File size: 1,698 Bytes
7195b15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
from cnnClassifier import logger
from cnnClassifier.pipeline.stage_01_data_ingestion import DataIngestionTrainingPipeline
from cnnClassifier.pipeline.stage_02_prepare_base_model import PrepareBaseModelTrainingPipeline
from cnnClassifier.pipeline.stage_03_train_model import ModelTrainingPipeline
from cnnClassifier.pipeline.stage_04_evaluation import EvaluationTrainingPipeline
STAGE_NAME = "Data Ingestion stage"
try:
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
data_ingestion = DataIngestionTrainingPipeline()
data_ingestion.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Prepare Base Model stage"
try:
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
prepare_base_model = PrepareBaseModelTrainingPipeline()
prepare_base_model.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Model Training"
try:
logger.info(f"*******************")
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
obj = ModelTrainingPipeline()
obj.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Evaluation"
try:
logger.info(f"*******************")
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
obj = EvaluationTrainingPipeline()
obj.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
|