Spaces:
Sleeping
Sleeping
hakim
commited on
Commit
·
fd31bf7
1
Parent(s):
f2492e6
model evaluation added
Browse files- .github/workflows/main.yaml +20 -0
- Dockerfile +11 -0
- README.md +61 -1
- app.py +73 -0
- config/config.yaml +10 -1
- main.py +14 -1
- requirements.txt +1 -1
- research/model_evaluatoin.ipynb +300 -0
- research/model_trainer.ipynb +212 -0
- src/textsummarizer/config/configuration.py +21 -1
- src/textsummarizer/conponents/model_evaluation.py +90 -0
- src/textsummarizer/entity/config_entity.py +10 -0
- src/textsummarizer/pipeline/predict.py +24 -0
- src/textsummarizer/pipeline/stage_05_model_evaluation.py +13 -0
- src/textsummarizer/utils/common.py +36 -1
.github/workflows/main.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Sync to Hugging Face hub
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches: [main]
|
6 |
+
|
7 |
+
# to run this workflow manually from the Actions tab
|
8 |
+
workflow_dispatch:
|
9 |
+
|
10 |
+
jobs:
|
11 |
+
sync-to-hub:
|
12 |
+
runs-on: ubuntu-latest
|
13 |
+
steps:
|
14 |
+
- uses: actions/checkout@v2
|
15 |
+
with:
|
16 |
+
fetch-depth: 0
|
17 |
+
- name: Push to hub
|
18 |
+
env:
|
19 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
20 |
+
run: git push --force https://Md-Hakim:[email protected]/spaces/Md-Hakim/text-summarization main
|
Dockerfile
CHANGED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11-slim
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
|
7 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
8 |
+
|
9 |
+
COPY . /code
|
10 |
+
|
11 |
+
CMD ["streamlit", "run", "app.py"]
|
README.md
CHANGED
@@ -1 +1,61 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Text Summarization
|
3 |
+
emoji: 🐨
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: gray
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.37.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
# text-summarization
|
14 |
+
|
15 |
+
|
16 |
+
## Workflows
|
17 |
+
|
18 |
+
1. Update config.yaml
|
19 |
+
2. Update secrets.yaml [Optional]
|
20 |
+
3. Update params.yaml
|
21 |
+
4. Update the entity
|
22 |
+
5. Update the configuration manager in src config
|
23 |
+
6. Update the components
|
24 |
+
7. Update the pipeline
|
25 |
+
8. Update the main.py
|
26 |
+
9. Update the dvc.yaml
|
27 |
+
10. app.py
|
28 |
+
|
29 |
+
# How to run?
|
30 |
+
### STEPS:
|
31 |
+
|
32 |
+
Clone the repository
|
33 |
+
|
34 |
+
```bash
|
35 |
+
https://github.com/HAKIM-ML/
|
36 |
+
text-summarization
|
37 |
+
|
38 |
+
### STEP 01- Create a conda environment after opening the repository
|
39 |
+
|
40 |
+
```bash
|
41 |
+
conda create -n cnncls python=3.8 -y
|
42 |
+
```
|
43 |
+
|
44 |
+
```bash
|
45 |
+
conda activate cnncls
|
46 |
+
```
|
47 |
+
|
48 |
+
|
49 |
+
### STEP 02- install the requirements
|
50 |
+
```bash
|
51 |
+
pip install -r requirements.txt
|
52 |
+
```
|
53 |
+
|
54 |
+
```bash
|
55 |
+
# Finally run the following command
|
56 |
+
python app.py
|
57 |
+
```
|
58 |
+
|
59 |
+
Now,
|
60 |
+
```bash
|
61 |
+
open up you local host and port
|
app.py
CHANGED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from textsummarizer.pipeline.predict import PredictionPipeline
|
3 |
+
|
4 |
+
def main():
|
5 |
+
# Set page config
|
6 |
+
st.set_page_config(page_title="Dialogue Summarizer", page_icon="💬", layout="wide")
|
7 |
+
|
8 |
+
# Custom CSS to improve the appearance
|
9 |
+
st.markdown("""
|
10 |
+
<style>
|
11 |
+
.big-font {
|
12 |
+
font-size:20px !important;
|
13 |
+
font-weight: bold;
|
14 |
+
}
|
15 |
+
.result-font {
|
16 |
+
font-size:18px !important;
|
17 |
+
font-style: italic;
|
18 |
+
}
|
19 |
+
.stButton>button {
|
20 |
+
width: 100%;
|
21 |
+
height: 50px;
|
22 |
+
font-size: 20px;
|
23 |
+
}
|
24 |
+
</style>
|
25 |
+
""", unsafe_allow_html=True)
|
26 |
+
|
27 |
+
# App title and description
|
28 |
+
st.title("🤖 AI Dialogue Summarizer")
|
29 |
+
st.markdown("Transform your lengthy conversations into concise summaries with our cutting-edge AI technology.")
|
30 |
+
|
31 |
+
# Create two columns
|
32 |
+
col1, col2 = st.columns([2, 1])
|
33 |
+
|
34 |
+
with col1:
|
35 |
+
st.markdown('<p class="big-font">Input Dialogue</p>', unsafe_allow_html=True)
|
36 |
+
user_input = st.text_area("", height=300, placeholder="Paste your dialogue here...")
|
37 |
+
|
38 |
+
with col2:
|
39 |
+
st.markdown('<p class="big-font">Summary</p>', unsafe_allow_html=True)
|
40 |
+
summary_placeholder = st.empty()
|
41 |
+
|
42 |
+
# Create an instance of PredictionPipeline
|
43 |
+
predictor = PredictionPipeline()
|
44 |
+
|
45 |
+
if st.button("📝 Generate Summary"):
|
46 |
+
if user_input:
|
47 |
+
with st.spinner('Generating summary...'):
|
48 |
+
# Get the summary
|
49 |
+
summary = predictor.predict(user_input)
|
50 |
+
# Display the summary
|
51 |
+
summary_placeholder.markdown(f'<p class="result-font">{summary}</p>', unsafe_allow_html=True)
|
52 |
+
else:
|
53 |
+
st.warning("⚠️ Please enter some text to summarize.")
|
54 |
+
|
55 |
+
# Add some spacing
|
56 |
+
st.markdown("<br><br>", unsafe_allow_html=True)
|
57 |
+
|
58 |
+
# Add a section for app info
|
59 |
+
st.markdown("## About This App")
|
60 |
+
st.info("""
|
61 |
+
This AI-powered dialogue summarizer uses advanced natural language processing to distill the key points from conversations.
|
62 |
+
It's perfect for quickly understanding the essence of meetings, chats, or any form of dialogue.
|
63 |
+
|
64 |
+
**How to use:**
|
65 |
+
1. Paste your dialogue in the text area on the left.
|
66 |
+
2. Click the 'Generate Summary' button.
|
67 |
+
3. View the AI-generated summary on the right.
|
68 |
+
|
69 |
+
For best results, ensure your input is a clear dialogue or conversation.
|
70 |
+
""")
|
71 |
+
|
72 |
+
if __name__ == "__main__":
|
73 |
+
main()
|
config/config.yaml
CHANGED
@@ -24,4 +24,13 @@ data_transformation:
|
|
24 |
model_trainer:
|
25 |
root_dir: artifacts/model_trainer
|
26 |
data_path: artifacts/data_transformation/samsum_dataset
|
27 |
-
model_ckpt: google/pegasus-cnn_dailymail
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
model_trainer:
|
25 |
root_dir: artifacts/model_trainer
|
26 |
data_path: artifacts/data_transformation/samsum_dataset
|
27 |
+
model_ckpt: google/pegasus-cnn_dailymail
|
28 |
+
|
29 |
+
|
30 |
+
model_evaluation:
|
31 |
+
root_dir: artifacts/model_evaluation
|
32 |
+
data_path: artifacts/data_transformation/samsum_dataset
|
33 |
+
model_path: artifacts/model_trainer/pegasus-samsum-model
|
34 |
+
tokenizer_path: artifacts/model_trainer/tokenizer
|
35 |
+
metric_file_name: artifacts/model_evaluation/metrics.json
|
36 |
+
|
main.py
CHANGED
@@ -2,6 +2,7 @@ from textsummarizer.pipeline.stage_01_data_ingestion import DataIngestionPipelin
|
|
2 |
from textsummarizer.pipeline.stage_02_data_validation import DataValidationPipeline
|
3 |
from textsummarizer.pipeline.stage_03_data_transformation import DataTransformationPipeline
|
4 |
from textsummarizer.pipeline.stage_04_model_trainer import ModelTrainerPipeline
|
|
|
5 |
from textsummarizer.logging import logger
|
6 |
|
7 |
STAGE_NAME = "Data Ingestion stage"
|
@@ -38,12 +39,24 @@ except Exception as e:
|
|
38 |
|
39 |
|
40 |
|
41 |
-
STAGE_NAME = "
|
42 |
try:
|
43 |
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
|
44 |
model_tranier = ModelTrainerPipeline()
|
45 |
model_tranier.main()
|
46 |
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
except Exception as e:
|
48 |
logger.exception(e)
|
49 |
raise e
|
|
|
2 |
from textsummarizer.pipeline.stage_02_data_validation import DataValidationPipeline
|
3 |
from textsummarizer.pipeline.stage_03_data_transformation import DataTransformationPipeline
|
4 |
from textsummarizer.pipeline.stage_04_model_trainer import ModelTrainerPipeline
|
5 |
+
from textsummarizer.pipeline.stage_05_model_evaluation import ModelEvaluationPipeline
|
6 |
from textsummarizer.logging import logger
|
7 |
|
8 |
STAGE_NAME = "Data Ingestion stage"
|
|
|
39 |
|
40 |
|
41 |
|
42 |
+
STAGE_NAME = "Model Traniner stage"
|
43 |
try:
|
44 |
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
|
45 |
model_tranier = ModelTrainerPipeline()
|
46 |
model_tranier.main()
|
47 |
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
|
48 |
+
except Exception as e:
|
49 |
+
logger.exception(e)
|
50 |
+
raise e
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
STAGE_NAME = "Model Evaluation stage"
|
55 |
+
try:
|
56 |
+
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
|
57 |
+
model_evaluation = ModelEvaluationPipeline()
|
58 |
+
model_evaluation.main()
|
59 |
+
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
|
60 |
except Exception as e:
|
61 |
logger.exception(e)
|
62 |
raise e
|
requirements.txt
CHANGED
@@ -18,4 +18,4 @@ ensure==1.0.2
|
|
18 |
fastapi==0.78.0
|
19 |
uvicorn==0.18.3
|
20 |
Jinja2==3.1.2
|
21 |
-
|
|
|
18 |
fastapi==0.78.0
|
19 |
uvicorn==0.18.3
|
20 |
Jinja2==3.1.2
|
21 |
+
|
research/model_evaluatoin.ipynb
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import os\n",
|
10 |
+
"os.chdir('../')"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 2,
|
16 |
+
"metadata": {},
|
17 |
+
"outputs": [],
|
18 |
+
"source": [
|
19 |
+
"from dataclasses import dataclass\n",
|
20 |
+
"from pathlib import Path\n",
|
21 |
+
"@dataclass(frozen=True)\n",
|
22 |
+
"class ModelEvaluationConfig:\n",
|
23 |
+
" root_dir : Path\n",
|
24 |
+
" data_path : Path\n",
|
25 |
+
" model_path : Path\n",
|
26 |
+
" all_params: dict\n",
|
27 |
+
" tokenizer_path : Path\n",
|
28 |
+
" metric_file_name : Path"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": 3,
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [],
|
36 |
+
"source": [
|
37 |
+
"from textsummarizer.constants import *\n",
|
38 |
+
"from textsummarizer.utils.common import read_yaml, create_directories, save_json, load_json\n",
|
39 |
+
"\n",
|
40 |
+
"class ConfigurationManager:\n",
|
41 |
+
" def __init__(\n",
|
42 |
+
" self,\n",
|
43 |
+
" config_filepath = CONFIG_FILE_PATH,\n",
|
44 |
+
" params_filepath = PARAMS_FILE_PATH):\n",
|
45 |
+
"\n",
|
46 |
+
" self.config = read_yaml(config_filepath)\n",
|
47 |
+
" self.params = read_yaml(params_filepath)\n",
|
48 |
+
"\n",
|
49 |
+
" create_directories([self.config.artifacts_root])\n",
|
50 |
+
"\n",
|
51 |
+
"\n",
|
52 |
+
" \n",
|
53 |
+
" def get_model_evaluation_config(self) -> ModelEvaluationConfig:\n",
|
54 |
+
" config = self.config.model_evaluation\n",
|
55 |
+
"\n",
|
56 |
+
" create_directories([config.root_dir])\n",
|
57 |
+
"\n",
|
58 |
+
" model_evaluation_config = ModelEvaluationConfig(\n",
|
59 |
+
" root_dir=config.root_dir,\n",
|
60 |
+
" data_path=config.data_path,\n",
|
61 |
+
" model_path = config.model_path,\n",
|
62 |
+
" tokenizer_path = config.tokenizer_path,\n",
|
63 |
+
" metric_file_name = config.metric_file_name\n",
|
64 |
+
" \n",
|
65 |
+
" )\n",
|
66 |
+
"\n",
|
67 |
+
" return model_evaluation_config"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "code",
|
72 |
+
"execution_count": 4,
|
73 |
+
"metadata": {},
|
74 |
+
"outputs": [
|
75 |
+
{
|
76 |
+
"name": "stdout",
|
77 |
+
"output_type": "stream",
|
78 |
+
"text": [
|
79 |
+
"[2024-08-11 20:23:00,587: INFO: config: PyTorch version 2.2.2+cu121 available.]\n",
|
80 |
+
"[2024-08-11 20:23:00,589: INFO: config: TensorFlow version 2.12.0 available.]\n"
|
81 |
+
]
|
82 |
+
}
|
83 |
+
],
|
84 |
+
"source": [
|
85 |
+
"from transformers import AutoModelForSeq2SeqLM, AutoTokenizer\n",
|
86 |
+
"from datasets import load_dataset, load_from_disk, load_metric\n",
|
87 |
+
"import torch\n",
|
88 |
+
"import pandas as pd\n",
|
89 |
+
"from tqdm import tqdm"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": 6,
|
95 |
+
"metadata": {},
|
96 |
+
"outputs": [],
|
97 |
+
"source": [
|
98 |
+
"import mlflow\n",
|
99 |
+
"import dagshub\n",
|
100 |
+
"import json\n",
|
101 |
+
"\n",
|
102 |
+
"class ModelEvaluation:\n",
|
103 |
+
" def __init__(self, config: ModelEvaluationConfig):\n",
|
104 |
+
" self.config = config\n",
|
105 |
+
"\n",
|
106 |
+
" def generate_batch_sized_chunks(self, list_of_elements, batch_size):\n",
|
107 |
+
" \"\"\"split the dataset into smaller batches that we can process simultaneously\n",
|
108 |
+
" Yield successive batch-sized chunks from list_of_elements.\"\"\"\n",
|
109 |
+
" for i in range(0, len(list_of_elements), batch_size):\n",
|
110 |
+
" yield list_of_elements[i : i + batch_size]\n",
|
111 |
+
"\n",
|
112 |
+
" def calculate_metric_on_test_ds(self, dataset, metric, model, tokenizer, \n",
|
113 |
+
" batch_size=16, device=\"cuda\" if torch.cuda.is_available() else \"cpu\", \n",
|
114 |
+
" column_text=\"article\", \n",
|
115 |
+
" column_summary=\"highlights\"):\n",
|
116 |
+
" article_batches = list(self.generate_batch_sized_chunks(dataset[column_text], batch_size))\n",
|
117 |
+
" target_batches = list(self.generate_batch_sized_chunks(dataset[column_summary], batch_size))\n",
|
118 |
+
"\n",
|
119 |
+
" for article_batch, target_batch in tqdm(\n",
|
120 |
+
" zip(article_batches, target_batches), total=len(article_batches)):\n",
|
121 |
+
" \n",
|
122 |
+
" inputs = tokenizer(article_batch, max_length=1024, truncation=True, \n",
|
123 |
+
" padding=\"max_length\", return_tensors=\"pt\")\n",
|
124 |
+
" \n",
|
125 |
+
" summaries = model.generate(input_ids=inputs[\"input_ids\"].to(device),\n",
|
126 |
+
" attention_mask=inputs[\"attention_mask\"].to(device), \n",
|
127 |
+
" length_penalty=0.8, num_beams=8, max_length=128)\n",
|
128 |
+
" \n",
|
129 |
+
" decoded_summaries = [tokenizer.decode(s, skip_special_tokens=True, \n",
|
130 |
+
" clean_up_tokenization_spaces=True) \n",
|
131 |
+
" for s in summaries] \n",
|
132 |
+
" \n",
|
133 |
+
" decoded_summaries = [d.replace(\"\", \" \") for d in decoded_summaries]\n",
|
134 |
+
" \n",
|
135 |
+
" metric.add_batch(predictions=decoded_summaries, references=target_batch)\n",
|
136 |
+
" \n",
|
137 |
+
" score = metric.compute()\n",
|
138 |
+
" return score\n",
|
139 |
+
"\n",
|
140 |
+
" def evaluate(self):\n",
|
141 |
+
" # Set up MLflow tracking\n",
|
142 |
+
" dagshub.init(repo_owner='azizulhakim8291', repo_name='text-summarization', mlflow=True)\n",
|
143 |
+
" mlflow.set_tracking_uri(\"https://dagshub.com/azizulhakim8291/text-summarization.mlflow\")\n",
|
144 |
+
" mlflow.set_experiment(\"text-summarization-evaluation\")\n",
|
145 |
+
"\n",
|
146 |
+
" device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
147 |
+
" tokenizer = AutoTokenizer.from_pretrained(self.config.tokenizer_path)\n",
|
148 |
+
" model_pegasus = AutoModelForSeq2SeqLM.from_pretrained(self.config.model_path).to(device)\n",
|
149 |
+
" \n",
|
150 |
+
" dataset_samsum_pt = load_from_disk(self.config.data_path)\n",
|
151 |
+
"\n",
|
152 |
+
" rouge_names = [\"rouge1\", \"rouge2\", \"rougeL\", \"rougeLsum\"]\n",
|
153 |
+
" rouge_metric = load_metric('rouge')\n",
|
154 |
+
"\n",
|
155 |
+
" with mlflow.start_run():\n",
|
156 |
+
" mlflow.log_param(\"model_name\", \"pegasus\")\n",
|
157 |
+
" mlflow.log_param(\"dataset\", \"samsum\")\n",
|
158 |
+
"\n",
|
159 |
+
" score = self.calculate_metric_on_test_ds(\n",
|
160 |
+
" dataset_samsum_pt['test'][0:10], rouge_metric, model_pegasus, tokenizer, \n",
|
161 |
+
" batch_size = 2, column_text = 'dialogue', column_summary= 'summary'\n",
|
162 |
+
" )\n",
|
163 |
+
"\n",
|
164 |
+
" rouge_dict = dict((rn, score[rn].mid.fmeasure) for rn in rouge_names)\n",
|
165 |
+
"\n",
|
166 |
+
" # Log metrics to MLflow\n",
|
167 |
+
" for rouge_name, rouge_score in rouge_dict.items():\n",
|
168 |
+
" mlflow.log_metric(rouge_name, rouge_score)\n",
|
169 |
+
"\n",
|
170 |
+
" # Save results as JSON\n",
|
171 |
+
" with open(self.config.metric_file_name, 'w') as f:\n",
|
172 |
+
" json.dump(rouge_dict, f, indent=4)\n",
|
173 |
+
"\n",
|
174 |
+
" # Log the JSON file as an artifact\n",
|
175 |
+
" mlflow.log_artifact(self.config.metric_file_name)"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"execution_count": 8,
|
181 |
+
"metadata": {},
|
182 |
+
"outputs": [
|
183 |
+
{
|
184 |
+
"name": "stdout",
|
185 |
+
"output_type": "stream",
|
186 |
+
"text": [
|
187 |
+
"[2024-08-11 22:27:18,954: INFO: common: yaml file: config\\config.yaml loaded successfully]\n",
|
188 |
+
"[2024-08-11 22:27:18,967: INFO: common: yaml file: params.yaml loaded successfully]\n",
|
189 |
+
"[2024-08-11 22:27:18,971: INFO: common: created directory at: artifacts]\n",
|
190 |
+
"[2024-08-11 22:27:18,973: INFO: common: created directory at: artifacts/model_evaluation]\n",
|
191 |
+
"[2024-08-11 22:27:19,619: INFO: _client: HTTP Request: GET https://dagshub.com/api/v1/repos/azizulhakim8291/text-summarization \"HTTP/1.1 200 OK\"]\n"
|
192 |
+
]
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"data": {
|
196 |
+
"text/html": [
|
197 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">Initialized MLflow to track repo <span style=\"color: #008000; text-decoration-color: #008000\">\"azizulhakim8291/text-summarization\"</span>\n",
|
198 |
+
"</pre>\n"
|
199 |
+
],
|
200 |
+
"text/plain": [
|
201 |
+
"Initialized MLflow to track repo \u001b[32m\"azizulhakim8291/text-summarization\"\u001b[0m\n"
|
202 |
+
]
|
203 |
+
},
|
204 |
+
"metadata": {},
|
205 |
+
"output_type": "display_data"
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"name": "stdout",
|
209 |
+
"output_type": "stream",
|
210 |
+
"text": [
|
211 |
+
"[2024-08-11 22:27:20,037: INFO: helpers: Initialized MLflow to track repo \"azizulhakim8291/text-summarization\"]\n"
|
212 |
+
]
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"data": {
|
216 |
+
"text/html": [
|
217 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">Repository azizulhakim8291/text-summarization initialized!\n",
|
218 |
+
"</pre>\n"
|
219 |
+
],
|
220 |
+
"text/plain": [
|
221 |
+
"Repository azizulhakim8291/text-summarization initialized!\n"
|
222 |
+
]
|
223 |
+
},
|
224 |
+
"metadata": {},
|
225 |
+
"output_type": "display_data"
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"name": "stdout",
|
229 |
+
"output_type": "stream",
|
230 |
+
"text": [
|
231 |
+
"[2024-08-11 22:27:20,040: INFO: helpers: Repository azizulhakim8291/text-summarization initialized!]\n",
|
232 |
+
"[2024-08-11 22:27:20,119: WARNING: connectionpool: Retrying (Retry(total=4, connect=5, read=4, redirect=5, status=5)) after connection broken by 'RemoteDisconnected('Remote end closed connection without response')': /azizulhakim8291/text-summarization.mlflow/api/2.0/mlflow/experiments/get-by-name?experiment_name=text-summarization-evaluation]\n"
|
233 |
+
]
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"name": "stderr",
|
237 |
+
"output_type": "stream",
|
238 |
+
"text": [
|
239 |
+
"c:\\Users\\User\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\datasets\\load.py:756: FutureWarning: The repository for rouge contains custom code which must be executed to correctly load the metric. You can inspect the repository content at https://raw.githubusercontent.com/huggingface/datasets/2.18.0/metrics/rouge/rouge.py\n",
|
240 |
+
"You can avoid this message in future by passing the argument `trust_remote_code=True`.\n",
|
241 |
+
"Passing `trust_remote_code=True` will be mandatory to load this metric from the next major release of `datasets`.\n",
|
242 |
+
" warnings.warn(\n",
|
243 |
+
"100%|██████████| 5/5 [00:21<00:00, 4.26s/it]"
|
244 |
+
]
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"name": "stdout",
|
248 |
+
"output_type": "stream",
|
249 |
+
"text": [
|
250 |
+
"[2024-08-11 22:28:20,351: INFO: rouge_scorer: Using default tokenizer.]\n"
|
251 |
+
]
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"name": "stderr",
|
255 |
+
"output_type": "stream",
|
256 |
+
"text": [
|
257 |
+
"\n"
|
258 |
+
]
|
259 |
+
}
|
260 |
+
],
|
261 |
+
"source": [
|
262 |
+
"try:\n",
|
263 |
+
" config = ConfigurationManager()\n",
|
264 |
+
" model_evaluation_config = config.get_model_evaluation_config()\n",
|
265 |
+
" model_evaluation_config = ModelEvaluation(config=model_evaluation_config)\n",
|
266 |
+
" model_evaluation_config.evaluate()\n",
|
267 |
+
"except Exception as e:\n",
|
268 |
+
" raise e"
|
269 |
+
]
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"cell_type": "code",
|
273 |
+
"execution_count": null,
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [],
|
276 |
+
"source": []
|
277 |
+
}
|
278 |
+
],
|
279 |
+
"metadata": {
|
280 |
+
"kernelspec": {
|
281 |
+
"display_name": "Python 3",
|
282 |
+
"language": "python",
|
283 |
+
"name": "python3"
|
284 |
+
},
|
285 |
+
"language_info": {
|
286 |
+
"codemirror_mode": {
|
287 |
+
"name": "ipython",
|
288 |
+
"version": 3
|
289 |
+
},
|
290 |
+
"file_extension": ".py",
|
291 |
+
"mimetype": "text/x-python",
|
292 |
+
"name": "python",
|
293 |
+
"nbconvert_exporter": "python",
|
294 |
+
"pygments_lexer": "ipython3",
|
295 |
+
"version": "3.11.0"
|
296 |
+
}
|
297 |
+
},
|
298 |
+
"nbformat": 4,
|
299 |
+
"nbformat_minor": 2
|
300 |
+
}
|
research/model_trainer.ipynb
CHANGED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import os\n",
|
10 |
+
"os.chdir('../')"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 2,
|
16 |
+
"metadata": {},
|
17 |
+
"outputs": [
|
18 |
+
{
|
19 |
+
"data": {
|
20 |
+
"text/plain": [
|
21 |
+
"'c:\\\\mlops projects\\\\text-summarization'"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
"execution_count": 2,
|
25 |
+
"metadata": {},
|
26 |
+
"output_type": "execute_result"
|
27 |
+
}
|
28 |
+
],
|
29 |
+
"source": [
|
30 |
+
"%pwd"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": 3,
|
36 |
+
"metadata": {},
|
37 |
+
"outputs": [],
|
38 |
+
"source": [
|
39 |
+
"from dataclasses import dataclass\n",
|
40 |
+
"from pathlib import Path\n",
|
41 |
+
"@dataclass(frozen=True)\n",
|
42 |
+
"class ModelTrainerConfig:\n",
|
43 |
+
" root_dir : Path\n",
|
44 |
+
" data_path : Path\n",
|
45 |
+
" model_ckpt : Path\n",
|
46 |
+
" num_train_epochs : int\n",
|
47 |
+
" warmup_steps : int\n",
|
48 |
+
" per_device_train_batch_size : int\n",
|
49 |
+
" weight_decay : float\n",
|
50 |
+
" logging_steps : int\n",
|
51 |
+
" evaluation_strategy: str\n",
|
52 |
+
" eval_steps: int\n",
|
53 |
+
" save_steps: float\n",
|
54 |
+
" gradient_accumulation_steps: int"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "code",
|
59 |
+
"execution_count": 4,
|
60 |
+
"metadata": {},
|
61 |
+
"outputs": [],
|
62 |
+
"source": [
|
63 |
+
"from textsummarizer.constants import *\n",
|
64 |
+
"from textsummarizer.utils.common import read_yaml,create_directories\n",
|
65 |
+
"\n",
|
66 |
+
"class ConfigurationManager:\n",
|
67 |
+
" def __init__(\n",
|
68 |
+
" self,\n",
|
69 |
+
" config_filepath = CONFIG_FILE_PATH,\n",
|
70 |
+
" params_filepath = PARAMS_FILE_PATH):\n",
|
71 |
+
"\n",
|
72 |
+
" self.config = read_yaml(config_filepath)\n",
|
73 |
+
" self.params = read_yaml(params_filepath)\n",
|
74 |
+
"\n",
|
75 |
+
" create_directories([self.config.artifacts_root])\n",
|
76 |
+
" \n",
|
77 |
+
" \n",
|
78 |
+
" def get_model_trainer_config(self) -> ModelTrainerConfig:\n",
|
79 |
+
" config = self.config.model_trainer\n",
|
80 |
+
" params = self.params.TrainingArguments\n",
|
81 |
+
"\n",
|
82 |
+
" create_directories([config.root_dir])\n",
|
83 |
+
" \n",
|
84 |
+
" \n",
|
85 |
+
" model_trainer_config = ModelTrainerConfig(\n",
|
86 |
+
" root_dir = config.root_dir,\n",
|
87 |
+
" data_path = config.data_path,\n",
|
88 |
+
" model_ckpt = config.model_ckpt,\n",
|
89 |
+
" num_train_epochs =params.num_train_epochs,\n",
|
90 |
+
" warmup_steps =params.warmup_steps,\n",
|
91 |
+
" per_device_train_batch_size = params.per_device_train_batch_size,\n",
|
92 |
+
" weight_decay = params.weight_decay,\n",
|
93 |
+
" logging_steps = params.logging_steps,\n",
|
94 |
+
" evaluation_strategy =params.evaluation_strategy,\n",
|
95 |
+
" eval_steps =params.eval_steps,\n",
|
96 |
+
" save_steps = params.save_steps,\n",
|
97 |
+
" gradient_accumulation_steps = params.gradient_accumulation_steps\n",
|
98 |
+
" )\n",
|
99 |
+
" \n",
|
100 |
+
" return model_trainer_config\n",
|
101 |
+
" "
|
102 |
+
]
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"cell_type": "code",
|
106 |
+
"execution_count": 6,
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [],
|
109 |
+
"source": [
|
110 |
+
"from transformers import TrainingArguments, Trainer\n",
|
111 |
+
"from transformers import DataCollatorForSeq2Seq\n",
|
112 |
+
"from transformers import AutoModelForSeq2SeqLM, AutoTokenizer\n",
|
113 |
+
"from datasets import load_dataset, load_from_disk\n",
|
114 |
+
"import torch\n",
|
115 |
+
"import os"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "code",
|
120 |
+
"execution_count": 7,
|
121 |
+
"metadata": {},
|
122 |
+
"outputs": [],
|
123 |
+
"source": [
|
124 |
+
"class ModelTrainer:\n",
|
125 |
+
" def __init__(self, config : ModelTrainerConfig):\n",
|
126 |
+
" self.config = config\n",
|
127 |
+
" os.environ[\"WANDB_DISABLED\"] = \"true\"\n",
|
128 |
+
" \n",
|
129 |
+
" \n",
|
130 |
+
" def train(self):\n",
|
131 |
+
" device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
132 |
+
" tokenizer = AutoTokenizer.from_pretrained(self.config.model_ckpt)\n",
|
133 |
+
" model_pegasus = AutoModelForSeq2SeqLM.from_pretrained(self.config.model_ckpt).to(device)\n",
|
134 |
+
" seq2seq_data_collator = DataCollatorForSeq2Seq(tokenizer, model=model_pegasus)\n",
|
135 |
+
" \n",
|
136 |
+
" #loading data \n",
|
137 |
+
" dataset_samsum_pt = load_from_disk(self.config.data_path)\n",
|
138 |
+
" \n",
|
139 |
+
" \n",
|
140 |
+
" trainer_args = TrainingArguments(\n",
|
141 |
+
" output_dir=self.config.root_dir, num_train_epochs=self.config.num_train_epochs, warmup_steps=self.config.warmup_steps,\n",
|
142 |
+
" per_device_train_batch_size=self.config.per_device_train_batch_size, per_device_eval_batch_size=self.config.per_device_train_batch_size,\n",
|
143 |
+
" weight_decay=self.config.weight_decay, logging_steps=self.config.logging_steps,\n",
|
144 |
+
" evaluation_strategy=self.config.evaluation_strategy, eval_steps=self.config.eval_steps, save_steps=1e6,\n",
|
145 |
+
" gradient_accumulation_steps=self.config.gradient_accumulation_steps,\n",
|
146 |
+
" report_to=\"none\"\n",
|
147 |
+
" \n",
|
148 |
+
" ) \n",
|
149 |
+
" \n",
|
150 |
+
" \n",
|
151 |
+
" trainer = Trainer(model=model_pegasus, args=trainer_args,\n",
|
152 |
+
" tokenizer=tokenizer, data_collator=seq2seq_data_collator,\n",
|
153 |
+
" train_dataset=dataset_samsum_pt[\"test\"], \n",
|
154 |
+
" eval_dataset=dataset_samsum_pt[\"validation\"])\n",
|
155 |
+
" \n",
|
156 |
+
" \n",
|
157 |
+
" trainer.train()\n",
|
158 |
+
"\n",
|
159 |
+
" ## Save model\n",
|
160 |
+
" model_pegasus.save_pretrained(os.path.join(self.config.root_dir,\"pegasus-samsum-model\"))\n",
|
161 |
+
" ## Save tokenizer\n",
|
162 |
+
" tokenizer.save_pretrained(os.path.join(self.config.root_dir,\"tokenizer\"))\n",
|
163 |
+
" \n",
|
164 |
+
" \n",
|
165 |
+
" "
|
166 |
+
]
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"cell_type": "code",
|
170 |
+
"execution_count": null,
|
171 |
+
"metadata": {},
|
172 |
+
"outputs": [],
|
173 |
+
"source": [
|
174 |
+
"try:\n",
|
175 |
+
" config = ConfigurationManager()\n",
|
176 |
+
" model_trainer_config = config.get_model_trainer_config()\n",
|
177 |
+
" model_trainer_config = ModelTrainer(config=model_trainer_config)\n",
|
178 |
+
" model_trainer_config.train()\n",
|
179 |
+
"except Exception as e:\n",
|
180 |
+
" raise e"
|
181 |
+
]
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"cell_type": "code",
|
185 |
+
"execution_count": null,
|
186 |
+
"metadata": {},
|
187 |
+
"outputs": [],
|
188 |
+
"source": []
|
189 |
+
}
|
190 |
+
],
|
191 |
+
"metadata": {
|
192 |
+
"kernelspec": {
|
193 |
+
"display_name": "Python 3",
|
194 |
+
"language": "python",
|
195 |
+
"name": "python3"
|
196 |
+
},
|
197 |
+
"language_info": {
|
198 |
+
"codemirror_mode": {
|
199 |
+
"name": "ipython",
|
200 |
+
"version": 3
|
201 |
+
},
|
202 |
+
"file_extension": ".py",
|
203 |
+
"mimetype": "text/x-python",
|
204 |
+
"name": "python",
|
205 |
+
"nbconvert_exporter": "python",
|
206 |
+
"pygments_lexer": "ipython3",
|
207 |
+
"version": "3.11.0"
|
208 |
+
}
|
209 |
+
},
|
210 |
+
"nbformat": 4,
|
211 |
+
"nbformat_minor": 2
|
212 |
+
}
|
src/textsummarizer/config/configuration.py
CHANGED
@@ -3,7 +3,8 @@ from textsummarizer.utils.common import read_yaml, create_directories
|
|
3 |
from textsummarizer.entity.config_entity import (DataIngestionConfig,
|
4 |
DataValidationConfig,
|
5 |
DataTransformationConfig,
|
6 |
-
ModelTrainerConfig
|
|
|
7 |
|
8 |
class ConfigurationManager:
|
9 |
def __init__(
|
@@ -84,5 +85,24 @@ class ConfigurationManager:
|
|
84 |
)
|
85 |
|
86 |
return model_trainer_config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
|
|
|
3 |
from textsummarizer.entity.config_entity import (DataIngestionConfig,
|
4 |
DataValidationConfig,
|
5 |
DataTransformationConfig,
|
6 |
+
ModelTrainerConfig,
|
7 |
+
ModelEvaluationConfig)
|
8 |
|
9 |
class ConfigurationManager:
|
10 |
def __init__(
|
|
|
85 |
)
|
86 |
|
87 |
return model_trainer_config
|
88 |
+
|
89 |
+
|
90 |
+
def get_model_evaluation_config(self) -> ModelEvaluationConfig:
|
91 |
+
config = self.config.model_evaluation
|
92 |
+
params = self.params.TrainingArguments
|
93 |
+
|
94 |
+
create_directories([config.root_dir])
|
95 |
+
|
96 |
+
model_evaluation_config = ModelEvaluationConfig(
|
97 |
+
root_dir=config.root_dir,
|
98 |
+
data_path=config.data_path,
|
99 |
+
model_path = config.model_path,
|
100 |
+
tokenizer_path = config.tokenizer_path,
|
101 |
+
metric_file_name = config.metric_file_name,
|
102 |
+
all_params = params
|
103 |
+
|
104 |
+
)
|
105 |
+
|
106 |
+
return model_evaluation_config
|
107 |
|
108 |
|
src/textsummarizer/conponents/model_evaluation.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
2 |
+
from datasets import load_dataset, load_from_disk, load_metric
|
3 |
+
import torch
|
4 |
+
import pandas as pd
|
5 |
+
from tqdm import tqdm
|
6 |
+
from textsummarizer.entity.config_entity import ModelEvaluationConfig
|
7 |
+
import mlflow
|
8 |
+
import dagshub
|
9 |
+
import json
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
class ModelEvaluation:
|
16 |
+
def __init__(self, config: ModelEvaluationConfig):
|
17 |
+
self.config = config
|
18 |
+
|
19 |
+
def generate_batch_sized_chunks(self, list_of_elements, batch_size):
|
20 |
+
"""split the dataset into smaller batches that we can process simultaneously
|
21 |
+
Yield successive batch-sized chunks from list_of_elements."""
|
22 |
+
for i in range(0, len(list_of_elements), batch_size):
|
23 |
+
yield list_of_elements[i : i + batch_size]
|
24 |
+
|
25 |
+
def calculate_metric_on_test_ds(self, dataset, metric, model, tokenizer,
|
26 |
+
batch_size=16, device="cuda" if torch.cuda.is_available() else "cpu",
|
27 |
+
column_text="article",
|
28 |
+
column_summary="highlights"):
|
29 |
+
article_batches = list(self.generate_batch_sized_chunks(dataset[column_text], batch_size))
|
30 |
+
target_batches = list(self.generate_batch_sized_chunks(dataset[column_summary], batch_size))
|
31 |
+
|
32 |
+
for article_batch, target_batch in tqdm(
|
33 |
+
zip(article_batches, target_batches), total=len(article_batches)):
|
34 |
+
|
35 |
+
inputs = tokenizer(article_batch, max_length=1024, truncation=True,
|
36 |
+
padding="max_length", return_tensors="pt")
|
37 |
+
|
38 |
+
summaries = model.generate(input_ids=inputs["input_ids"].to(device),
|
39 |
+
attention_mask=inputs["attention_mask"].to(device),
|
40 |
+
length_penalty=0.8, num_beams=8, max_length=128)
|
41 |
+
|
42 |
+
decoded_summaries = [tokenizer.decode(s, skip_special_tokens=True,
|
43 |
+
clean_up_tokenization_spaces=True)
|
44 |
+
for s in summaries]
|
45 |
+
|
46 |
+
decoded_summaries = [d.replace("", " ") for d in decoded_summaries]
|
47 |
+
|
48 |
+
metric.add_batch(predictions=decoded_summaries, references=target_batch)
|
49 |
+
|
50 |
+
score = metric.compute()
|
51 |
+
return score
|
52 |
+
|
53 |
+
def evaluate(self):
|
54 |
+
# Set up MLflow tracking
|
55 |
+
dagshub.init(repo_owner='azizulhakim8291', repo_name='text-summarization', mlflow=True)
|
56 |
+
mlflow.set_tracking_uri("https://dagshub.com/azizulhakim8291/text-summarization.mlflow")
|
57 |
+
mlflow.set_experiment("text-summarization-evaluation")
|
58 |
+
|
59 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(self.config.tokenizer_path)
|
61 |
+
model_pegasus = AutoModelForSeq2SeqLM.from_pretrained(self.config.model_path).to(device)
|
62 |
+
|
63 |
+
dataset_samsum_pt = load_from_disk(self.config.data_path)
|
64 |
+
|
65 |
+
rouge_names = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
|
66 |
+
rouge_metric = load_metric('rouge')
|
67 |
+
|
68 |
+
with mlflow.start_run():
|
69 |
+
mlflow.log_param("model_name", "pegasus")
|
70 |
+
mlflow.log_param("dataset", "samsum")
|
71 |
+
mlflow.log_param('parameter name', 'value')
|
72 |
+
|
73 |
+
score = self.calculate_metric_on_test_ds(
|
74 |
+
dataset_samsum_pt['test'][0:10], rouge_metric, model_pegasus, tokenizer,
|
75 |
+
batch_size = 2, column_text = 'dialogue', column_summary= 'summary'
|
76 |
+
)
|
77 |
+
|
78 |
+
rouge_dict = dict((rn, score[rn].mid.fmeasure) for rn in rouge_names)
|
79 |
+
mlflow.log_params(self.config.all_params)
|
80 |
+
|
81 |
+
# Log metrics to MLflow
|
82 |
+
for rouge_name, rouge_score in rouge_dict.items():
|
83 |
+
mlflow.log_metric(rouge_name, rouge_score)
|
84 |
+
|
85 |
+
# Save results as JSON
|
86 |
+
with open(self.config.metric_file_name, 'w') as f:
|
87 |
+
json.dump(rouge_dict, f, indent=4)
|
88 |
+
|
89 |
+
# Log the JSON file as an artifact
|
90 |
+
mlflow.log_artifact(self.config.metric_file_name)
|
src/textsummarizer/entity/config_entity.py
CHANGED
@@ -38,3 +38,13 @@ class ModelTrainerConfig:
|
|
38 |
eval_steps: int
|
39 |
save_steps: float
|
40 |
gradient_accumulation_steps: int
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
eval_steps: int
|
39 |
save_steps: float
|
40 |
gradient_accumulation_steps: int
|
41 |
+
|
42 |
+
|
43 |
+
@dataclass(frozen=True)
|
44 |
+
class ModelEvaluationConfig:
|
45 |
+
root_dir : Path
|
46 |
+
data_path : Path
|
47 |
+
model_path : Path
|
48 |
+
all_params: dict
|
49 |
+
tokenizer_path : Path
|
50 |
+
metric_file_name : Path
|
src/textsummarizer/pipeline/predict.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from textsummarizer.config.configuration import ConfigurationManager
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
class PredictionPipeline:
|
8 |
+
def __init__(self):
|
9 |
+
self.config = ConfigurationManager().get_model_evaluation_config()
|
10 |
+
|
11 |
+
def predict(self,text):
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(self.config.tokenizer_path)
|
13 |
+
gen_kwargs = {"length_penalty": 0.8, "num_beams":8, "max_length": 128}
|
14 |
+
|
15 |
+
pipe = pipeline("summarization", model=self.config.model_path,tokenizer=tokenizer)
|
16 |
+
|
17 |
+
print("Dialogue:")
|
18 |
+
print(text)
|
19 |
+
|
20 |
+
output = pipe(text, **gen_kwargs)[0]["summary_text"]
|
21 |
+
print("\nModel Summary:")
|
22 |
+
print(output)
|
23 |
+
|
24 |
+
return output
|
src/textsummarizer/pipeline/stage_05_model_evaluation.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from textsummarizer.conponents.model_evaluation import ModelEvaluation
|
2 |
+
from textsummarizer.config.configuration import ConfigurationManager
|
3 |
+
|
4 |
+
|
5 |
+
class ModelEvaluationPipeline:
|
6 |
+
def __init__(self):
|
7 |
+
pass
|
8 |
+
|
9 |
+
def main(self):
|
10 |
+
config = ConfigurationManager()
|
11 |
+
model_evaluation_config = config.get_model_evaluation_config()
|
12 |
+
model_evaluation_config = ModelEvaluation(config=model_evaluation_config)
|
13 |
+
model_evaluation_config.evaluate()
|
src/textsummarizer/utils/common.py
CHANGED
@@ -6,7 +6,7 @@ from ensure import ensure_annotations
|
|
6 |
from box import ConfigBox
|
7 |
from pathlib import Path
|
8 |
from typing import Any
|
9 |
-
|
10 |
|
11 |
|
12 |
@ensure_annotations
|
@@ -63,4 +63,39 @@ def get_size(path: Path) -> str:
|
|
63 |
size_in_kb = round(os.path.getsize(path)/1024)
|
64 |
return f"~ {size_in_kb} KB"
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
|
|
6 |
from box import ConfigBox
|
7 |
from pathlib import Path
|
8 |
from typing import Any
|
9 |
+
import json
|
10 |
|
11 |
|
12 |
@ensure_annotations
|
|
|
63 |
size_in_kb = round(os.path.getsize(path)/1024)
|
64 |
return f"~ {size_in_kb} KB"
|
65 |
|
66 |
+
|
67 |
+
@ensure_annotations
|
68 |
+
def save_json(path: Path, data: dict):
|
69 |
+
"""save json data
|
70 |
+
|
71 |
+
Args:
|
72 |
+
path (Path): path to json file
|
73 |
+
data (dict): data to be saved in json file
|
74 |
+
"""
|
75 |
+
|
76 |
+
|
77 |
+
with open(path, 'w') as f:
|
78 |
+
json.dump(data, f, indent=4)
|
79 |
+
|
80 |
+
logger.info(f'Json file saved at: {path}')
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
@ensure_annotations
|
86 |
+
def load_json(path: Path) -> ConfigBox:
|
87 |
+
"""load json files data
|
88 |
+
|
89 |
+
Args:
|
90 |
+
path (Path): path to json file
|
91 |
+
|
92 |
+
Returns:
|
93 |
+
ConfigBox: data as class attributes instead of dict
|
94 |
+
"""
|
95 |
+
|
96 |
+
with open(path, 'r') as f:
|
97 |
+
content = json.load(f)
|
98 |
+
|
99 |
+
logger.info(f"Json file loaded successfully from: {path}")
|
100 |
+
return ConfigBox
|
101 |
|