File size: 6,495 Bytes
c0eac48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import torch.nn as nn
import numpy as np
import time
import math
import random
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
# from networks.layers import *


def init_weight(m):
    if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d):
        nn.init.xavier_normal_(m.weight)
        # m.bias.data.fill_(0.01)
        if m.bias is not None:
            nn.init.constant_(m.bias, 0)


# batch_size, dimension and position
# output: (batch_size, dim)
def positional_encoding(batch_size, dim, pos):
    assert batch_size == pos.shape[0]
    positions_enc = np.array([
        [pos[j] / np.power(10000, (i-i%2)/dim) for i in range(dim)]
        for j in range(batch_size)
    ], dtype=np.float32)
    positions_enc[:, 0::2] = np.sin(positions_enc[:, 0::2])
    positions_enc[:, 1::2] = np.cos(positions_enc[:, 1::2])
    return torch.from_numpy(positions_enc).float()


def get_padding_mask(batch_size, seq_len, cap_lens):
    cap_lens = cap_lens.data.tolist()
    mask_2d = torch.ones((batch_size, seq_len, seq_len), dtype=torch.float32)
    for i, cap_len in enumerate(cap_lens):
        mask_2d[i, :, :cap_len] = 0
    return mask_2d.bool(), 1 - mask_2d[:, :, 0].clone()


def top_k_logits(logits, k):
    v, ix = torch.topk(logits, k)
    out = logits.clone()
    out[out < v[:, [-1]]] = -float('Inf')
    return out


class PositionalEncoding(nn.Module):

    def __init__(self, d_model, max_len=300):
        super(PositionalEncoding, self).__init__()

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        # pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)

    def forward(self, pos):
        return self.pe[pos]


class MovementConvEncoder(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(MovementConvEncoder, self).__init__()
        self.main = nn.Sequential(
            nn.Conv1d(input_size, hidden_size, 4, 2, 1),
            nn.Dropout(0.2, inplace=True),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv1d(hidden_size, output_size, 4, 2, 1),
            nn.Dropout(0.2, inplace=True),
            nn.LeakyReLU(0.2, inplace=True),
        )
        self.out_net = nn.Linear(output_size, output_size)
        self.main.apply(init_weight)
        self.out_net.apply(init_weight)

    def forward(self, inputs):
        inputs = inputs.permute(0, 2, 1)
        outputs = self.main(inputs).permute(0, 2, 1)
        # print(outputs.shape)
        return self.out_net(outputs)


class MovementConvDecoder(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(MovementConvDecoder, self).__init__()
        self.main = nn.Sequential(
            nn.ConvTranspose1d(input_size, hidden_size, 4, 2, 1),
            # nn.Dropout(0.2, inplace=True),
            nn.LeakyReLU(0.2, inplace=True),
            nn.ConvTranspose1d(hidden_size, output_size, 4, 2, 1),
            # nn.Dropout(0.2, inplace=True),
            nn.LeakyReLU(0.2, inplace=True),
        )
        self.out_net = nn.Linear(output_size, output_size)

        self.main.apply(init_weight)
        self.out_net.apply(init_weight)

    def forward(self, inputs):
        inputs = inputs.permute(0, 2, 1)
        outputs = self.main(inputs).permute(0, 2, 1)
        return self.out_net(outputs)

class TextEncoderBiGRUCo(nn.Module):
    def __init__(self, word_size, pos_size, hidden_size, output_size, device):
        super(TextEncoderBiGRUCo, self).__init__()
        self.device = device

        self.pos_emb = nn.Linear(pos_size, word_size)
        self.input_emb = nn.Linear(word_size, hidden_size)
        self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
        self.output_net = nn.Sequential(
            nn.Linear(hidden_size * 2, hidden_size),
            nn.LayerNorm(hidden_size),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(hidden_size, output_size)
        )

        self.input_emb.apply(init_weight)
        self.pos_emb.apply(init_weight)
        self.output_net.apply(init_weight)
        # self.linear2.apply(init_weight)
        # self.batch_size = batch_size
        self.hidden_size = hidden_size
        self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))

    # input(batch_size, seq_len, dim)
    def forward(self, word_embs, pos_onehot, cap_lens):
        num_samples = word_embs.shape[0]

        pos_embs = self.pos_emb(pos_onehot)
        inputs = word_embs + pos_embs
        input_embs = self.input_emb(inputs)
        hidden = self.hidden.repeat(1, num_samples, 1)

        cap_lens = cap_lens.data.tolist()
        emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True)

        gru_seq, gru_last = self.gru(emb, hidden)

        gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)

        return self.output_net(gru_last)


class MotionEncoderBiGRUCo(nn.Module):
    def __init__(self, input_size, hidden_size, output_size, device):
        super(MotionEncoderBiGRUCo, self).__init__()
        self.device = device

        self.input_emb = nn.Linear(input_size, hidden_size)
        self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
        self.output_net = nn.Sequential(
            nn.Linear(hidden_size*2, hidden_size),
            nn.LayerNorm(hidden_size),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(hidden_size, output_size)
        )

        self.input_emb.apply(init_weight)
        self.output_net.apply(init_weight)
        self.hidden_size = hidden_size
        self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))

    # input(batch_size, seq_len, dim)
    def forward(self, inputs, m_lens):
        num_samples = inputs.shape[0]

        input_embs = self.input_emb(inputs)
        hidden = self.hidden.repeat(1, num_samples, 1)

        cap_lens = m_lens.data.tolist()
        emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True)

        gru_seq, gru_last = self.gru(emb, hidden)

        gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)

        return self.output_net(gru_last)