from transformers import TrainingArguments, Trainer from transformers import DataCollatorForSeq2Seq from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from datasets import load_dataset, load_from_disk from textsummarizer.entity.config_entity import ModelTrainerConfig import torch import os class ModelTrainer: def __init__(self, config : ModelTrainerConfig): self.config = config os.environ["WANDB_DISABLED"] = "true" def train(self): device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained(self.config.model_ckpt) model_pegasus = AutoModelForSeq2SeqLM.from_pretrained(self.config.model_ckpt).to(device) seq2seq_data_collator = DataCollatorForSeq2Seq(tokenizer, model=model_pegasus) #loading data dataset_samsum_pt = load_from_disk(self.config.data_path) trainer_args = TrainingArguments( output_dir=self.config.root_dir, num_train_epochs=self.config.num_train_epochs, warmup_steps=self.config.warmup_steps, per_device_train_batch_size=self.config.per_device_train_batch_size, per_device_eval_batch_size=self.config.per_device_train_batch_size, weight_decay=self.config.weight_decay, logging_steps=self.config.logging_steps, evaluation_strategy=self.config.evaluation_strategy, eval_steps=self.config.eval_steps, save_steps=1e6, gradient_accumulation_steps=self.config.gradient_accumulation_steps, report_to="none" ) trainer = Trainer(model=model_pegasus, args=trainer_args, tokenizer=tokenizer, data_collator=seq2seq_data_collator, train_dataset=dataset_samsum_pt["train"], eval_dataset=dataset_samsum_pt["validation"]) trainer.train() ## Save model model_pegasus.save_pretrained(os.path.join(self.config.root_dir,"pegasus-samsum-model")) ## Save tokenizer tokenizer.save_pretrained(os.path.join(self.config.root_dir,"tokenizer"))