt.show()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pytorch_lightning as pl\n",
    "from src.imagecolorization.conponents.model_trainer import Generator,Critic\n",
    "from torch import nn, optim\n",
    "\n",
    "class CWGAN(pl.LightningModule):\n",
    "    def __init__(self, in_channels, out_channels, learning_rate=0.0002, lambda_recon=100, display_step=10, lambda_gp=10, lambda_r1=10):\n",
    "        super().__init__()\n",
    "        self.save_hyperparameters()\n",
    "        self.display_step = display_step\n",
    "        self.generator = Generator(in_channels, out_channels)\n",
    "        self.critic = Critic(in_channels + out_channels)  # Ensure Critic is initialized with the correct input channels\n",
    "        self.lambda_recon = lambda_recon\n",
    "        self.lambda_gp = lambda_gp\n",
    "        self.lambda_r1 = lambda_r1\n",
    "        self.recon_criterion = nn.L1Loss()\n",
    "        self.generator_losses, self.critic_losses = [], []\n",
    "        self.automatic_optimization = False\n",
    "        \n",
    "    def configure_optimizers(self):\n",
    "        optimizer_G = optim.Adam(self.generator.parameters(), lr=self.hparams.learning_rate, betas=(0.5, 0.9))\n",
    "        optimizer_C = optim.Adam(self.critic.parameters(), lr=self.hparams.learning_rate, betas=(0.5, 0.9))\n",
    "        return [optimizer_C, optimizer_G]\n",
    "    \n",
    "    def generator_step(self, real_images, conditioned_images, optimizer_G):\n",
    "        # WGAN has only a reconstruction loss\n",
    "        optimizer_G.zero_grad()\n",
    "        fake_images = self.generator(conditioned_images)\n",
    "        recon_loss = self.recon_criterion(fake_images, real_images)\n",
    "        recon_loss.backward()\n",
    "        optimizer_G.step()\n",
    "        self.generator_losses.append(recon_loss.item())\n",
    "        \n",
    "    def critic_step(self, real_images, conditioned_images, optimizer_C):\n",
    "        optimizer_C.zero_grad()\n",
    "        fake_images = self.generator(conditioned_images)\n",
    "        fake_input = torch.cat((fake_images, conditioned_images), 1)\n",
    "        real_input = torch.cat((real_images, conditioned_images), 1)\n",
    "        fake_logits = self.critic(fake_input)\n",
    "        real_logits = self.critic(real_input)\n",
    "\n",
    "        # Compute the loss for the critic\n",
    "        loss_C = real_logits.mean() - fake_logits.mean()\n",
    "\n",
    "        # Compute the gradient penalty\n",
    "        alpha = torch.rand(real_images.size(0), 1, 1, 1, requires_grad=True).to(real_images.device)\n",
    "        interpolated = (alpha * real_images + (1 - alpha) * fake_images.detach()).requires_grad_(True)\n",
    "        interpolated_logits = self.critic(interpolated, conditioned_images)\n",
    "    \n",
    "        gradients = torch.autograd.grad(outputs=interpolated_logits, inputs=interpolated,\n",
    "                                    grad_outputs=torch.ones_like(interpolated_logits), create_graph=True, retain_graph=True)[0]\n",
    "        gradients = gradients.view(len(gradients), -1)\n",
    "        gradients_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()\n",
    "        loss_C += self.lambda_gp * gradients_penalty\n",
    "    \n",
    "        # Compute the R1 regularization loss\n",
    "        r1_reg = gradients.pow(2).sum(1).mean()\n",
    "        loss_C += self.lambda_r1 * r1_reg\n",
    "\n",
    "        # Backpropagation\n",
    "        loss_C.backward()\n",
    "        optimizer_C.step()\n",
    "        self.critic_losses.append(loss_C.item())\n",
    "\n",
    "    \n",
    "    def training_step(self, batch, batch_idx):\n",
    "        real, condition = batch\n",
    "        optimizer_C, optimizer_G = self.optimizers()  # Access optimizers\n",
    "    \n",
    "        # Debugging shapes\n",
    "        print(f\"Real images shape: {real.shape}\")\n",
    "        print(f\"Conditioned images shape: {condition.shape}\")\n",
    "    \n",
    "        # Update the critic\n",
    "        self.critic_step(real, condition, optimizer_C)\n",
    "    \n",
    "        # Update the generator\n",
    "        self.generator_step(real, condition, optimizer_G)\n",
    "    \n",
    "    \n",
    "        # Logging and saving models\n",
    "        gen_mean = sum(self.generator_losses[-self.display_step:]) / self.display_step\n",
    "        crit_mean = sum(self.critic_losses[-self.display_step:]) / self.display_step\n",
    "        if self.current_epoch % self.display_step == 0 and batch_idx == 0:\n",
    "            fake = self.generator(condition).detach()\n",
    "            print(f\"Epoch {self.current_epoch}: Generator loss: {gen_mean}, Critic loss: {crit_mean}\")\n",
    "            display_progress(condition[0], real[0], fake[0], self.current_epoch)\n",
    "    \n",
    "        # Save models every 10 epochs\n",
    "        if (self.current_epoch + 1) % 10 == 0 and batch_idx == self.trainer.num_training_batches - 1:\n",
    "            torch.save(self.generator.state_dict(), f\"/kaggle/working/cwgan_generator_epoch_{self.current_epoch+1}.pt\")\n",
    "            torch.save(self.critic.state_dict(), f\"/kaggle/working/cwgan_critic_epoch_{self.current_epoch+1}.pt\")\n",
    "            print(f\"Saved models at epoch {self.current_epoch+1}\")\n",
    "\n",
    "        # Final save at epoch 150\n",
    "        if self.current_epoch == 149 and batch_idx == self.trainer.num_training_batches - 1:\n",
    "            torch.save(self.generator.state_dict(), \"cwgan_generator_final.pt\")\n",
    "            torch.save(self.critic.state_dict(), \"cwgan_critic_final.pt\")\n",
    "            print(\"Saved final models at epoch 150\")\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "from torch import nn, optim\n",
    "\n",
    "gc.collect()\n",
    "cwgan = CWGAN(in_channels = 1, out_channels = 2 ,learning_rate=2e-4, lambda_recon=100, display_step=10)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-08-25 00:04:53,828: INFO: rank_zero: GPU available: True (cuda), used: True]\n",
      "[2024-08-25 00:04:53,829: INFO: rank_zero: TPU available: False, using: 0 TPU cores]\n",
      "[2024-08-25 00:04:53,830: INFO: rank_zero: IPU available: False, using: 0 IPUs]\n",
      "[2024-08-25 00:04:53,831: INFO: rank_zero: HPU available: False, using: 0 HPUs]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-08-25 00:04:54,549: INFO: cuda: LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]]\n",
      "[2024-08-25 00:04:54,552: INFO: model_summary: \n",
      "  | Name            | Type      | Params\n",
      "----------------------------------------------\n",
      "0 | generator       | Generator | 8.2 M \n",
      "1 | critic          | Critic    | 2.8 M \n",
      "2 | recon_criterion | L1Loss    | 0     \n",
      "----------------------------------------------\n",
      "11.0 M    Trainable params\n",
      "0         Non-trainable params\n",
      "11.0 M    Total params\n",
      "43.893    Total estimated model params size (MB)]\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "a1c97e80cdd746b2afa3ae30771ee058",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Training: |          | 0/? [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Real images shape: torch.Size([1, 2, 224, 224])\n",
      "Conditioned images shape: torch.Size([1, 1, 224, 224])\n"
     ]
    },
    {
     "ename": "TypeError",
     "evalue": "Critic.forward() missing 1 required positional argument: 'l'",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mTypeError\u001b[0m                                 Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[15], line 2\u001b[0m\n\u001b[0;32m      1\u001b[0m trainer \u001b[38;5;241m=\u001b[39m pl\u001b[38;5;241m.\u001b[39mTrainer(max_epochs\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m150\u001b[39m)\n\u001b[1;32m----> 2\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcwgan\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrain_loader1\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32mc:\\Users\\azizu\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\pytorch_lightning\\trainer\\trainer.py:545\u001b[0m, in \u001b[0;36mTrainer.fit\u001b[1;34m(self, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path)\u001b[0m\n\u001b[0;32m    543\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mstatus \u001b[38;5;241m=\u001b[39m TrainerStatus\u001b[38;5;241m.\u001b[39mRUNNING\n\u001b[0;32m    544\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtraining \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m--> 545\u001b[0m \u001b[43mcall\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_and_handle_interrupt\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    546\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_fit_impl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrain_dataloaders\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mval_dataloaders\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdatamodule\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mckpt_path\u001b[49m\n\u001b[0;32m    547\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32mc:\\Users\\azizu\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\pytorch_lightning\\trainer\\call.py:44\u001b[0m, in \u001b[0;36m_call_and_handle_interrupt\u001b[1;34m(trainer, trainer_fn, *args, **kwargs)\u001b[0m\n\u001b[0;32m     42\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m trainer\u001b[38;5;241m.\u001b[39mstrategy\u001b[38;5;241m.\u001b[39mlauncher \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m     43\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m trainer\u001b[38;5;241m.\u001b[39mstrategy\u001b[38;5;241m.\u001b[39mlauncher\u001b[38;5;241m.\u001b[39mlaunch(trainer_fn, \u001b[38;5;241m*\u001b[39margs, trainer\u001b[38;5;241m=\u001b[39mtrainer, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m---> 44\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mtrainer_fn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m     46\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m _TunerExitException:\n\u001b[0;32m     47\u001b[0m     _call_teardown_hook(trainer)\n",
      "File \u001b[1;32mc:\\Users\\azizu\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\pytorch_lightning\\trainer\\trainer.py:581\u001b[0m, in \u001b[0;36mTrainer._fit_impl\u001b[1;34m(self, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path)\u001b[0m\n\u001b[0;32m    574\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mfn \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m    575\u001b[0m ckpt_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_checkpoint_connector\u001b[38;5;241m.\u001b[39m_select_ckpt_path(\n\u001b[0;32m    576\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mfn,\n\u001b[0;32m    577\u001b[0m     ckpt_path,\n\u001b[0;32m    578\u001b[0m     model_provided\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[0;32m    579\u001b[0m     model_connected\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlightning_module \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[0;32m    580\u001b[0m )\n\u001b[1;32m--> 581\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_run\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mckpt_path\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mckpt_path\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    583\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mstopped\n\u001b[0;32m    584\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtraining \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n",
      "File \u001b[1;32mc:\\Users\\azizu\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\pytorch_lightning\\trainer\\trainer.py:990\u001b[0m, in \u001b[0;36mTrainer._run\u001b[1;34m(self, model, ckpt_path)\u001b[0m\n\u001b[0;32m    985\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_signal_connector\u001b[38;5;241m.\u001b[39mregister_signal_handlers()\n\u001b[0;32m    987\u001b[0m \u001b[38;5;66;03m# ----------------------------\u001b[39;00m\n\u001b[0;32m    988\u001b[0m \u001b[38;5;66;03m# RUN THE TRAINER\u001b[39;00m\n\u001b[0;32m    989\u001b[0m \u001b[38;5;66;03m# ----------------------------\u001b[39;00m\n\u001b[1;32m--> 990\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_run_stage\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    992\u001b[0m \u001b[38;5;66;03m# ----------------------------\u001b[39;00m\n\u001b[0;32m    993\u001b[0m \u001b[38;5;66;03m# POST-Training CLEAN UP\u001b[39;00m\n\u001b[0;32m    994\u001b[0m \u001b[38;5;66;03m# ----------------------------\u001b[39;00m\n\u001b[0;32m    995\u001b[0m log\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m: trainer tearing down\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
      "File \u001b[1;32mc:\\Users\\azizu\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\pytorch_lightning\\trainer\\trainer.py:1036\u001b[0m, in \u001b[0;36mTrainer._run_stage\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m   1034\u001b[0m         \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_run_sanity_check()\n\u001b[0;32m   1035\u001b[0m     \u001b[38;5;28;01mwith\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mautograd\u001b[38;5;241m.\u001b[39mset_detect_anomaly(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_detect_anomaly):\n\u001b[1;32m-> 1036\u001b[0m         \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit_loop\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   1037\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m   1038\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUnexpected state \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n",
      "File \u001b[1;32mc:\\Users\\azizu\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\pytorch_lightning\\loops\\fit_loop.py:202\u001b[0m, in \u001b[0;36m_FitLoop.run\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m    200\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m    201\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mon_advance_start()\n\u001b[1;32m--> 202\u001b[0m     \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43madvance\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    203\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mon_advance_end()\n\u001b[0;32m    204\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_restarting \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n",
      "File \u001b[1;32mc:\\Users\\azizu\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\pytorch_lightning\\loops\\fit_loop.py:359\u001b[0m, in \u001b[0;36m_FitLoop.advance\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m    357\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtrainer\u001b[38;5;241m.\u001b[39mprofiler\u001b[38;5;241m.\u001b[39mprofile(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_training_epoch\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n\u001b[0;32m    358\u001b[0m     \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_data_fetcher \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m--> 359\u001b[0m     \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mepoch_loop\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_data_fetcher\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32mc:\\Users\\azizu\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\pytorch_lightning\\loops\\training_epoch_loop.py:136\u001b[0m, in \u001b[0;36m_TrainingEpochLoop.run\u001b[1;34m(self, data_fetcher)\u001b[0m\n\u001b[0;32m    134\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdone:\n\u001b[0;32m    135\u001b[0m     \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 136\u001b[0m         \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43madvance\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata_fetcher\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    137\u001b[0m         \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mon_advance_end(data_fetcher)\n\u001b[0;32m    138\u001b[0m         \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_restarting \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n",
      "File \u001b[1;32mc:\\Users\\azizu\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\pytorch_lightning\\loops\\training_epoch_loop.py:242\u001b[0m, in \u001b[0;36m_TrainingEpochLoop.advance\u001b[1;34m(self, data_fetcher)\u001b[0m\n\u001b[0;32m    240\u001b[0m             batch_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mautomatic_optimization\u001b[38;5;241m.\u001b[39mrun(trainer\u001b[38;5;241m.\u001b[39moptimizers[\u001b[38;5;241m0\u001b[39m], batch_idx, kwargs)\n\u001b[0;32m    241\u001b[0m         \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m--> 242\u001b[0m             batch_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmanual_optimization\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    244\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbatch_progress\u001b[38;5;241m.\u001b[39mincrement_processed()\n\u001b[0;32m    246\u001b[0m \u001b[38;5;66;03m# update non-plateau LR schedulers\u001b[39;00m\n\u001b[0;32m    247\u001b[0m \u001b[38;5;66;03m# update epoch-interval ones only when we are at the end of training epoch\u001b[39;00m\n",
      "File \u001b[1;32mc:\\Users\\azizu\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\pytorch_lightning\\loops\\optimization\\manual.py:92\u001b[0m, in \u001b[0;36m_ManualOptimization.run\u001b[1;34m(self, kwargs)\u001b[0m\n\u001b[0;32m     90\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mon_run_start()\n\u001b[0;32m     91\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m suppress(\u001b[38;5;167;01mStopIteration\u001b[39;00m):  \u001b[38;5;66;03m# no loop to break at this level\u001b[39;00m\n\u001b[1;32m---> 92\u001b[0m     \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43madvance\u001b[49m\u001b[43m(\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m     93\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_restarting \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[0;32m     94\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mon_run_end()\n",
      "File \u001b[1;32mc:\\Users\\azizu\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\pytorch_lightning\\loops\\optimization\\manual.py:112\u001b[0m, in \u001b[0;36m_ManualOptimization.advance\u001b[1;34m(self, kwargs)\u001b[0m\n\u001b[0;32m    109\u001b[0m trainer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtrainer\n\u001b[0;32m    111\u001b[0m \u001b[38;5;66;03m# manually capture logged metrics\u001b[39;00m\n\u001b[1;32m--> 112\u001b[0m training_step_output \u001b[38;5;241m=\u001b[39m \u001b[43mcall\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_strategy_hook\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtrainer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtraining_step\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvalues\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    113\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m kwargs  \u001b[38;5;66;03m# release the batch from memory\u001b[39;00m\n\u001b[0;32m    114\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtrainer\u001b[38;5;241m.\u001b[39mstrategy\u001b[38;5;241m.\u001b[39mpost_training_step()  \u001b[38;5;66;03m# unused hook - call anyway for backward compatibility\u001b[39;00m\n",
      "File \u001b[1;32mc:\\Users\\azizu\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\pytorch_lightning\\trainer\\call.py:309\u001b[0m, in \u001b[0;36m_call_strategy_hook\u001b[1;34m(trainer, hook_name, *args, **kwargs)\u001b[0m\n\u001b[0;32m    306\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m    308\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m trainer\u001b[38;5;241m.\u001b[39mprofiler\u001b[38;5;241m.\u001b[39mprofile(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m[Strategy]\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mtrainer\u001b[38;5;241m.\u001b[39mstrategy\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mhook_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m):\n\u001b[1;32m--> 309\u001b[0m     output \u001b[38;5;241m=\u001b[39m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    311\u001b[0m \u001b[38;5;66;03m# restore current_fx when nested context\u001b[39;00m\n\u001b[0;32m    312\u001b[0m pl_module\u001b[38;5;241m.\u001b[39m_current_fx_name \u001b[38;5;241m=\u001b[39m prev_fx_name\n",
      "File \u001b[1;32mc:\\Users\\azizu\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\pytorch_lightning\\strategies\\strategy.py:382\u001b[0m, in \u001b[0;36mStrategy.training_step\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m    380\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel \u001b[38;5;241m!=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlightning_module:\n\u001b[0;32m    381\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_redirection(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlightning_module, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtraining_step\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m--> 382\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlightning_module\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtraining_step\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "Cell \u001b[1;32mIn[13], line 74\u001b[0m, in \u001b[0;36mCWGAN.training_step\u001b[1;34m(self, batch, batch_idx)\u001b[0m\n\u001b[0;32m     71\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mConditioned images shape: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mcondition\u001b[38;5;241m.\u001b[39mshape\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m     73\u001b[0m \u001b[38;5;66;03m# Update the critic\u001b[39;00m\n\u001b[1;32m---> 74\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcritic_step\u001b[49m\u001b[43m(\u001b[49m\u001b[43mreal\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcondition\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43moptimizer_C\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m     76\u001b[0m \u001b[38;5;66;03m# Update the generator\u001b[39;00m\n\u001b[0;32m     77\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgenerator_step(real, condition, optimizer_G)\n",
      "Cell \u001b[1;32mIn[13], line 38\u001b[0m, in \u001b[0;36mCWGAN.critic_step\u001b[1;34m(self, real_images, conditioned_images, optimizer_C)\u001b[0m\n\u001b[0;32m     36\u001b[0m fake_input \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mcat((fake_images, conditioned_images), \u001b[38;5;241m1\u001b[39m)\n\u001b[0;32m     37\u001b[0m real_input \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mcat((real_images, conditioned_images), \u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m---> 38\u001b[0m fake_logits \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcritic\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfake_input\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m     39\u001b[0m real_logits \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcritic(real_input)\n\u001b[0;32m     41\u001b[0m \u001b[38;5;66;03m# Compute the loss for the critic\u001b[39;00m\n",
      "File \u001b[1;32mc:\\Users\\azizu\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\torch\\nn\\modules\\module.py:1553\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1551\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)  \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[0;32m   1552\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m-> 1553\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32mc:\\Users\\azizu\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\torch\\nn\\modules\\module.py:1562\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1557\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[0;32m   1558\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[0;32m   1559\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[0;32m   1560\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[0;32m   1561\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[1;32m-> 1562\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   1564\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m   1565\u001b[0m     result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
      "\u001b[1;31mTypeError\u001b[0m: Critic.forward() missing 1 required positional argument: 'l'"
     ]
    }
   ],
   "source": [
    "trainer = pl.Trainer(max_epochs=150)\n",
    "trainer.fit(cwgan, train_loader1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}