HAMIM-ML commited on
Commit
9bd2271
·
1 Parent(s): 3b1eb75

model evaluation added

Browse files
config/config.yaml CHANGED
@@ -19,5 +19,13 @@ model_trainer:
19
  root_dir : artifacts/trained_model
20
  test_data_path : artifacts/data_transformation/test_dataset.pt
21
  train_data_path : artifacts/data_transformation/train_dataset.pt
 
 
 
 
 
 
 
 
22
 
23
 
 
19
  root_dir : artifacts/trained_model
20
  test_data_path : artifacts/data_transformation/test_dataset.pt
21
  train_data_path : artifacts/data_transformation/train_dataset.pt
22
+
23
+ model_evaluation:
24
+ test_data: 'artifacts/data_transformation/test_dataset.pt'
25
+ generator_model: 'artifacts/trained_model/cwgan_generator_final.pt'
26
+ critic_model: 'artifacts/trained_model/cwgan_critic_final.pt'
27
+
28
+
29
+
30
 
31
 
lightning_logs/version_37/events.out.tfevents.1724745017.Hakim.53748.0 ADDED
Binary file (683 Bytes). View file
 
lightning_logs/version_37/hparams.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ display_step: 10
2
+ in_channels: 1
3
+ lambda_gp: 10
4
+ lambda_r1: 10
5
+ lambda_recon: 100
6
+ learning_rate: 0.0002
7
+ out_channels: 2
lightning_logs/version_38/events.out.tfevents.1724745796.Hakim.53748.1 ADDED
Binary file (683 Bytes). View file
 
lightning_logs/version_38/hparams.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ display_step: 10
2
+ in_channels: 1
3
+ lambda_gp: 10
4
+ lambda_r1: 10
5
+ lambda_recon: 100
6
+ learning_rate: 0.0002
7
+ out_channels: 2
lightning_logs/version_39/events.out.tfevents.1724754294.Hakim.58248.0 ADDED
Binary file (683 Bytes). View file
 
lightning_logs/version_39/hparams.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ display_step: 10
2
+ in_channels: 1
3
+ lambda_gp: 10
4
+ lambda_r1: 10
5
+ lambda_recon: 100
6
+ learning_rate: 0.0002
7
+ out_channels: 2
lightning_logs/version_40/events.out.tfevents.1724755669.Hakim.58248.1 ADDED
Binary file (683 Bytes). View file
 
lightning_logs/version_40/hparams.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ display_step: 10
2
+ in_channels: 1
3
+ lambda_gp: 10
4
+ lambda_r1: 10
5
+ lambda_recon: 100
6
+ learning_rate: 0.0002
7
+ out_channels: 2
main.py CHANGED
@@ -2,9 +2,10 @@ from src.imagecolorization.pipeline.stage01_data_ingestion import DataIngestionP
2
  from src.imagecolorization.pipeline.stage02_data_transformation import DataTransformationPipeline
3
  from src.imagecolorization.pipeline.stage_03_model_building import ModelBuildingPipeline
4
  from src.imagecolorization.pipeline.stage_04_model_trainer import ModelTrainerPipeline
 
5
  from src.imagecolorization.logging import logger
6
 
7
- STAGE_NAME = 'Data Ingestion Config'
8
 
9
  try:
10
  logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
@@ -15,7 +16,7 @@ except Exception as e:
15
  logger.exception(e)
16
  raise e
17
 
18
- STAGE_NAME = 'Data Tranasformation Config'
19
 
20
  try:
21
  logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
@@ -27,7 +28,7 @@ except Exception as e:
27
  raise e
28
 
29
 
30
- STAGE_NAME = 'Model Building Config'
31
 
32
  try:
33
  logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
@@ -39,7 +40,7 @@ except Exception as e:
39
  raise e
40
 
41
 
42
- STAGE_NAME = 'Model Training Config'
43
 
44
  try:
45
  logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
@@ -48,4 +49,18 @@ try:
48
  logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
49
  except Exception as e:
50
  logger.exception(e)
51
- raise e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  from src.imagecolorization.pipeline.stage02_data_transformation import DataTransformationPipeline
3
  from src.imagecolorization.pipeline.stage_03_model_building import ModelBuildingPipeline
4
  from src.imagecolorization.pipeline.stage_04_model_trainer import ModelTrainerPipeline
5
+ from src.imagecolorization.pipeline.stage_05_model_evaluation import ModelEvaluationPipeLine
6
  from src.imagecolorization.logging import logger
7
 
8
+ STAGE_NAME = 'Data Ingestion Stage'
9
 
10
  try:
11
  logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
 
16
  logger.exception(e)
17
  raise e
18
 
19
+ STAGE_NAME = 'Data Tranasformation Stage'
20
 
21
  try:
22
  logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
 
28
  raise e
29
 
30
 
31
+ STAGE_NAME = 'Model Building Stage'
32
 
33
  try:
34
  logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
 
40
  raise e
41
 
42
 
43
+ STAGE_NAME = 'Model Training Stage'
44
 
45
  try:
46
  logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
 
49
  logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
50
  except Exception as e:
51
  logger.exception(e)
52
+ raise e
53
+
54
+
55
+
56
+ STAGE_NAME = 'Model Evaluation Stage'
57
+
58
+ try:
59
+ logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
60
+ model_trianer = ModelEvaluationPipeLine()
61
+ model_trianer.main()
62
+ logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
63
+ except Exception as e:
64
+ logger.exception(e)
65
+ raise e
66
+
params.yaml CHANGED
@@ -1,7 +1,7 @@
1
  # Data Parameters
2
  BATCH_SIZE: 1
3
  IMAGE_SIZE: [224, 224, 1]
4
- DATA_RANGE: 5000
5
 
6
  # Convolutional Layer Parameters
7
  KERNEL_SIZE_RES: 3
@@ -14,7 +14,7 @@ SCALE_FACTOR: 2
14
  DIM: 1
15
 
16
  # Dropout Parameters
17
- DROPOUT_RATE: 0.2
18
 
19
  # Generator Parameters
20
  KERNEL_SIZE_GENERATOR: 1
@@ -25,7 +25,7 @@ OUTPUT_CHANNELS: 2
25
  IN_CHANNELS: 3
26
 
27
  # model train
28
- LEARNING_RATE : 2e-4
29
  LAMBDA_RECON : 100
30
- DISPLAY_STEP : 10
31
- EPOCH : 1
 
1
  # Data Parameters
2
  BATCH_SIZE: 1
3
  IMAGE_SIZE: [224, 224, 1]
4
+ DATA_RANGE: 3000
5
 
6
  # Convolutional Layer Parameters
7
  KERNEL_SIZE_RES: 3
 
14
  DIM: 1
15
 
16
  # Dropout Parameters
17
+ DROPOUT_RATE: 0.3
18
 
19
  # Generator Parameters
20
  KERNEL_SIZE_GENERATOR: 1
 
25
  IN_CHANNELS: 3
26
 
27
  # model train
28
+ LEARNING_RATE : 2e-5
29
  LAMBDA_RECON : 100
30
+ DISPLAY_STEP : 11
31
+ EPOCH : 2
research/model_evaluation.ipynb ADDED
@@ -0,0 +1,507 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import os\n",
10
+ "os.chdir('../')"
11
+ ]
12
+ },
13
+ {
14
+ "cell_type": "code",
15
+ "execution_count": 2,
16
+ "metadata": {},
17
+ "outputs": [
18
+ {
19
+ "data": {
20
+ "text/plain": [
21
+ "'c:\\\\mlops project\\\\image-colorization-mlops'"
22
+ ]
23
+ },
24
+ "execution_count": 2,
25
+ "metadata": {},
26
+ "output_type": "execute_result"
27
+ }
28
+ ],
29
+ "source": [
30
+ "%pwd"
31
+ ]
32
+ },
33
+ {
34
+ "cell_type": "code",
35
+ "execution_count": 3,
36
+ "metadata": {},
37
+ "outputs": [],
38
+ "source": [
39
+ "from dataclasses import dataclass\n",
40
+ "from pathlib import Path\n",
41
+ "\n",
42
+ "@dataclass(frozen=True)\n",
43
+ "class ModelEvalutaionConfig:\n",
44
+ " test_data : Path\n",
45
+ " generator_model : Path\n",
46
+ " critic_model : Path\n",
47
+ " all_params: dict"
48
+ ]
49
+ },
50
+ {
51
+ "cell_type": "code",
52
+ "execution_count": 7,
53
+ "metadata": {},
54
+ "outputs": [],
55
+ "source": [
56
+ "from src.imagecolorization.constants import *\n",
57
+ "from src.imagecolorization.utils.common import read_yaml, create_directories, save_json\n",
58
+ "\n",
59
+ "class ConfigurationManager:\n",
60
+ " def __init__(self, config_filepath=CONFIG_FILE_PATH, params_filepath=PARAMS_FILE_PATH):\n",
61
+ " self.config = read_yaml(config_filepath)\n",
62
+ " self.params = read_yaml(params_filepath)\n",
63
+ " create_directories([self.config.artifacts_root])\n",
64
+ " \n",
65
+ " \n",
66
+ " def get_model_evaluation_config(self) -> ModelEvalutaionConfig:\n",
67
+ " config = self.config.model_evaluation \n",
68
+ " params = self.params\n",
69
+ "\n",
70
+ " model_evaluation_config = ModelEvalutaionConfig(\n",
71
+ " \n",
72
+ " test_data=config.test_data,\n",
73
+ " generator_model=config.generator_model,\n",
74
+ " critic_model=config.critic_model,\n",
75
+ " all_params = params\n",
76
+ " \n",
77
+ " )\n",
78
+ "\n",
79
+ " return model_evaluation_config\n"
80
+ ]
81
+ },
82
+ {
83
+ "cell_type": "code",
84
+ "execution_count": 5,
85
+ "metadata": {},
86
+ "outputs": [],
87
+ "source": [
88
+ "import torch\n",
89
+ "from torch.utils.data import DataLoader\n",
90
+ "import mlflow\n",
91
+ "import dagshub\n",
92
+ "from tqdm.notebook import tqdm\n",
93
+ "import json\n",
94
+ "import os\n",
95
+ "import logging\n",
96
+ "from src.imagecolorization.conponents.model_building import Generator, Critic\n",
97
+ "from src.imagecolorization.conponents.model_trainer import CWGAN\n",
98
+ "import torch\n",
99
+ "from torch import nn, optim\n",
100
+ "from torchvision import transforms\n",
101
+ "from torch.utils.data import Dataset, DataLoader\n",
102
+ "from torch.autograd import Variable\n",
103
+ "from torchvision import models\n",
104
+ "from torch.nn import functional as F\n",
105
+ "import torch.utils.data\n",
106
+ "from torchvision.models.inception import inception_v3\n",
107
+ "from scipy.stats import entropy\n",
108
+ "import pytorch_lightning as pl\n",
109
+ "from torchsummary import summary\n",
110
+ "from src.imagecolorization.conponents.model_building import Generator, Critic\n",
111
+ "from src.imagecolorization.conponents.data_tranformation import ImageColorizationDataset\n",
112
+ "from src.imagecolorization.logging import logger\n",
113
+ "import gc\n",
114
+ "import numpy as np\n",
115
+ "\n",
116
+ "logger = logging.getLogger(__name__)\n",
117
+ "\n",
118
+ "import torch\n",
119
+ "from torch.utils.data import DataLoader\n",
120
+ "import mlflow\n",
121
+ "import dagshub\n",
122
+ "from tqdm.notebook import tqdm\n",
123
+ "import json\n",
124
+ "import os\n",
125
+ "import logging\n",
126
+ "from torchvision.models.inception import inception_v3\n",
127
+ "from torch.nn import functional as F\n",
128
+ "import numpy as np\n",
129
+ "from torchvision import transforms\n",
130
+ "\n",
131
+ "logger = logging.getLogger(__name__)\n",
132
+ "\n",
133
+ "class FID:\n",
134
+ " def __init__(self, device):\n",
135
+ " self.device = device\n",
136
+ " self.inception = inception_v3(pretrained=True, transform_input=False).to(self.device)\n",
137
+ " self.inception.eval()\n",
138
+ " self.resize = transforms.Resize((299, 299))\n",
139
+ "\n",
140
+ " def convert_to_three_channels(self, images):\n",
141
+ " if images.shape[1] == 2:\n",
142
+ " images = torch.cat((images, images[:, :1, :, :]), dim=1) # Duplicate one channel\n",
143
+ " return images\n",
144
+ "\n",
145
+ " def preprocess_images(self, images):\n",
146
+ " images = self.convert_to_three_channels(images)\n",
147
+ " images = images.to(self.device)\n",
148
+ " images = self.resize(images)\n",
149
+ " return images\n",
150
+ "\n",
151
+ " def calculate_fid(self, real_images, generated_images):\n",
152
+ " batch_size = 32\n",
153
+ " real_features_list = []\n",
154
+ " generated_features_list = []\n",
155
+ "\n",
156
+ " for i in range(0, len(real_images), batch_size):\n",
157
+ " real_batch = self.preprocess_images(real_images[i:i+batch_size])\n",
158
+ " generated_batch = self.preprocess_images(generated_images[i:i+batch_size])\n",
159
+ "\n",
160
+ " with torch.no_grad():\n",
161
+ " real_features = self.inception(real_batch).view(real_batch.size(0), -1)\n",
162
+ " generated_features = self.inception(generated_batch).view(generated_batch.size(0), -1)\n",
163
+ "\n",
164
+ " real_features_list.append(real_features.cpu())\n",
165
+ " generated_features_list.append(generated_features.cpu())\n",
166
+ "\n",
167
+ " real_features = torch.cat(real_features_list, dim=0)\n",
168
+ " generated_features = torch.cat(generated_features_list, dim=0)\n",
169
+ "\n",
170
+ " mu_diff = real_features.mean(dim=0) - generated_features.mean(dim=0)\n",
171
+ " sigma_diff = real_features.std(dim=0) - generated_features.std(dim=0)\n",
172
+ "\n",
173
+ " fid = mu_diff.pow(2).sum() + sigma_diff.pow(2).sum()\n",
174
+ " return fid.item()\n",
175
+ "\n",
176
+ "class InceptionScore:\n",
177
+ " def __init__(self, device):\n",
178
+ " self.device = device\n",
179
+ " self.inception = inception_v3(pretrained=True, transform_input=False).to(self.device)\n",
180
+ " self.inception.eval()\n",
181
+ " self.resize = transforms.Resize((299, 299))\n",
182
+ "\n",
183
+ " def convert_to_three_channels(self, images):\n",
184
+ " if images.shape[1] == 2: # If the input has 2 channels\n",
185
+ " images = torch.cat((images, images[:, :1, :, :]), dim=1) # Duplicate one channel\n",
186
+ " return images\n",
187
+ "\n",
188
+ " def preprocess_images(self, images):\n",
189
+ " images = self.convert_to_three_channels(images)\n",
190
+ " images = images.to(self.device)\n",
191
+ " images = self.resize(images)\n",
192
+ " return images\n",
193
+ "\n",
194
+ " def calculate_is(self, images):\n",
195
+ " batch_size = 1\n",
196
+ " splits = 10\n",
197
+ " preds = []\n",
198
+ "\n",
199
+ " for i in range(0, len(images), batch_size):\n",
200
+ " batch = self.preprocess_images(images[i:i+batch_size])\n",
201
+ " with torch.no_grad():\n",
202
+ " pred = F.softmax(self.inception(batch), dim=1)\n",
203
+ " preds.append(pred.cpu().numpy())\n",
204
+ "\n",
205
+ " preds = np.concatenate(preds, axis=0)\n",
206
+ " n_images = preds.shape[0]\n",
207
+ "\n",
208
+ " split_scores = []\n",
209
+ " for k in range(splits):\n",
210
+ " part = preds[k * (n_images // splits): (k + 1) * (n_images // splits), :]\n",
211
+ " py = np.mean(part, axis=0)\n",
212
+ " scores = []\n",
213
+ " for i in range(part.shape[0]):\n",
214
+ " pyx = part[i, :]\n",
215
+ " scores.append(entropy(pyx, py))\n",
216
+ " split_scores.append(np.exp(np.mean(scores)))\n",
217
+ "\n",
218
+ " return np.mean(split_scores), np.std(split_scores)\n",
219
+ "\n",
220
+ "class ModelEvaluation:\n",
221
+ " def __init__(self, config):\n",
222
+ " self.config = config\n",
223
+ " self.device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
224
+ " self.generator = None\n",
225
+ " self.critic = None\n",
226
+ "\n",
227
+ " def load_model(self):\n",
228
+ " self.generator = Generator(input_channel=1, output_channel=2).to(self.device)\n",
229
+ " self.critic = Critic(in_channels=3).to(self.device)\n",
230
+ "\n",
231
+ " self.generator.load_state_dict(torch.load(self.config.generator_model))\n",
232
+ " self.critic.load_state_dict(torch.load(self.config.critic_model))\n",
233
+ "\n",
234
+ " self.generator.eval()\n",
235
+ " self.critic.eval()\n",
236
+ "\n",
237
+ " logger.info(\"Model loaded successfully.\")\n",
238
+ "\n",
239
+ " def load_data(self):\n",
240
+ " self.test_dataset = torch.load(self.config.test_data)\n",
241
+ " self.test_dataloader = DataLoader(\n",
242
+ " self.test_dataset, \n",
243
+ " batch_size=self.config.all_params.BATCH_SIZE, \n",
244
+ " shuffle=True,\n",
245
+ " )\n",
246
+ "\n",
247
+ " def evaluate_model(self):\n",
248
+ " is_calculator = InceptionScore(self.device)\n",
249
+ " fid_calculator = FID(self.device)\n",
250
+ "\n",
251
+ " all_preds = []\n",
252
+ " all_real = []\n",
253
+ "\n",
254
+ " with torch.no_grad():\n",
255
+ " for batch in tqdm(self.test_dataloader, desc=\"Evaluating\", unit=\"batch\"):\n",
256
+ " real, condition = batch\n",
257
+ " real, condition = real.to(self.device), condition.to(self.device)\n",
258
+ " fake = self.generator(condition)\n",
259
+ " all_preds.append(fake.cpu())\n",
260
+ " all_real.append(real.cpu())\n",
261
+ "\n",
262
+ " all_preds = torch.cat(all_preds, dim=0)\n",
263
+ " all_real = torch.cat(all_real, dim=0)\n",
264
+ "\n",
265
+ " print(\"Calculating Inception Score for real images...\")\n",
266
+ " mean_real_is, std_real_is = is_calculator.calculate_is(all_real)\n",
267
+ " print(\"Calculating Inception Score for generated images...\")\n",
268
+ " mean_fake_is, std_fake_is = is_calculator.calculate_is(all_preds)\n",
269
+ "\n",
270
+ " print(\"Calculating Fréchet Inception Distance...\")\n",
271
+ " fid_value = fid_calculator.calculate_fid(all_real, all_preds)\n",
272
+ "\n",
273
+ " results = {\n",
274
+ " \"inception_score_real\": {\"mean\": float(mean_real_is), \"std\": float(std_real_is)},\n",
275
+ " \"inception_score_fake\": {\"mean\": float(mean_fake_is), \"std\": float(std_fake_is)},\n",
276
+ " \"fid\": float(fid_value)\n",
277
+ " }\n",
278
+ " return results\n",
279
+ "\n",
280
+ " def save_scores(self, results):\n",
281
+ " save_json(path=Path('scores.json'), data=results)\n",
282
+ "\n",
283
+ " def log_to_mlflow(self, results):\n",
284
+ " dagshub.init(repo_owner='HAKIM-ML', repo_name='image-colorization-mlops', mlflow=True)\n",
285
+ "\n",
286
+ " with mlflow.start_run():\n",
287
+ " # Log all parameters\n",
288
+ " for key, value in self.config.all_params.items():\n",
289
+ " mlflow.log_param(key, value)\n",
290
+ "\n",
291
+ " # Log metrics\n",
292
+ " mlflow.log_metric('inception_score_real_mean', results['inception_score_real']['mean'])\n",
293
+ " mlflow.log_metric('inception_score_fake_mean', results['inception_score_fake']['mean'])\n",
294
+ " mlflow.log_metric('fid', results['fid'])\n",
295
+ "\n",
296
+ " # Log the JSON file as an artifact\n",
297
+ " mlflow.log_artifact('scores.json')\n",
298
+ "\n",
299
+ " def run(self):\n",
300
+ " self.load_model()\n",
301
+ " self.load_data()\n",
302
+ " results = self.evaluate_model()\n",
303
+ " self.save_scores(results)\n",
304
+ " self.log_to_mlflow(results)\n"
305
+ ]
306
+ },
307
+ {
308
+ "cell_type": "code",
309
+ "execution_count": 8,
310
+ "metadata": {},
311
+ "outputs": [
312
+ {
313
+ "name": "stdout",
314
+ "output_type": "stream",
315
+ "text": [
316
+ "[2024-08-27 19:55:58,492: INFO: common: yaml file: config\\config.yaml loaded successfully]\n",
317
+ "[2024-08-27 19:55:58,497: INFO: common: yaml file: params.yaml loaded successfully]\n",
318
+ "[2024-08-27 19:55:58,498: INFO: common: created directory at: artifacts]\n",
319
+ "[2024-08-27 19:55:59,527: INFO: 1629019639: Model loaded successfully.]\n"
320
+ ]
321
+ },
322
+ {
323
+ "name": "stderr",
324
+ "output_type": "stream",
325
+ "text": [
326
+ "C:\\Users\\azizu\\AppData\\Local\\Temp\\ipykernel_54388\\1629019639.py:144: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n",
327
+ " self.generator.load_state_dict(torch.load(self.config.generator_model))\n",
328
+ "C:\\Users\\azizu\\AppData\\Local\\Temp\\ipykernel_54388\\1629019639.py:145: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n",
329
+ " self.critic.load_state_dict(torch.load(self.config.critic_model))\n",
330
+ "C:\\Users\\azizu\\AppData\\Local\\Temp\\ipykernel_54388\\1629019639.py:153: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n",
331
+ " self.test_dataset = torch.load(self.config.test_data)\n",
332
+ "c:\\Users\\azizu\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\torchvision\\models\\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.\n",
333
+ " warnings.warn(\n",
334
+ "c:\\Users\\azizu\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\torchvision\\models\\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=Inception_V3_Weights.IMAGENET1K_V1`. You can also use `weights=Inception_V3_Weights.DEFAULT` to get the most up-to-date weights.\n",
335
+ " warnings.warn(msg)\n"
336
+ ]
337
+ },
338
+ {
339
+ "data": {
340
+ "application/vnd.jupyter.widget-view+json": {
341
+ "model_id": "e0c3c8dcf08846e2ad26bd6966770dfa",
342
+ "version_major": 2,
343
+ "version_minor": 0
344
+ },
345
+ "text/plain": [
346
+ "Evaluating: 0%| | 0/5000 [00:00<?, ?batch/s]"
347
+ ]
348
+ },
349
+ "metadata": {},
350
+ "output_type": "display_data"
351
+ },
352
+ {
353
+ "name": "stdout",
354
+ "output_type": "stream",
355
+ "text": [
356
+ "Calculating Inception Score for real images...\n",
357
+ "Calculating Inception Score for generated images...\n",
358
+ "Calculating Fréchet Inception Distance...\n",
359
+ "[2024-08-27 20:03:48,138: INFO: common: Json file saved at: scores.json]\n"
360
+ ]
361
+ },
362
+ {
363
+ "data": {
364
+ "text/html": [
365
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">Accessing as HAKIM-ML\n",
366
+ "</pre>\n"
367
+ ],
368
+ "text/plain": [
369
+ "Accessing as HAKIM-ML\n"
370
+ ]
371
+ },
372
+ "metadata": {},
373
+ "output_type": "display_data"
374
+ },
375
+ {
376
+ "name": "stdout",
377
+ "output_type": "stream",
378
+ "text": [
379
+ "[2024-08-27 20:03:55,975: INFO: helpers: Accessing as HAKIM-ML]\n"
380
+ ]
381
+ },
382
+ {
383
+ "data": {
384
+ "text/html": [
385
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">Initialized MLflow to track repo <span style=\"color: #008000; text-decoration-color: #008000\">\"HAKIM-ML/image-colorization-mlops\"</span>\n",
386
+ "</pre>\n"
387
+ ],
388
+ "text/plain": [
389
+ "Initialized MLflow to track repo \u001b[32m\"HAKIM-ML/image-colorization-mlops\"\u001b[0m\n"
390
+ ]
391
+ },
392
+ "metadata": {},
393
+ "output_type": "display_data"
394
+ },
395
+ {
396
+ "name": "stdout",
397
+ "output_type": "stream",
398
+ "text": [
399
+ "[2024-08-27 20:04:04,162: INFO: helpers: Initialized MLflow to track repo \"HAKIM-ML/image-colorization-mlops\"]\n"
400
+ ]
401
+ },
402
+ {
403
+ "data": {
404
+ "text/html": [
405
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">Repository HAKIM-ML/image-colorization-mlops initialized!\n",
406
+ "</pre>\n"
407
+ ],
408
+ "text/plain": [
409
+ "Repository HAKIM-ML/image-colorization-mlops initialized!\n"
410
+ ]
411
+ },
412
+ "metadata": {},
413
+ "output_type": "display_data"
414
+ },
415
+ {
416
+ "name": "stdout",
417
+ "output_type": "stream",
418
+ "text": [
419
+ "[2024-08-27 20:04:04,166: INFO: helpers: Repository HAKIM-ML/image-colorization-mlops initialized!]\n"
420
+ ]
421
+ },
422
+ {
423
+ "name": "stderr",
424
+ "output_type": "stream",
425
+ "text": [
426
+ "2024/08/27 20:04:24 INFO mlflow.tracking._tracking_service.client: 🏃 View run grandiose-rat-650 at: https://dagshub.com/HAKIM-ML/image-colorization-mlops.mlflow/#/experiments/0/runs/593e3211953d43359f8810e4d3b21738.\n",
427
+ "2024/08/27 20:04:24 INFO mlflow.tracking._tracking_service.client: 🧪 View experiment at: https://dagshub.com/HAKIM-ML/image-colorization-mlops.mlflow/#/experiments/0.\n"
428
+ ]
429
+ }
430
+ ],
431
+ "source": [
432
+ "\n",
433
+ "try:\n",
434
+ " config_manager = ConfigurationManager()\n",
435
+ " model_evaluation_config = config_manager.get_model_evaluation_config()\n",
436
+ " model_evaluation = ModelEvaluation(config=model_evaluation_config)\n",
437
+ " model_evaluation.run()\n",
438
+ "except Exception as e:\n",
439
+ " logger.exception(\"An error occurred during model evaluation\")\n",
440
+ " raise e"
441
+ ]
442
+ },
443
+ {
444
+ "cell_type": "code",
445
+ "execution_count": null,
446
+ "metadata": {},
447
+ "outputs": [],
448
+ "source": []
449
+ },
450
+ {
451
+ "cell_type": "code",
452
+ "execution_count": null,
453
+ "metadata": {},
454
+ "outputs": [],
455
+ "source": []
456
+ },
457
+ {
458
+ "cell_type": "code",
459
+ "execution_count": null,
460
+ "metadata": {},
461
+ "outputs": [],
462
+ "source": []
463
+ },
464
+ {
465
+ "cell_type": "code",
466
+ "execution_count": null,
467
+ "metadata": {},
468
+ "outputs": [],
469
+ "source": []
470
+ },
471
+ {
472
+ "cell_type": "code",
473
+ "execution_count": null,
474
+ "metadata": {},
475
+ "outputs": [],
476
+ "source": []
477
+ },
478
+ {
479
+ "cell_type": "code",
480
+ "execution_count": null,
481
+ "metadata": {},
482
+ "outputs": [],
483
+ "source": []
484
+ }
485
+ ],
486
+ "metadata": {
487
+ "kernelspec": {
488
+ "display_name": "Python 3",
489
+ "language": "python",
490
+ "name": "python3"
491
+ },
492
+ "language_info": {
493
+ "codemirror_mode": {
494
+ "name": "ipython",
495
+ "version": 3
496
+ },
497
+ "file_extension": ".py",
498
+ "mimetype": "text/x-python",
499
+ "name": "python",
500
+ "nbconvert_exporter": "python",
501
+ "pygments_lexer": "ipython3",
502
+ "version": "3.11.0"
503
+ }
504
+ },
505
+ "nbformat": 4,
506
+ "nbformat_minor": 2
507
+ }
scores.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "inception_score_real": {
3
+ "mean": 3.2541100236429847,
4
+ "std": 0.2093519219339589
5
+ },
6
+ "inception_score_fake": {
7
+ "mean": 1.2316137280208515,
8
+ "std": 0.011668683233882338
9
+ },
10
+ "fid": 340.08624267578125
11
+ }
src/imagecolorization/config/configuration.py CHANGED
@@ -3,7 +3,8 @@ from src.imagecolorization.utils.common import read_yaml, create_directories
3
  from src.imagecolorization.entity.config_entity import (DataIngestionConfig,
4
  DataTransformationConfig,
5
  ModelBuildingConfig,
6
- ModelTrainerConfig)
 
7
  class ConfigurationManager:
8
  def __init__(
9
  self,
@@ -91,6 +92,22 @@ class ConfigurationManager:
91
  BATCH_SIZE= params.BATCH_SIZE
92
  )
93
  return model_trainer_config
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
 
95
 
96
 
 
3
  from src.imagecolorization.entity.config_entity import (DataIngestionConfig,
4
  DataTransformationConfig,
5
  ModelBuildingConfig,
6
+ ModelTrainerConfig,
7
+ ModelEvalutaionConfig)
8
  class ConfigurationManager:
9
  def __init__(
10
  self,
 
92
  BATCH_SIZE= params.BATCH_SIZE
93
  )
94
  return model_trainer_config
95
+
96
+
97
+ def get_model_evaluation_config(self) -> ModelEvalutaionConfig:
98
+ config = self.config.model_evaluation
99
+ params = self.params
100
+
101
+ model_evaluation_config = ModelEvalutaionConfig(
102
+
103
+ test_data=config.test_data,
104
+ generator_model=config.generator_model,
105
+ critic_model=config.critic_model,
106
+ all_params = params
107
+
108
+ )
109
+
110
+ return model_evaluation_config
111
 
112
 
113
 
src/imagecolorization/conponents/model_building.py CHANGED
@@ -131,8 +131,8 @@ class ModelBuilding:
131
 
132
  def get_generator(self):
133
  return Generator(
134
- input_channel=self.config.INPUT_CHANNELS, # corrected argument name
135
- output_channel=self.config.OUTPUT_CHANNELS, # corrected argument name
136
  dropout_rate=self.config.DROPOUT_RATE
137
  ).to(self.device)
138
 
 
131
 
132
  def get_generator(self):
133
  return Generator(
134
+ input_channel=self.config.INPUT_CHANNELS,
135
+ output_channel=self.config.OUTPUT_CHANNELS,
136
  dropout_rate=self.config.DROPOUT_RATE
137
  ).to(self.device)
138
 
src/imagecolorization/conponents/model_evaluation.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.utils.data import DataLoader
3
+ import mlflow
4
+ import dagshub
5
+ from tqdm.notebook import tqdm
6
+ import json
7
+ import os
8
+ import logging
9
+ from src.imagecolorization.conponents.model_building import Generator, Critic
10
+ from src.imagecolorization.conponents.model_trainer import CWGAN
11
+ import torch
12
+ from torch import nn, optim
13
+ from torchvision import transforms
14
+ from torch.utils.data import Dataset, DataLoader
15
+ from torch.autograd import Variable
16
+ from torchvision import models
17
+ from torch.nn import functional as F
18
+ import torch.utils.data
19
+ from torchvision.models.inception import inception_v3
20
+ from scipy.stats import entropy
21
+ import pytorch_lightning as pl
22
+ from torchsummary import summary
23
+ from src.imagecolorization.conponents.model_building import Generator, Critic
24
+ from src.imagecolorization.conponents.data_tranformation import ImageColorizationDataset
25
+ from src.imagecolorization.logging import logger
26
+ import gc
27
+ import numpy as np
28
+ from src.imagecolorization.config.configuration import ConfigurationManager
29
+ from pathlib import Path
30
+
31
+
32
+ logger = logging.getLogger(__name__)
33
+
34
+ import torch
35
+ from torch.utils.data import DataLoader
36
+ import mlflow
37
+ import dagshub
38
+ from tqdm.notebook import tqdm
39
+ import json
40
+ import os
41
+ import logging
42
+ from torchvision.models.inception import inception_v3
43
+ from torch.nn import functional as F
44
+ import numpy as np
45
+ from torchvision import transforms
46
+ from src.imagecolorization.utils.common import save_json
47
+
48
+ logger = logging.getLogger(__name__)
49
+
50
+ class FID:
51
+ def __init__(self, device):
52
+ self.device = device
53
+ self.inception = inception_v3(pretrained=True, transform_input=False).to(self.device)
54
+ self.inception.eval()
55
+ self.resize = transforms.Resize((299, 299))
56
+
57
+ def convert_to_three_channels(self, images):
58
+ if images.shape[1] == 2:
59
+ images = torch.cat((images, images[:, :1, :, :]), dim=1) # Duplicate one channel
60
+ return images
61
+
62
+ def preprocess_images(self, images):
63
+ images = self.convert_to_three_channels(images)
64
+ images = images.to(self.device)
65
+ images = self.resize(images)
66
+ return images
67
+
68
+ def calculate_fid(self, real_images, generated_images):
69
+ batch_size = 32
70
+ real_features_list = []
71
+ generated_features_list = []
72
+
73
+ for i in range(0, len(real_images), batch_size):
74
+ real_batch = self.preprocess_images(real_images[i:i+batch_size])
75
+ generated_batch = self.preprocess_images(generated_images[i:i+batch_size])
76
+
77
+ with torch.no_grad():
78
+ real_features = self.inception(real_batch).view(real_batch.size(0), -1)
79
+ generated_features = self.inception(generated_batch).view(generated_batch.size(0), -1)
80
+
81
+ real_features_list.append(real_features.cpu())
82
+ generated_features_list.append(generated_features.cpu())
83
+
84
+ real_features = torch.cat(real_features_list, dim=0)
85
+ generated_features = torch.cat(generated_features_list, dim=0)
86
+
87
+ mu_diff = real_features.mean(dim=0) - generated_features.mean(dim=0)
88
+ sigma_diff = real_features.std(dim=0) - generated_features.std(dim=0)
89
+
90
+ fid = mu_diff.pow(2).sum() + sigma_diff.pow(2).sum()
91
+ return fid.item()
92
+
93
+ class InceptionScore:
94
+ def __init__(self, device):
95
+ self.device = device
96
+ self.inception = inception_v3(pretrained=True, transform_input=False).to(self.device)
97
+ self.inception.eval()
98
+ self.resize = transforms.Resize((299, 299))
99
+
100
+ def convert_to_three_channels(self, images):
101
+ if images.shape[1] == 2: # If the input has 2 channels
102
+ images = torch.cat((images, images[:, :1, :, :]), dim=1) # Duplicate one channel
103
+ return images
104
+
105
+ def preprocess_images(self, images):
106
+ images = self.convert_to_three_channels(images)
107
+ images = images.to(self.device)
108
+ images = self.resize(images)
109
+ return images
110
+
111
+ def calculate_is(self, images):
112
+ batch_size = 1
113
+ splits = 10
114
+ preds = []
115
+
116
+ for i in range(0, len(images), batch_size):
117
+ batch = self.preprocess_images(images[i:i+batch_size])
118
+ with torch.no_grad():
119
+ pred = F.softmax(self.inception(batch), dim=1)
120
+ preds.append(pred.cpu().numpy())
121
+
122
+ preds = np.concatenate(preds, axis=0)
123
+ n_images = preds.shape[0]
124
+
125
+ split_scores = []
126
+ for k in range(splits):
127
+ part = preds[k * (n_images // splits): (k + 1) * (n_images // splits), :]
128
+ py = np.mean(part, axis=0)
129
+ scores = []
130
+ for i in range(part.shape[0]):
131
+ pyx = part[i, :]
132
+ scores.append(entropy(pyx, py))
133
+ split_scores.append(np.exp(np.mean(scores)))
134
+
135
+ return np.mean(split_scores), np.std(split_scores)
136
+
137
+ class ModelEvaluation:
138
+ def __init__(self, config):
139
+ self.config = config
140
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
141
+ self.generator = None
142
+ self.critic = None
143
+
144
+ def load_model(self):
145
+ self.generator = Generator(input_channel=1, output_channel=2).to(self.device)
146
+ self.critic = Critic(in_channels=3).to(self.device)
147
+
148
+ self.generator.load_state_dict(torch.load(self.config.generator_model))
149
+ self.critic.load_state_dict(torch.load(self.config.critic_model))
150
+
151
+ self.generator.eval()
152
+ self.critic.eval()
153
+
154
+ logger.info("Model loaded successfully.")
155
+
156
+ def load_data(self):
157
+ self.test_dataset = torch.load(self.config.test_data)
158
+ self.test_dataloader = DataLoader(
159
+ self.test_dataset,
160
+ batch_size=self.config.all_params.BATCH_SIZE,
161
+ shuffle=True,
162
+ )
163
+
164
+ def evaluate_model(self):
165
+ is_calculator = InceptionScore(self.device)
166
+ fid_calculator = FID(self.device)
167
+
168
+ all_preds = []
169
+ all_real = []
170
+
171
+ with torch.no_grad():
172
+ for batch in tqdm(self.test_dataloader, desc="Evaluating", unit="batch"):
173
+ real, condition = batch
174
+ real, condition = real.to(self.device), condition.to(self.device)
175
+ fake = self.generator(condition)
176
+ all_preds.append(fake.cpu())
177
+ all_real.append(real.cpu())
178
+
179
+ all_preds = torch.cat(all_preds, dim=0)
180
+ all_real = torch.cat(all_real, dim=0)
181
+
182
+ print("Calculating Inception Score for real images...")
183
+ mean_real_is, std_real_is = is_calculator.calculate_is(all_real)
184
+ print("Calculating Inception Score for generated images...")
185
+ mean_fake_is, std_fake_is = is_calculator.calculate_is(all_preds)
186
+
187
+ print("Calculating Fréchet Inception Distance...")
188
+ fid_value = fid_calculator.calculate_fid(all_real, all_preds)
189
+
190
+ results = {
191
+ "inception_score_real": {"mean": float(mean_real_is), "std": float(std_real_is)},
192
+ "inception_score_fake": {"mean": float(mean_fake_is), "std": float(std_fake_is)},
193
+ "fid": float(fid_value)
194
+ }
195
+ return results
196
+
197
+ def save_scores(self, results):
198
+ save_json(path=Path('scores.json'), data=results)
199
+
200
+ def log_to_mlflow(self, results):
201
+ dagshub.init(repo_owner='HAKIM-ML', repo_name='image-colorization-mlops', mlflow=True)
202
+
203
+ with mlflow.start_run():
204
+ # Log all parameters
205
+ for key, value in self.config.all_params.items():
206
+ mlflow.log_param(key, value)
207
+
208
+ # Log metrics
209
+ mlflow.log_metric('inception_score_real_mean', results['inception_score_real']['mean'])
210
+ mlflow.log_metric('inception_score_fake_mean', results['inception_score_fake']['mean'])
211
+ mlflow.log_metric('fid', results['fid'])
212
+
213
+ # Log the JSON file as an artifact
214
+ mlflow.log_artifact('scores.json')
215
+
216
+ def run(self):
217
+ self.load_model()
218
+ self.load_data()
219
+ results = self.evaluate_model()
220
+ self.save_scores(results)
221
+ self.log_to_mlflow(results)
src/imagecolorization/entity/config_entity.py CHANGED
@@ -47,4 +47,12 @@ class ModelTrainerConfig:
47
  INPUT_CHANNELS: int
48
  OUTPUT_CHANNELS: int
49
  EPOCH: int
50
- BATCH_SIZE : int
 
 
 
 
 
 
 
 
 
47
  INPUT_CHANNELS: int
48
  OUTPUT_CHANNELS: int
49
  EPOCH: int
50
+ BATCH_SIZE : int
51
+
52
+
53
+ @dataclass(frozen=True)
54
+ class ModelEvalutaionConfig:
55
+ test_data : Path
56
+ generator_model : Path
57
+ critic_model : Path
58
+ all_params: dict
src/imagecolorization/pipeline/stage_05_model_evaluation.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from src.imagecolorization.conponents.model_evaluation import ModelEvaluation
2
+ from src.imagecolorization.config.configuration import ConfigurationManager
3
+
4
+
5
+ class ModelEvaluationPipeLine:
6
+ def __init__(self):
7
+ pass
8
+
9
+ def main(self):
10
+ config_manager = ConfigurationManager()
11
+ model_evaluation_config = config_manager.get_model_evaluation_config()
12
+ model_evaluation = ModelEvaluation(config=model_evaluation_config)
13
+ model_evaluation.run()
14
+
15
+
16
+
17
+