Spaces:
Sleeping
Sleeping
import os | |
from src.textsummarizer.logging import logger | |
from transformers import AutoTokenizer | |
from datasets import load_dataset, load_from_disk | |
from textsummarizer.entity.config_entity import DataTransformationConfig | |
class DataTransformation: | |
def __init__(self, config : DataTransformationConfig): | |
self.config = config | |
self.tokenizer = AutoTokenizer.from_pretrained(self.config.tokenizer_name) | |
def convert_examples_to_features(self, example_batch): | |
input_encoding = self.tokenizer(example_batch['dialogue'], max_length = 1024, truncation = True) | |
with self.tokenizer.as_target_tokenizer(): | |
target_encodings = self.tokenizer(example_batch['summary'], max_length = 128, truncation = True ) | |
return { | |
'input_ids' : input_encoding['input_ids'], | |
'attention_mask': input_encoding['attention_mask'], | |
'labels': target_encodings['input_ids'] | |
} | |
def convert(self): | |
dataset_samsum = load_from_disk(self.config.data_path) | |
dataset_samsum_pt = dataset_samsum.map(self.convert_examples_to_features, batched = True) | |
dataset_samsum_pt.save_to_disk(os.path.join(self.config.root_dir,"samsum_dataset")) |