Spaces:
Sleeping
Sleeping
from transformers import TrainingArguments, Trainer | |
from transformers import DataCollatorForSeq2Seq | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
from datasets import load_dataset, load_from_disk | |
from src.textsummarizer.entity.config_entity import ModelTrainerConfig | |
import torch | |
import os | |
class ModelTrainer: | |
def __init__(self, config : ModelTrainerConfig): | |
self.config = config | |
os.environ["WANDB_DISABLED"] = "true" | |
def train(self): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
tokenizer = AutoTokenizer.from_pretrained(self.config.model_ckpt) | |
model_pegasus = AutoModelForSeq2SeqLM.from_pretrained(self.config.model_ckpt).to(device) | |
seq2seq_data_collator = DataCollatorForSeq2Seq(tokenizer, model=model_pegasus) | |
#loading data | |
dataset_samsum_pt = load_from_disk(self.config.data_path) | |
trainer_args = TrainingArguments( | |
output_dir=self.config.root_dir, num_train_epochs=self.config.num_train_epochs, warmup_steps=self.config.warmup_steps, | |
per_device_train_batch_size=self.config.per_device_train_batch_size, per_device_eval_batch_size=self.config.per_device_train_batch_size, | |
weight_decay=self.config.weight_decay, logging_steps=self.config.logging_steps, | |
evaluation_strategy=self.config.evaluation_strategy, eval_steps=self.config.eval_steps, save_steps=1e6, | |
gradient_accumulation_steps=self.config.gradient_accumulation_steps, | |
report_to="none" | |
) | |
trainer = Trainer(model=model_pegasus, args=trainer_args, | |
tokenizer=tokenizer, data_collator=seq2seq_data_collator, | |
train_dataset=dataset_samsum_pt["train"], | |
eval_dataset=dataset_samsum_pt["validation"]) | |
trainer.train() | |
## Save model | |
model_pegasus.save_pretrained(os.path.join(self.config.root_dir,"pegasus-samsum-model")) | |
## Save tokenizer | |
tokenizer.save_pretrained(os.path.join(self.config.root_dir,"tokenizer")) | |