File size: 10,153 Bytes
7195b15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "os.chdir('../')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'d:\\\\MLOps-Project\\\\Kidney-disease-classification-mlops'"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "%pwd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "from dataclasses import dataclass\n",
    "from pathlib import Path\n",
    "\n",
    "@dataclass(frozen=True)\n",
    "class TrainingConfig:\n",
    "    root_dir : Path\n",
    "    training_model_path : Path\n",
    "    updata_base_model_path  :  Path\n",
    "    training_data: Path\n",
    "    params_epochs : int\n",
    "    params_is_augmentation : bool\n",
    "    params_batch_size : int\n",
    "    params_image_size : list\n",
    " "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "from cnnClassifier.utils.common import read_yaml, create_directories\n",
    "from cnnClassifier.constant import *\n",
    "\n",
    "from cnnClassifier.utils.common import read_yaml, create_directories\n",
    "from cnnClassifier.constant import *\n",
    "# Configuration\n",
    "class ConfigurationManager:\n",
    "    def __init__(\n",
    "        self,\n",
    "        config_filepath = CONFIG_FILE_PATH,\n",
    "        params_filepath = PARAMS_FILE_PATH):\n",
    "\n",
    "        self.config = read_yaml(config_filepath)\n",
    "        self.params = read_yaml(params_filepath)\n",
    "\n",
    "        create_directories([self.config.atifacts_root])\n",
    "        \n",
    "    def get_training_config(self) -> TrainingConfig:\n",
    "        training =  self.config.training\n",
    "        prepare_base_model =self.config.prepare_base_model\n",
    "        params = self.params\n",
    "        training_data = os.path.join(self.config.data_ingestion.unzip_dir, 'kidney-ct-scan-image') \n",
    "        \n",
    "        create_directories([\n",
    "            Path(training.root_dir)\n",
    "        ])\n",
    "        \n",
    "        training_config = TrainingConfig(\n",
    "        root_dir= Path(training.root_dir),\n",
    "        training_model_path=Path(training.trained_model_path),\n",
    "        updata_base_model_path=Path(prepare_base_model.updated_base_model_path),\n",
    "        training_data = Path(training_data),\n",
    "        params_epochs = params.EPOCHS, \n",
    "        params_batch_size= params.BATCH_SIZE,\n",
    "        params_is_augmentation= params.AUGMENTATION,\n",
    "        params_image_size= params.IMAGE_SIZE\n",
    "        )\n",
    "        \n",
    "        return training_config\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "import tensorflow as tf"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "class Training:\n",
    "    def __init__(self, confg : TrainingConfig):\n",
    "        self.config = confg\n",
    "        \n",
    "    def get_base_model(self):\n",
    "        self.model = tf.keras.models.load_model(\n",
    "            self.config.updata_base_model_path\n",
    "        )\n",
    "        \n",
    "        \n",
    "    def train_vaid_generator(self):\n",
    "        datagenerator_kwargs = dict(\n",
    "            rescale = 1 / 255,\n",
    "            validation_split = 0.20\n",
    "        )\n",
    "        \n",
    "        dataflow_kwargs = dict(\n",
    "            target_size = self.config.params_image_size[:-1],\n",
    "            batch_size = self.config.params_batch_size,\n",
    "            interpolation = 'bilinear'\n",
    "        )\n",
    "        valid_datagernerator = tf.keras.preprocessing.image.ImageDataGenerator(\n",
    "            **datagenerator_kwargs\n",
    "        )\n",
    "        \n",
    "        self.valid_generator = valid_datagernerator.flow_from_directory(\n",
    "            directory = self.config.training_data,\n",
    "            subset = 'validation',\n",
    "            shuffle = True,\n",
    "            **dataflow_kwargs\n",
    "        )\n",
    "        \n",
    "        if self.config.params_is_augmentation:\n",
    "            train_datagenerator = tf.keras.preprocessing.image.ImageDataGenerator(\n",
    "                \n",
    "            \n",
    "            rotation_range = 40,\n",
    "            horizontal_flip = True,\n",
    "            width_shift_range = 0.2,\n",
    "            height_shift_range = 0.2,\n",
    "            shear_range = 0.2,\n",
    "            zoom_range = 0.2,\n",
    "            **datagenerator_kwargs\n",
    "            )\n",
    "            \n",
    "            \n",
    "        else:\n",
    "            train_datagenerator = valid_datagernerator\n",
    "        self.train_generator = train_datagenerator.flow_from_directory(\n",
    "            directory = self.config.training_data,\n",
    "            subset = 'training',\n",
    "            shuffle = True,\n",
    "            **dataflow_kwargs\n",
    "        )\n",
    "    \n",
    "    @staticmethod\n",
    "    def save_model(path: Path, model: tf.keras.Model):\n",
    "        model.save(path)\n",
    "        \n",
    "    def train(self):\n",
    "        self.steps_per_epchs = self.train_generator.samples // self.train_generator.batch_size\n",
    "        self.validation_steps = self.valid_generator.samples // self.valid_generator.batch_size\n",
    "        \n",
    "        self.model.fit(\n",
    "            self.train_generator,\n",
    "            epochs = self.config.params_epochs,\n",
    "            steps_per_epoch = self.steps_per_epchs,\n",
    "            validation_steps = self.validation_steps,\n",
    "            validation_data = self.valid_generator\n",
    "        )\n",
    "        \n",
    "        self.save_model(\n",
    "            path = self.config.training_data,\n",
    "            model = self.model\n",
    "        )\n",
    "\n",
    "        "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2024-07-31 20:16:53,704: INFO: common: yaml file: config\\config.yaml loaded successfully]\n",
      "[2024-07-31 20:16:53,707: INFO: common: yaml file: params.yaml loaded successfully]\n",
      "[2024-07-31 20:16:53,709: INFO: common: Created directory  at: artifacts]\n",
      "[2024-07-31 20:16:53,711: INFO: common: Created directory  at: artifacts\\training]\n",
      "Found 93 images belonging to 2 classes.\n",
      "Found 372 images belonging to 2 classes.\n",
      "Epoch 1/10\n",
      "[2024-07-31 20:16:55,760: WARNING: module_wrapper: From c:\\Users\\User\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\keras\\src\\utils\\tf_utils.py:492: The name tf.ragged.RaggedTensorValue is deprecated. Please use tf.compat.v1.ragged.RaggedTensorValue instead.\n",
      "]\n",
      "23/23 [==============================] - 32s 1s/step - loss: 0.6976 - accuracy: 0.5983 - val_loss: 0.5528 - val_accuracy: 0.6750\n",
      "Epoch 2/10\n",
      "23/23 [==============================] - 18s 776ms/step - loss: 0.5961 - accuracy: 0.7022 - val_loss: 0.5576 - val_accuracy: 0.8250\n",
      "Epoch 3/10\n",
      "23/23 [==============================] - 18s 780ms/step - loss: 0.5489 - accuracy: 0.7612 - val_loss: 0.6042 - val_accuracy: 0.5250\n",
      "Epoch 4/10\n",
      "23/23 [==============================] - 18s 779ms/step - loss: 0.5166 - accuracy: 0.8006 - val_loss: 0.5593 - val_accuracy: 0.5750\n",
      "Epoch 5/10\n",
      "23/23 [==============================] - 18s 774ms/step - loss: 0.4863 - accuracy: 0.7949 - val_loss: 0.6155 - val_accuracy: 0.5250\n",
      "Epoch 6/10\n",
      "23/23 [==============================] - 18s 789ms/step - loss: 0.4486 - accuracy: 0.8062 - val_loss: 0.5774 - val_accuracy: 0.5250\n",
      "Epoch 7/10\n",
      "23/23 [==============================] - 18s 772ms/step - loss: 0.4574 - accuracy: 0.8034 - val_loss: 0.5751 - val_accuracy: 0.5125\n",
      "Epoch 8/10\n",
      "23/23 [==============================] - 18s 772ms/step - loss: 0.4493 - accuracy: 0.7949 - val_loss: 0.5814 - val_accuracy: 0.5125\n",
      "Epoch 9/10\n",
      "23/23 [==============================] - 18s 772ms/step - loss: 0.4414 - accuracy: 0.7921 - val_loss: 0.5636 - val_accuracy: 0.5125\n",
      "Epoch 10/10\n",
      "23/23 [==============================] - 18s 794ms/step - loss: 0.4290 - accuracy: 0.8090 - val_loss: 0.5743 - val_accuracy: 0.5000\n",
      "[2024-07-31 20:20:09,590: INFO: builder_impl: Assets written to: artifacts\\data_ingestion\\unzip\\kidney-ct-scan-image\\assets]\n"
     ]
    }
   ],
   "source": [
    "try:\n",
    "    config = ConfigurationManager()\n",
    "    training_config = config.get_training_config()\n",
    "    training = Training(confg=training_config)\n",
    "    training.get_base_model()\n",
    "    training.train_vaid_generator()\n",
    "    training.train()\n",
    "    \n",
    "except Exception as e:\n",
    "    raise e"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}