hakim
module updaed
a637525
import os
from src.textsummarizer.logging import logger
from transformers import AutoTokenizer
from datasets import load_dataset, load_from_disk
from textsummarizer.entity.config_entity import DataTransformationConfig
class DataTransformation:
def __init__(self, config : DataTransformationConfig):
self.config = config
self.tokenizer = AutoTokenizer.from_pretrained(self.config.tokenizer_name)
def convert_examples_to_features(self, example_batch):
input_encoding = self.tokenizer(example_batch['dialogue'], max_length = 1024, truncation = True)
with self.tokenizer.as_target_tokenizer():
target_encodings = self.tokenizer(example_batch['summary'], max_length = 128, truncation = True )
return {
'input_ids' : input_encoding['input_ids'],
'attention_mask': input_encoding['attention_mask'],
'labels': target_encodings['input_ids']
}
def convert(self):
dataset_samsum = load_from_disk(self.config.data_path)
dataset_samsum_pt = dataset_samsum.map(self.convert_examples_to_features, batched = True)
dataset_samsum_pt.save_to_disk(os.path.join(self.config.root_dir,"samsum_dataset"))