File size: 1,698 Bytes
7195b15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from cnnClassifier import logger
from cnnClassifier.pipeline.stage_01_data_ingestion import DataIngestionTrainingPipeline
from cnnClassifier.pipeline.stage_02_prepare_base_model import PrepareBaseModelTrainingPipeline
from cnnClassifier.pipeline.stage_03_train_model import ModelTrainingPipeline
from cnnClassifier.pipeline.stage_04_evaluation import EvaluationTrainingPipeline

STAGE_NAME = "Data Ingestion stage"
try:
   logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<") 
   data_ingestion = DataIngestionTrainingPipeline()
   data_ingestion.main()
   logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
        logger.exception(e)
        raise e
     
STAGE_NAME = "Prepare Base Model  stage"
try:
   logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<") 
   prepare_base_model = PrepareBaseModelTrainingPipeline()
   prepare_base_model.main()
   logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
        logger.exception(e)
        raise e
     
     
STAGE_NAME = "Model Training"

try:
   logger.info(f"*******************")
   logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
   obj = ModelTrainingPipeline()
   obj.main()
   logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
   logger.exception(e)
   raise e


STAGE_NAME = "Evaluation"

try:
   logger.info(f"*******************")
   logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
   obj = EvaluationTrainingPipeline()
   obj.main()
   logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
   logger.exception(e)
   raise e