diff --git a/.DS_Store b/.DS_Store
new file mode 100644
index 0000000000000000000000000000000000000000..5008ddfcf53c02e82d7eee2e57c38e5672ef89f6
Binary files /dev/null and b/.DS_Store differ
diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..0842577c0dc8c1ba35ce06d68a2cabcfd04e8fea
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2023 Chuan Guo
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
diff --git a/README.md b/README.md
index 79a92d730f5d34490eb55c5f0fa1d9ac18e4113d..228759caffd9f9b5f9a2dfdaeb31d3f75d800893 100644
--- a/README.md
+++ b/README.md
@@ -1,13 +1,221 @@
----
-title: MoMask
-emoji: 💻
-colorFrom: indigo
-colorTo: green
-sdk: gradio
-sdk_version: 4.12.0
-app_file: app.py
-pinned: false
-license: mit
----
-
-Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
+# MoMask: Generative Masked Modeling of 3D Human Motions
+## [[Project Page]](https://ericguo5513.github.io/momask) [[Paper]](https://arxiv.org/abs/2312.00063)
+![teaser_image](https://ericguo5513.github.io/momask/static/images/teaser.png)
+
+If you find our code or paper helpful, please consider citing:
+```
+@article{guo2023momask,
+ title={MoMask: Generative Masked Modeling of 3D Human Motions},
+ author={Chuan Guo and Yuxuan Mu and Muhammad Gohar Javed and Sen Wang and Li Cheng},
+ year={2023},
+ eprint={2312.00063},
+ archivePrefix={arXiv},
+ primaryClass={cs.CV}
+}
+```
+
+## :postbox: News
+📢 **2023-12-19** --- Release scripts for temporal inpainting.
+
+📢 **2023-12-15** --- Release codes and models for momask. Including training/eval/generation scripts.
+
+📢 **2023-11-29** --- Initialized the webpage and git project.
+
+
+## :round_pushpin: Get You Ready
+
+
+
+### 1. Conda Environment
+```
+conda env create -f environment.yml
+conda activate momask
+pip install git+https://github.com/openai/CLIP.git
+```
+We test our code on Python 3.7.13 and PyTorch 1.7.1
+
+
+### 2. Models and Dependencies
+
+#### Download Pre-trained Models
+```
+bash prepare/download_models.sh
+```
+
+#### Download Evaluation Models and Gloves
+For evaluation only.
+```
+bash prepare/download_evaluator.sh
+bash prepare/download_glove.sh
+```
+
+#### Troubleshooting
+To address the download error related to gdown: "Cannot retrieve the public link of the file. You may need to change the permission to 'Anyone with the link', or have had many accesses". A potential solution is to run `pip install --upgrade --no-cache-dir gdown`, as suggested on https://github.com/wkentaro/gdown/issues/43. This should help resolve the issue.
+
+#### (Optional) Download Mannually
+Visit [[Google Drive]](https://drive.google.com/drive/folders/1b3GnAbERH8jAoO5mdWgZhyxHB73n23sK?usp=drive_link) to download the models and evaluators mannually.
+
+### 3. Get Data
+
+You have two options here:
+* **Skip getting data**, if you just want to generate motions using *own* descriptions.
+* **Get full data**, if you want to *re-train* and *evaluate* the model.
+
+**(a). Full data (text + motion)**
+
+**HumanML3D** - Follow the instruction in [HumanML3D](https://github.com/EricGuo5513/HumanML3D.git), then copy the result dataset to our repository:
+```
+cp -r ../HumanML3D/HumanML3D ./dataset/HumanML3D
+```
+**KIT**-Download from [HumanML3D](https://github.com/EricGuo5513/HumanML3D.git), then place result in `./dataset/KIT-ML`
+
+####
+
+
+
+## :rocket: Demo
+
+
+### (a) Generate from a single prompt
+```
+python gen_t2m.py --gpu_id 1 --ext exp1 --text_prompt "A person is running on a treadmill."
+```
+### (b) Generate from a prompt file
+An example of prompt file is given in `./assets/text_prompt.txt`. Please follow the format of `#` at each line. Motion length indicates the number of poses, which must be integeter and will be rounded by 4. In our work, motion is in 20 fps.
+
+If you write `#NA`, our model will determine a length. Note once there is **one** NA, all the others will be **NA** automatically.
+
+```
+python gen_t2m.py --gpu_id 1 --ext exp2 --text_path ./assets/text_prompt.txt
+```
+
+
+A few more parameters you may be interested:
+* `--repeat_times`: number of replications for generation, default `1`.
+* `--motion_length`: specify the number of poses for generation, only applicable in (a).
+
+The output files are stored under folder `./generation//`. They are
+* `numpy files`: generated motions with shape of (nframe, 22, 3), under subfolder `./joints`.
+* `video files`: stick figure animation in mp4 format, under subfolder `./animation`.
+* `bvh files`: bvh files of the generated motion, under subfolder `./animation`.
+
+We also apply naive foot ik to the generated motions, see files with suffix `_ik`. It sometimes works well, but sometimes will fail.
+
+
+
+## :dancers: Visualization
+
+
+All the animations are manually rendered in blender. We use the characters from [mixamo](https://www.mixamo.com/#/). You need to download the characters in T-Pose with skeleton.
+
+### Retargeting
+For retargeting, we found rokoko usually leads to large error on foot. On the other hand, [keemap.rig.transfer](https://github.com/nkeeline/Keemap-Blender-Rig-ReTargeting-Addon/releases) shows more precise retargetting. You could watch the [tutorial](https://www.youtube.com/watch?v=EG-VCMkVpxg) here.
+
+Following these steps:
+* Download keemap.rig.transfer from the github, and install it in blender.
+* Import both the motion files (.bvh) and character files (.fbx) in blender.
+* `Shift + Select` the both source and target skeleton. (Do not need to be Rest Position)
+* Switch to `Pose Mode`, then unfold the `KeeMapRig` tool at the top-right corner of the view window.
+* Load and read the bone mapping file `./assets/mapping.json`(or `mapping6.json` if it doesn't work). This file is manually made by us. It works for most characters in mixamo. You could make your own.
+* Adjust the `Number of Samples`, `Source Rig`, `Destination Rig Name`.
+* Clik `Transfer Animation from Source Destination`, wait a few seconds.
+
+We didn't tried other retargetting tools. Welcome to comment if you find others are more useful.
+
+### Scene
+
+We use this [scene](https://drive.google.com/file/d/1lg62nugD7RTAIz0Q_YP2iZsxpUzzOkT1/view?usp=sharing) for animation.
+
+
+
+
+## :clapper: Temporal Inpainting
+
+We conduct mask-based editing in the m-transformer stage, followed by the regeneration of residual tokens for the entire sequence. To load your own motion, provide the path through `--source_motion`. Utilize `-msec` to specify the mask section, supporting either ratio or frame index. For instance, `-msec 0.3,0.6` with `max_motion_length=196` is equivalent to `-msec 59,118`, indicating the editing of the frame section [59, 118].
+
+```
+python edit_t2m.py --gpu_id 1 --ext exp3 --use_res_model -msec 0.4,0.7 --text_prompt "A man picks something from the ground using his right hand."
+```
+
+Note: Presently, the source motion must adhere to the format of a HumanML3D dim-263 feature vector. An example motion vector data from the HumanML3D test set is available in `example_data/000612.npy`. To process your own motion data, you can utilize the `process_file` function from `utils/motion_process.py`.
+
+
+
+## :space_invader: Train Your Own Models
+
+
+
+**Note**: You have to train RVQ **BEFORE** training masked/residual transformers. The latter two can be trained simultaneously.
+
+### Train RVQ
+```
+python train_vq.py --name rvq_name --gpu_id 1 --dataset_name t2m --batch_size 512 --num_quantizers 6 --max_epoch 500 --quantize_drop_prob 0.2
+```
+
+### Train Masked Transformer
+```
+python train_t2m_transformer.py --name mtrans_name --gpu_id 2 --dataset_name t2m --batch_size 64 --vq_name rvq_name
+```
+
+### Train Residual Transformer
+```
+python train_res_transformer.py --name rtrans_name --gpu_id 2 --dataset_name t2m --batch_size 64 --vq_name rvq_name --cond_drop_prob 0.2 --share_weight
+```
+
+* `--dataset_name`: motion dataset, `t2m` for HumanML3D and `kit` for KIT-ML.
+* `--name`: name your model. This will create to model space as `./checkpoints//`
+* `--gpu_id`: GPU id.
+* `--batch_size`: we use `512` for rvq training. For masked/residual transformer, we use `64` on HumanML3D and `16` for KIT-ML.
+* `--num_quantizers`: number of quantization layers, `6` is used in our case.
+* `--quantize_drop_prob`: quantization dropout ratio, `0.2` is used.
+* `--vq_name`: when training masked/residual transformer, you need to specify the name of rvq model for tokenization.
+* `--cond_drop_prob`: condition drop ratio, for classifier-free guidance. `0.2` is used.
+* `--share_weight`: whether to share the projection/embedding weights in residual transformer.
+
+All the pre-trained models and intermediate results will be saved in space `./checkpoints//`.
+
+
+## :book: Evaluation
+
+
+### Evaluate RVQ Reconstruction:
+HumanML3D:
+```
+python eval_t2m_vq.py --gpu_id 0 --name rvq_nq6_dc512_nc512_noshare_qdp0.2 --dataset_name t2m --ext rvq_nq6
+
+```
+KIT-ML:
+```
+python eval_t2m_vq.py --gpu_id 0 --name rvq_nq6_dc512_nc512_noshare_qdp0.2_k --dataset_name kit --ext rvq_nq6
+```
+
+### Evaluate Text2motion Generation:
+HumanML3D:
+```
+python eval_t2m_trans_res.py --res_name tres_nlayer8_ld384_ff1024_rvq6ns_cdp0.2_sw --dataset_name t2m --name t2m_nlayer8_nhead6_ld384_ff1024_cdp0.1_rvq6ns --gpu_id 1 --cond_scale 4 --time_steps 10 --ext evaluation
+```
+KIT-ML:
+```
+python eval_t2m_trans_res.py --res_name tres_nlayer8_ld384_ff1024_rvq6ns_cdp0.2_sw_k --dataset_name kit --name t2m_nlayer8_nhead6_ld384_ff1024_cdp0.1_rvq6ns_k --gpu_id 0 --cond_scale 2 --time_steps 10 --ext evaluation
+```
+
+* `--res_name`: model name of `residual transformer`.
+* `--name`: model name of `masked transformer`.
+* `--cond_scale`: scale of classifer-free guidance.
+* `--time_steps`: number of iterations for inference.
+* `--ext`: filename for saving evaluation results.
+
+The final evaluation results will be saved in `./checkpoints///eval/.log`
+
+
+
+## Acknowlegements
+
+We sincerely thank the open-sourcing of these works where our code is based on:
+
+[deep-motion-editing](https://github.com/DeepMotionEditing/deep-motion-editing), [Muse](https://github.com/lucidrains/muse-maskgit-pytorch), [vector-quantize-pytorch](https://github.com/lucidrains/vector-quantize-pytorch), [T2M-GPT](https://github.com/Mael-zys/T2M-GPT), [MDM](https://github.com/GuyTevet/motion-diffusion-model/tree/main) and [MLD](https://github.com/ChenFengYe/motion-latent-diffusion/tree/main)
+
+## License
+This code is distributed under an [MIT LICENSE](https://github.com/EricGuo5513/momask-codes/tree/main?tab=MIT-1-ov-file#readme).
+
+Note that our code depends on other libraries, including SMPL, SMPL-X, PyTorch3D, and uses datasets which each have their own respective licenses that must also be followed.
\ No newline at end of file
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..7a33e5569b3c71a78b7674320477e43842ad797a
--- /dev/null
+++ b/app.py
@@ -0,0 +1,203 @@
+from functools import partial
+import os
+
+import torch
+import numpy as np
+import gradio as gr
+import gdown
+
+
+WEBSITE = """
+
+
MoMask: Generative Masked Modeling of 3D Human Motions
+
+
+arXiv 2023
+
+
+
Description
+
+This space illustrates MoMask , a method for text-to-motion generation.
+
+
+"""
+
+EXAMPLES = [
+ "A person is walking slowly",
+ "A person is walking in a circle",
+ "A person is jumping rope",
+ "Someone is doing a backflip",
+ "A person is doing a moonwalk",
+ "A person walks forward and then turns back",
+ "Picking up an object",
+ "A person is swimming in the sea",
+ "A human is squatting",
+ "Someone is jumping with one foot",
+ "A person is chopping vegetables",
+ "Someone walks backward",
+ "Somebody is ascending a staircase",
+ "A person is sitting down",
+ "A person is taking the stairs",
+ "Someone is doing jumping jacks",
+ "The person walked forward and is picking up his toolbox",
+ "The person angrily punching the air",
+]
+
+# Show closest text in the training
+
+
+# css to make videos look nice
+# var(--block-border-color); TODO
+CSS = """
+.retrieved_video {
+ position: relative;
+ margin: 0;
+ box-shadow: var(--block-shadow);
+ border-width: var(--block-border-width);
+ border-color: #000000;
+ border-radius: var(--block-radius);
+ background: var(--block-background-fill);
+ width: 100%;
+ line-height: var(--line-sm);
+}
+}
+"""
+
+
+DEFAULT_TEXT = "A person is "
+
+def generate(
+ text, uid, motion_length=0, seed=351540, repeat_times=4,
+):
+ os.system(f'python gen_t2m.py --gpu_id 0 --seed {seed} --ext {uid} --repeat_times {repeat_times} --motion_length {motion_length} --text_prompt {text}')
+ datas = []
+ for n in repeat_times:
+ data_unit = {
+ "url": f"./generation/{uid}/animations/0/sample0_repeat{n}_len196_ik.mp4"
+ }
+ datas.append(data_unit)
+ return datas
+
+
+# HTML component
+def get_video_html(data, video_id, width=700, height=700):
+ url = data["url"]
+ # class="wrap default svelte-gjihhp hide"
+ #
+ # width="{width}" height="{height}"
+ video_html = f"""
+
+
+ Your browser does not support the video tag.
+
+"""
+ return video_html
+
+
+def generate_component(generate_function, text):
+ if text == DEFAULT_TEXT or text == "" or text is None:
+ return [None for _ in range(4)]
+
+ datas = generate_function(text, )
+ htmls = [get_video_html(data, idx) for idx, data in enumerate(datas)]
+ return htmls
+
+
+if not os.path.exists("checkpoints/t2m"):
+ os.system("bash prepare/download_models.sh")
+
+
+device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+
+# LOADING
+
+# DEMO
+theme = gr.themes.Default(primary_hue="blue", secondary_hue="gray")
+generate_and_show = partial(generate_component, generate)
+
+with gr.Blocks(css=CSS, theme=theme) as demo:
+ gr.Markdown(WEBSITE)
+ videos = []
+
+ with gr.Row():
+ with gr.Column(scale=3):
+ with gr.Column(scale=2):
+ text = gr.Textbox(
+ show_label=True,
+ label="Text prompt",
+ value=DEFAULT_TEXT,
+ )
+ with gr.Column(scale=1):
+ gen_btn = gr.Button("Generate", variant="primary")
+ clear = gr.Button("Clear", variant="secondary")
+
+ with gr.Column(scale=2):
+
+ def generate_example(text):
+ return generate_and_show(text)
+
+ examples = gr.Examples(
+ examples=[[x, None, None] for x in EXAMPLES],
+ inputs=[text],
+ examples_per_page=20,
+ run_on_click=False,
+ cache_examples=False,
+ fn=generate_example,
+ outputs=[],
+ )
+
+ i = -1
+ # should indent
+ for _ in range(1):
+ with gr.Row():
+ for _ in range(4):
+ i += 1
+ video = gr.HTML()
+ videos.append(video)
+
+ # connect the examples to the output
+ # a bit hacky
+ examples.outputs = videos
+
+ def load_example(example_id):
+ processed_example = examples.non_none_processed_examples[example_id]
+ return gr.utils.resolve_singleton(processed_example)
+
+ examples.dataset.click(
+ load_example,
+ inputs=[examples.dataset],
+ outputs=examples.inputs_with_examples, # type: ignore
+ show_progress=False,
+ postprocess=False,
+ queue=False,
+ ).then(fn=generate_example, inputs=examples.inputs, outputs=videos)
+
+ gen_btn.click(
+ fn=generate_and_show,
+ inputs=[text],
+ outputs=videos,
+ )
+ text.submit(
+ fn=generate_and_show,
+ inputs=[text],
+ outputs=videos,
+ )
+
+ def clear_videos():
+ return [None for x in range(4)] + [DEFAULT_TEXT]
+
+ clear.click(fn=clear_videos, outputs=videos + [text])
+
+demo.launch()
diff --git a/assets/mapping.json b/assets/mapping.json
new file mode 100644
index 0000000000000000000000000000000000000000..5e1bfe242ff6cee712c10b6efaa4e8ea2c3576ab
--- /dev/null
+++ b/assets/mapping.json
@@ -0,0 +1 @@
+{"bones": [{"name": "Hips", "label": "", "description": "", "SourceBoneName": "Hips", "DestinationBoneName": "mixamorig:Hips", "keyframe_this_bone": true, "CorrectionFactorX": 2.6179938316345215, "CorrectionFactorY": 0.0, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": true, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 0.2588190734386444, "QuatCorrectionFactorx": 0.965925931930542, "QuatCorrectionFactory": 2.7939677238464355e-09, "QuatCorrectionFactorz": -2.7939677238464355e-09, "scale_secondary_bone_name": ""}, {"name": "RightUpLeg", "label": "", "description": "", "SourceBoneName": "RightUpLeg", "DestinationBoneName": "mixamorig:RightUpLeg", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 0.0, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "LeftUpLeg", "label": "", "description": "", "SourceBoneName": "LeftUpLeg", "DestinationBoneName": "mixamorig:LeftUpLeg", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 0.0, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "RightLeg", "label": "", "description": "", "SourceBoneName": "RightLeg", "DestinationBoneName": "mixamorig:RightLeg", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 2.094395160675049, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "LeftLeg", "label": "", "description": "", "SourceBoneName": "LeftLeg", "DestinationBoneName": "mixamorig:LeftLeg", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 3.665191411972046, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "RightShoulder", "label": "", "description": "", "SourceBoneName": "RightShoulder", "DestinationBoneName": "mixamorig:RightShoulder", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 0.0, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "LeftShoulder", "label": "", "description": "", "SourceBoneName": "LeftShoulder", "DestinationBoneName": "mixamorig:LeftShoulder", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 0.0, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "RightArm", "label": "", "description": "", "SourceBoneName": "RightArm", "DestinationBoneName": "mixamorig:RightArm", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": -1.0471975803375244, "CorrectionFactorZ": -0.1745329201221466, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "LeftArm", "label": "", "description": "", "SourceBoneName": "LeftArm", "DestinationBoneName": "mixamorig:LeftArm", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 1.0471975803375244, "CorrectionFactorZ": 0.1745329201221466, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "RightForeArm", "label": "", "description": "", "SourceBoneName": "RightForeArm", "DestinationBoneName": "mixamorig:RightForeArm", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": -2.094395160675049, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "LeftForeArm", "label": "", "description": "", "SourceBoneName": "LeftForeArm", "DestinationBoneName": "mixamorig:LeftForeArm", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 1.5707963705062866, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "Spine", "label": "", "description": "", "SourceBoneName": "Spine", "DestinationBoneName": "mixamorig:Spine", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 0.0, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "Spine1", "label": "", "description": "", "SourceBoneName": "Spine1", "DestinationBoneName": "mixamorig:Spine1", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 0.0, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "Spine2", "label": "", "description": "", "SourceBoneName": "Spine2", "DestinationBoneName": "mixamorig:Spine2", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 0.0, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "Neck", "label": "", "description": "", "SourceBoneName": "Neck", "DestinationBoneName": "mixamorig:Neck", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 0.0, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "Head", "label": "", "description": "", "SourceBoneName": "Head", "DestinationBoneName": "mixamorig:Head", "keyframe_this_bone": true, "CorrectionFactorX": 0.3490658402442932, "CorrectionFactorY": 0.0, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "RightFoot", "label": "", "description": "", "SourceBoneName": "RightFoot", "DestinationBoneName": "mixamorig:RightFoot", "keyframe_this_bone": true, "CorrectionFactorX": -0.19192171096801758, "CorrectionFactorY": 2.979980945587158, "CorrectionFactorZ": -0.05134282633662224, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": -0.082771435379982, "QuatCorrectionFactorx": -0.0177358016371727, "QuatCorrectionFactory": -0.9920229315757751, "QuatCorrectionFactorz": -0.09340716898441315, "scale_secondary_bone_name": ""}, {"name": "LeftFoot", "label": "", "description": "", "SourceBoneName": "LeftFoot", "DestinationBoneName": "mixamorig:LeftFoot", "keyframe_this_bone": true, "CorrectionFactorX": -0.25592508912086487, "CorrectionFactorY": -2.936899423599243, "CorrectionFactorZ": 0.2450830191373825, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 0.11609010398387909, "QuatCorrectionFactorx": 0.10766097158193588, "QuatCorrectionFactory": -0.9808290004730225, "QuatCorrectionFactorz": -0.11360746622085571, "scale_secondary_bone_name": ""}], "start_frame_to_apply": 0, "number_of_frames_to_apply": 196, "keyframe_every_n_frames": 1, "source_rig_name": "bvh_batch1_sample30_repeat1_len48", "destination_rig_name": "Armature", "bone_rotation_mode": "EULER", "bone_mapping_file": "C:\\Users\\cguo2\\Documents\\CVPR2024_MoMask\\mapping.json"}
\ No newline at end of file
diff --git a/assets/mapping6.json b/assets/mapping6.json
new file mode 100644
index 0000000000000000000000000000000000000000..2b80b1e7906190b79e67cc7870c4d57e27c9f00d
--- /dev/null
+++ b/assets/mapping6.json
@@ -0,0 +1 @@
+{"bones": [{"name": "Hips", "label": "", "description": "", "SourceBoneName": "Hips", "DestinationBoneName": "mixamorig6:Hips", "keyframe_this_bone": true, "CorrectionFactorX": 2.6179938316345215, "CorrectionFactorY": 0.0, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": true, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 0.2588190734386444, "QuatCorrectionFactorx": 0.965925931930542, "QuatCorrectionFactory": 2.7939677238464355e-09, "QuatCorrectionFactorz": -2.7939677238464355e-09, "scale_secondary_bone_name": ""}, {"name": "RightUpLeg", "label": "", "description": "", "SourceBoneName": "RightUpLeg", "DestinationBoneName": "mixamorig6:RightUpLeg", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 0.0, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "LeftUpLeg", "label": "", "description": "", "SourceBoneName": "LeftUpLeg", "DestinationBoneName": "mixamorig6:LeftUpLeg", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 0.0, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "RightLeg", "label": "", "description": "", "SourceBoneName": "RightLeg", "DestinationBoneName": "mixamorig6:RightLeg", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 2.094395160675049, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "LeftLeg", "label": "", "description": "", "SourceBoneName": "LeftLeg", "DestinationBoneName": "mixamorig6:LeftLeg", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 3.665191411972046, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "RightShoulder", "label": "", "description": "", "SourceBoneName": "RightShoulder", "DestinationBoneName": "mixamorig6:RightShoulder", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 0.0, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "LeftShoulder", "label": "", "description": "", "SourceBoneName": "LeftShoulder", "DestinationBoneName": "mixamorig6:LeftShoulder", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 0.0, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "RightArm", "label": "", "description": "", "SourceBoneName": "RightArm", "DestinationBoneName": "mixamorig6:RightArm", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": -1.0471975803375244, "CorrectionFactorZ": -0.1745329201221466, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "LeftArm", "label": "", "description": "", "SourceBoneName": "LeftArm", "DestinationBoneName": "mixamorig6:LeftArm", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 1.0471975803375244, "CorrectionFactorZ": 0.1745329201221466, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "RightForeArm", "label": "", "description": "", "SourceBoneName": "RightForeArm", "DestinationBoneName": "mixamorig6:RightForeArm", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": -2.094395160675049, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "LeftForeArm", "label": "", "description": "", "SourceBoneName": "LeftForeArm", "DestinationBoneName": "mixamorig6:LeftForeArm", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 1.5707963705062866, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "Spine", "label": "", "description": "", "SourceBoneName": "Spine", "DestinationBoneName": "mixamorig6:Spine", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 0.0, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "Spine1", "label": "", "description": "", "SourceBoneName": "Spine1", "DestinationBoneName": "mixamorig6:Spine1", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 0.0, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "Spine2", "label": "", "description": "", "SourceBoneName": "Spine2", "DestinationBoneName": "mixamorig6:Spine2", "keyframe_this_bone": true, "CorrectionFactorX": 0.0, "CorrectionFactorY": 0.0, "CorrectionFactorZ": 0.0, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 1.0, "QuatCorrectionFactorx": 0.0, "QuatCorrectionFactory": 0.0, "QuatCorrectionFactorz": 0.0, "scale_secondary_bone_name": ""}, {"name": "Neck", "label": "", "description": "", "SourceBoneName": "Neck", "DestinationBoneName": "mixamorig6:Neck", "keyframe_this_bone": true, "CorrectionFactorX": -0.994345486164093, "CorrectionFactorY": -0.006703000050038099, "CorrectionFactorZ": 0.04061730206012726, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 0.8787809014320374, "QuatCorrectionFactorx": -0.4767816960811615, "QuatCorrectionFactory": -0.01263047568500042, "QuatCorrectionFactorz": 0.016250507906079292, "scale_secondary_bone_name": ""}, {"name": "Head", "label": "", "description": "", "SourceBoneName": "Head", "DestinationBoneName": "mixamorig6:Head", "keyframe_this_bone": true, "CorrectionFactorX": -0.07639937847852707, "CorrectionFactorY": 0.011205507442355156, "CorrectionFactorZ": 0.011367863975465298, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": 0.9992374181747437, "QuatCorrectionFactorx": -0.038221005350351334, "QuatCorrectionFactory": 0.0053814793936908245, "QuatCorrectionFactorz": 0.005893632769584656, "scale_secondary_bone_name": ""}, {"name": "RightFoot", "label": "", "description": "", "SourceBoneName": "RightFoot", "DestinationBoneName": "mixamorig6:RightFoot", "keyframe_this_bone": true, "CorrectionFactorX": -0.17194896936416626, "CorrectionFactorY": 2.7372374534606934, "CorrectionFactorZ": -0.029542576521635056, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": -0.20128199458122253, "QuatCorrectionFactorx": 0.002824343740940094, "QuatCorrectionFactory": -0.9761614799499512, "QuatCorrectionFactorz": -0.08115538209676743, "scale_secondary_bone_name": ""}, {"name": "LeftFoot", "label": "", "description": "", "SourceBoneName": "LeftFoot", "DestinationBoneName": "mixamorig6:LeftFoot", "keyframe_this_bone": true, "CorrectionFactorX": -0.09363158047199249, "CorrectionFactorY": -2.9336421489715576, "CorrectionFactorZ": -0.17343592643737793, "has_twist_bone": false, "TwistBoneName": "", "set_bone_position": false, "set_bone_rotation": true, "bone_rotation_application_axis": "XYZ", "position_correction_factorX": 0.0, "position_correction_factorY": 0.0, "position_correction_factorZ": 0.0, "position_gain": 1.0, "position_pole_distance": 0.30000001192092896, "postion_type": "SINGLE_BONE_OFFSET", "set_bone_scale": false, "scale_gain": 1.0, "scale_max": 1.0, "scale_min": 0.5, "bone_scale_application_axis": "Y", "QuatCorrectionFactorw": -0.09925344586372375, "QuatCorrectionFactorx": 0.09088610112667084, "QuatCorrectionFactory": 0.9893556833267212, "QuatCorrectionFactorz": 0.05535021424293518, "scale_secondary_bone_name": ""}], "start_frame_to_apply": 0, "number_of_frames_to_apply": 196, "keyframe_every_n_frames": 1, "source_rig_name": "MoMask__02_ik", "destination_rig_name": "Armature", "bone_rotation_mode": "EULER", "bone_mapping_file": "C:\\Users\\cguo2\\Documents\\CVPR2024_MoMask\\mapping6.json"}
\ No newline at end of file
diff --git a/assets/text_prompt.txt b/assets/text_prompt.txt
new file mode 100644
index 0000000000000000000000000000000000000000..eb310cda0fe9f293f97c4266f3bc39646351a6f7
--- /dev/null
+++ b/assets/text_prompt.txt
@@ -0,0 +1,12 @@
+the person holds his left foot with his left hand, puts his right foot up and left hand up too.#132
+a man bends down and picks something up with his left hand.#84
+A man stands for few seconds and picks up his arms and shakes them.#176
+A person walks with a limp, their left leg get injured.#192
+a person jumps up and then lands.#52
+a person performs a standing back kick.#52
+A person pokes their right hand along the ground, like they might be planting seeds.#60
+the person steps forward and uses the left leg to kick something forward.#92
+the man walked forward, spun right on one foot and walked back to his original position.#92
+the person was pushed but did not fall.#124
+this person stumbles left and right while moving forward.#132
+a person reaching down and picking something up.#148
\ No newline at end of file
diff --git a/common/__init__.py b/common/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/common/quaternion.py b/common/quaternion.py
new file mode 100644
index 0000000000000000000000000000000000000000..e2daa00aef1df60e43775864d1dd3d551f89ded8
--- /dev/null
+++ b/common/quaternion.py
@@ -0,0 +1,423 @@
+# Copyright (c) 2018-present, Facebook, Inc.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+#
+
+import torch
+import numpy as np
+
+_EPS4 = np.finfo(float).eps * 4.0
+
+_FLOAT_EPS = np.finfo(np.float).eps
+
+# PyTorch-backed implementations
+def qinv(q):
+ assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)'
+ mask = torch.ones_like(q)
+ mask[..., 1:] = -mask[..., 1:]
+ return q * mask
+
+
+def qinv_np(q):
+ assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)'
+ return qinv(torch.from_numpy(q).float()).numpy()
+
+
+def qnormalize(q):
+ assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)'
+ return q / torch.norm(q, dim=-1, keepdim=True)
+
+
+def qmul(q, r):
+ """
+ Multiply quaternion(s) q with quaternion(s) r.
+ Expects two equally-sized tensors of shape (*, 4), where * denotes any number of dimensions.
+ Returns q*r as a tensor of shape (*, 4).
+ """
+ assert q.shape[-1] == 4
+ assert r.shape[-1] == 4
+
+ original_shape = q.shape
+
+ # Compute outer product
+ terms = torch.bmm(r.view(-1, 4, 1), q.view(-1, 1, 4))
+
+ w = terms[:, 0, 0] - terms[:, 1, 1] - terms[:, 2, 2] - terms[:, 3, 3]
+ x = terms[:, 0, 1] + terms[:, 1, 0] - terms[:, 2, 3] + terms[:, 3, 2]
+ y = terms[:, 0, 2] + terms[:, 1, 3] + terms[:, 2, 0] - terms[:, 3, 1]
+ z = terms[:, 0, 3] - terms[:, 1, 2] + terms[:, 2, 1] + terms[:, 3, 0]
+ return torch.stack((w, x, y, z), dim=1).view(original_shape)
+
+
+def qrot(q, v):
+ """
+ Rotate vector(s) v about the rotation described by quaternion(s) q.
+ Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v,
+ where * denotes any number of dimensions.
+ Returns a tensor of shape (*, 3).
+ """
+ assert q.shape[-1] == 4
+ assert v.shape[-1] == 3
+ assert q.shape[:-1] == v.shape[:-1]
+
+ original_shape = list(v.shape)
+ # print(q.shape)
+ q = q.contiguous().view(-1, 4)
+ v = v.contiguous().view(-1, 3)
+
+ qvec = q[:, 1:]
+ uv = torch.cross(qvec, v, dim=1)
+ uuv = torch.cross(qvec, uv, dim=1)
+ return (v + 2 * (q[:, :1] * uv + uuv)).view(original_shape)
+
+
+def qeuler(q, order, epsilon=0, deg=True):
+ """
+ Convert quaternion(s) q to Euler angles.
+ Expects a tensor of shape (*, 4), where * denotes any number of dimensions.
+ Returns a tensor of shape (*, 3).
+ """
+ assert q.shape[-1] == 4
+
+ original_shape = list(q.shape)
+ original_shape[-1] = 3
+ q = q.view(-1, 4)
+
+ q0 = q[:, 0]
+ q1 = q[:, 1]
+ q2 = q[:, 2]
+ q3 = q[:, 3]
+
+ if order == 'xyz':
+ x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
+ y = torch.asin(torch.clamp(2 * (q1 * q3 + q0 * q2), -1 + epsilon, 1 - epsilon))
+ z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3))
+ elif order == 'yzx':
+ x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2 * (q1 * q1 + q3 * q3))
+ y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2 * (q2 * q2 + q3 * q3))
+ z = torch.asin(torch.clamp(2 * (q1 * q2 + q0 * q3), -1 + epsilon, 1 - epsilon))
+ elif order == 'zxy':
+ x = torch.asin(torch.clamp(2 * (q0 * q1 + q2 * q3), -1 + epsilon, 1 - epsilon))
+ y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
+ z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2 * (q1 * q1 + q3 * q3))
+ elif order == 'xzy':
+ x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q3 * q3))
+ y = torch.atan2(2 * (q0 * q2 + q1 * q3), 1 - 2 * (q2 * q2 + q3 * q3))
+ z = torch.asin(torch.clamp(2 * (q0 * q3 - q1 * q2), -1 + epsilon, 1 - epsilon))
+ elif order == 'yxz':
+ x = torch.asin(torch.clamp(2 * (q0 * q1 - q2 * q3), -1 + epsilon, 1 - epsilon))
+ y = torch.atan2(2 * (q1 * q3 + q0 * q2), 1 - 2 * (q1 * q1 + q2 * q2))
+ z = torch.atan2(2 * (q1 * q2 + q0 * q3), 1 - 2 * (q1 * q1 + q3 * q3))
+ elif order == 'zyx':
+ x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
+ y = torch.asin(torch.clamp(2 * (q0 * q2 - q1 * q3), -1 + epsilon, 1 - epsilon))
+ z = torch.atan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3))
+ else:
+ raise
+
+ if deg:
+ return torch.stack((x, y, z), dim=1).view(original_shape) * 180 / np.pi
+ else:
+ return torch.stack((x, y, z), dim=1).view(original_shape)
+
+
+# Numpy-backed implementations
+
+def qmul_np(q, r):
+ q = torch.from_numpy(q).contiguous().float()
+ r = torch.from_numpy(r).contiguous().float()
+ return qmul(q, r).numpy()
+
+
+def qrot_np(q, v):
+ q = torch.from_numpy(q).contiguous().float()
+ v = torch.from_numpy(v).contiguous().float()
+ return qrot(q, v).numpy()
+
+
+def qeuler_np(q, order, epsilon=0, use_gpu=False):
+ if use_gpu:
+ q = torch.from_numpy(q).cuda().float()
+ return qeuler(q, order, epsilon).cpu().numpy()
+ else:
+ q = torch.from_numpy(q).contiguous().float()
+ return qeuler(q, order, epsilon).numpy()
+
+
+def qfix(q):
+ """
+ Enforce quaternion continuity across the time dimension by selecting
+ the representation (q or -q) with minimal distance (or, equivalently, maximal dot product)
+ between two consecutive frames.
+
+ Expects a tensor of shape (L, J, 4), where L is the sequence length and J is the number of joints.
+ Returns a tensor of the same shape.
+ """
+ assert len(q.shape) == 3
+ assert q.shape[-1] == 4
+
+ result = q.copy()
+ dot_products = np.sum(q[1:] * q[:-1], axis=2)
+ mask = dot_products < 0
+ mask = (np.cumsum(mask, axis=0) % 2).astype(bool)
+ result[1:][mask] *= -1
+ return result
+
+
+def euler2quat(e, order, deg=True):
+ """
+ Convert Euler angles to quaternions.
+ """
+ assert e.shape[-1] == 3
+
+ original_shape = list(e.shape)
+ original_shape[-1] = 4
+
+ e = e.view(-1, 3)
+
+ ## if euler angles in degrees
+ if deg:
+ e = e * np.pi / 180.
+
+ x = e[:, 0]
+ y = e[:, 1]
+ z = e[:, 2]
+
+ rx = torch.stack((torch.cos(x / 2), torch.sin(x / 2), torch.zeros_like(x), torch.zeros_like(x)), dim=1)
+ ry = torch.stack((torch.cos(y / 2), torch.zeros_like(y), torch.sin(y / 2), torch.zeros_like(y)), dim=1)
+ rz = torch.stack((torch.cos(z / 2), torch.zeros_like(z), torch.zeros_like(z), torch.sin(z / 2)), dim=1)
+
+ result = None
+ for coord in order:
+ if coord == 'x':
+ r = rx
+ elif coord == 'y':
+ r = ry
+ elif coord == 'z':
+ r = rz
+ else:
+ raise
+ if result is None:
+ result = r
+ else:
+ result = qmul(result, r)
+
+ # Reverse antipodal representation to have a non-negative "w"
+ if order in ['xyz', 'yzx', 'zxy']:
+ result *= -1
+
+ return result.view(original_shape)
+
+
+def expmap_to_quaternion(e):
+ """
+ Convert axis-angle rotations (aka exponential maps) to quaternions.
+ Stable formula from "Practical Parameterization of Rotations Using the Exponential Map".
+ Expects a tensor of shape (*, 3), where * denotes any number of dimensions.
+ Returns a tensor of shape (*, 4).
+ """
+ assert e.shape[-1] == 3
+
+ original_shape = list(e.shape)
+ original_shape[-1] = 4
+ e = e.reshape(-1, 3)
+
+ theta = np.linalg.norm(e, axis=1).reshape(-1, 1)
+ w = np.cos(0.5 * theta).reshape(-1, 1)
+ xyz = 0.5 * np.sinc(0.5 * theta / np.pi) * e
+ return np.concatenate((w, xyz), axis=1).reshape(original_shape)
+
+
+def euler_to_quaternion(e, order):
+ """
+ Convert Euler angles to quaternions.
+ """
+ assert e.shape[-1] == 3
+
+ original_shape = list(e.shape)
+ original_shape[-1] = 4
+
+ e = e.reshape(-1, 3)
+
+ x = e[:, 0]
+ y = e[:, 1]
+ z = e[:, 2]
+
+ rx = np.stack((np.cos(x / 2), np.sin(x / 2), np.zeros_like(x), np.zeros_like(x)), axis=1)
+ ry = np.stack((np.cos(y / 2), np.zeros_like(y), np.sin(y / 2), np.zeros_like(y)), axis=1)
+ rz = np.stack((np.cos(z / 2), np.zeros_like(z), np.zeros_like(z), np.sin(z / 2)), axis=1)
+
+ result = None
+ for coord in order:
+ if coord == 'x':
+ r = rx
+ elif coord == 'y':
+ r = ry
+ elif coord == 'z':
+ r = rz
+ else:
+ raise
+ if result is None:
+ result = r
+ else:
+ result = qmul_np(result, r)
+
+ # Reverse antipodal representation to have a non-negative "w"
+ if order in ['xyz', 'yzx', 'zxy']:
+ result *= -1
+
+ return result.reshape(original_shape)
+
+
+def quaternion_to_matrix(quaternions):
+ """
+ Convert rotations given as quaternions to rotation matrices.
+ Args:
+ quaternions: quaternions with real part first,
+ as tensor of shape (..., 4).
+ Returns:
+ Rotation matrices as tensor of shape (..., 3, 3).
+ """
+ r, i, j, k = torch.unbind(quaternions, -1)
+ two_s = 2.0 / (quaternions * quaternions).sum(-1)
+
+ o = torch.stack(
+ (
+ 1 - two_s * (j * j + k * k),
+ two_s * (i * j - k * r),
+ two_s * (i * k + j * r),
+ two_s * (i * j + k * r),
+ 1 - two_s * (i * i + k * k),
+ two_s * (j * k - i * r),
+ two_s * (i * k - j * r),
+ two_s * (j * k + i * r),
+ 1 - two_s * (i * i + j * j),
+ ),
+ -1,
+ )
+ return o.reshape(quaternions.shape[:-1] + (3, 3))
+
+
+def quaternion_to_matrix_np(quaternions):
+ q = torch.from_numpy(quaternions).contiguous().float()
+ return quaternion_to_matrix(q).numpy()
+
+
+def quaternion_to_cont6d_np(quaternions):
+ rotation_mat = quaternion_to_matrix_np(quaternions)
+ cont_6d = np.concatenate([rotation_mat[..., 0], rotation_mat[..., 1]], axis=-1)
+ return cont_6d
+
+
+def quaternion_to_cont6d(quaternions):
+ rotation_mat = quaternion_to_matrix(quaternions)
+ cont_6d = torch.cat([rotation_mat[..., 0], rotation_mat[..., 1]], dim=-1)
+ return cont_6d
+
+
+def cont6d_to_matrix(cont6d):
+ assert cont6d.shape[-1] == 6, "The last dimension must be 6"
+ x_raw = cont6d[..., 0:3]
+ y_raw = cont6d[..., 3:6]
+
+ x = x_raw / torch.norm(x_raw, dim=-1, keepdim=True)
+ z = torch.cross(x, y_raw, dim=-1)
+ z = z / torch.norm(z, dim=-1, keepdim=True)
+
+ y = torch.cross(z, x, dim=-1)
+
+ x = x[..., None]
+ y = y[..., None]
+ z = z[..., None]
+
+ mat = torch.cat([x, y, z], dim=-1)
+ return mat
+
+
+def cont6d_to_matrix_np(cont6d):
+ q = torch.from_numpy(cont6d).contiguous().float()
+ return cont6d_to_matrix(q).numpy()
+
+
+def qpow(q0, t, dtype=torch.float):
+ ''' q0 : tensor of quaternions
+ t: tensor of powers
+ '''
+ q0 = qnormalize(q0)
+ theta0 = torch.acos(q0[..., 0])
+
+ ## if theta0 is close to zero, add epsilon to avoid NaNs
+ mask = (theta0 <= 10e-10) * (theta0 >= -10e-10)
+ theta0 = (1 - mask) * theta0 + mask * 10e-10
+ v0 = q0[..., 1:] / torch.sin(theta0).view(-1, 1)
+
+ if isinstance(t, torch.Tensor):
+ q = torch.zeros(t.shape + q0.shape)
+ theta = t.view(-1, 1) * theta0.view(1, -1)
+ else: ## if t is a number
+ q = torch.zeros(q0.shape)
+ theta = t * theta0
+
+ q[..., 0] = torch.cos(theta)
+ q[..., 1:] = v0 * torch.sin(theta).unsqueeze(-1)
+
+ return q.to(dtype)
+
+
+def qslerp(q0, q1, t):
+ '''
+ q0: starting quaternion
+ q1: ending quaternion
+ t: array of points along the way
+
+ Returns:
+ Tensor of Slerps: t.shape + q0.shape
+ '''
+
+ q0 = qnormalize(q0)
+ q1 = qnormalize(q1)
+ q_ = qpow(qmul(q1, qinv(q0)), t)
+
+ return qmul(q_,
+ q0.contiguous().view(torch.Size([1] * len(t.shape)) + q0.shape).expand(t.shape + q0.shape).contiguous())
+
+
+def qbetween(v0, v1):
+ '''
+ find the quaternion used to rotate v0 to v1
+ '''
+ assert v0.shape[-1] == 3, 'v0 must be of the shape (*, 3)'
+ assert v1.shape[-1] == 3, 'v1 must be of the shape (*, 3)'
+
+ v = torch.cross(v0, v1)
+ w = torch.sqrt((v0 ** 2).sum(dim=-1, keepdim=True) * (v1 ** 2).sum(dim=-1, keepdim=True)) + (v0 * v1).sum(dim=-1,
+ keepdim=True)
+ return qnormalize(torch.cat([w, v], dim=-1))
+
+
+def qbetween_np(v0, v1):
+ '''
+ find the quaternion used to rotate v0 to v1
+ '''
+ assert v0.shape[-1] == 3, 'v0 must be of the shape (*, 3)'
+ assert v1.shape[-1] == 3, 'v1 must be of the shape (*, 3)'
+
+ v0 = torch.from_numpy(v0).float()
+ v1 = torch.from_numpy(v1).float()
+ return qbetween(v0, v1).numpy()
+
+
+def lerp(p0, p1, t):
+ if not isinstance(t, torch.Tensor):
+ t = torch.Tensor([t])
+
+ new_shape = t.shape + p0.shape
+ new_view_t = t.shape + torch.Size([1] * len(p0.shape))
+ new_view_p = torch.Size([1] * len(t.shape)) + p0.shape
+ p0 = p0.view(new_view_p).expand(new_shape)
+ p1 = p1.view(new_view_p).expand(new_shape)
+ t = t.view(new_view_t).expand(new_shape)
+
+ return p0 + t * (p1 - p0)
diff --git a/common/skeleton.py b/common/skeleton.py
new file mode 100644
index 0000000000000000000000000000000000000000..62f0c86d8a2a1aff5b163394c794160b0c9cf190
--- /dev/null
+++ b/common/skeleton.py
@@ -0,0 +1,199 @@
+from common.quaternion import *
+import scipy.ndimage.filters as filters
+
+class Skeleton(object):
+ def __init__(self, offset, kinematic_tree, device):
+ self.device = device
+ self._raw_offset_np = offset.numpy()
+ self._raw_offset = offset.clone().detach().to(device).float()
+ self._kinematic_tree = kinematic_tree
+ self._offset = None
+ self._parents = [0] * len(self._raw_offset)
+ self._parents[0] = -1
+ for chain in self._kinematic_tree:
+ for j in range(1, len(chain)):
+ self._parents[chain[j]] = chain[j-1]
+
+ def njoints(self):
+ return len(self._raw_offset)
+
+ def offset(self):
+ return self._offset
+
+ def set_offset(self, offsets):
+ self._offset = offsets.clone().detach().to(self.device).float()
+
+ def kinematic_tree(self):
+ return self._kinematic_tree
+
+ def parents(self):
+ return self._parents
+
+ # joints (batch_size, joints_num, 3)
+ def get_offsets_joints_batch(self, joints):
+ assert len(joints.shape) == 3
+ _offsets = self._raw_offset.expand(joints.shape[0], -1, -1).clone()
+ for i in range(1, self._raw_offset.shape[0]):
+ _offsets[:, i] = torch.norm(joints[:, i] - joints[:, self._parents[i]], p=2, dim=1)[:, None] * _offsets[:, i]
+
+ self._offset = _offsets.detach()
+ return _offsets
+
+ # joints (joints_num, 3)
+ def get_offsets_joints(self, joints):
+ assert len(joints.shape) == 2
+ _offsets = self._raw_offset.clone()
+ for i in range(1, self._raw_offset.shape[0]):
+ # print(joints.shape)
+ _offsets[i] = torch.norm(joints[i] - joints[self._parents[i]], p=2, dim=0) * _offsets[i]
+
+ self._offset = _offsets.detach()
+ return _offsets
+
+ # face_joint_idx should follow the order of right hip, left hip, right shoulder, left shoulder
+ # joints (batch_size, joints_num, 3)
+ def inverse_kinematics_np(self, joints, face_joint_idx, smooth_forward=False):
+ assert len(face_joint_idx) == 4
+ '''Get Forward Direction'''
+ l_hip, r_hip, sdr_r, sdr_l = face_joint_idx
+ across1 = joints[:, r_hip] - joints[:, l_hip]
+ across2 = joints[:, sdr_r] - joints[:, sdr_l]
+ across = across1 + across2
+ across = across / np.sqrt((across**2).sum(axis=-1))[:, np.newaxis]
+ # print(across1.shape, across2.shape)
+
+ # forward (batch_size, 3)
+ forward = np.cross(np.array([[0, 1, 0]]), across, axis=-1)
+ if smooth_forward:
+ forward = filters.gaussian_filter1d(forward, 20, axis=0, mode='nearest')
+ # forward (batch_size, 3)
+ forward = forward / np.sqrt((forward**2).sum(axis=-1))[..., np.newaxis]
+
+ '''Get Root Rotation'''
+ target = np.array([[0,0,1]]).repeat(len(forward), axis=0)
+ root_quat = qbetween_np(forward, target)
+
+ '''Inverse Kinematics'''
+ # quat_params (batch_size, joints_num, 4)
+ # print(joints.shape[:-1])
+ quat_params = np.zeros(joints.shape[:-1] + (4,))
+ # print(quat_params.shape)
+ root_quat[0] = np.array([[1.0, 0.0, 0.0, 0.0]])
+ quat_params[:, 0] = root_quat
+ # quat_params[0, 0] = np.array([[1.0, 0.0, 0.0, 0.0]])
+ for chain in self._kinematic_tree:
+ R = root_quat
+ for j in range(len(chain) - 1):
+ # (batch, 3)
+ u = self._raw_offset_np[chain[j+1]][np.newaxis,...].repeat(len(joints), axis=0)
+ # print(u.shape)
+ # (batch, 3)
+ v = joints[:, chain[j+1]] - joints[:, chain[j]]
+ v = v / np.sqrt((v**2).sum(axis=-1))[:, np.newaxis]
+ # print(u.shape, v.shape)
+ rot_u_v = qbetween_np(u, v)
+
+ R_loc = qmul_np(qinv_np(R), rot_u_v)
+
+ quat_params[:,chain[j + 1], :] = R_loc
+ R = qmul_np(R, R_loc)
+
+ return quat_params
+
+ # Be sure root joint is at the beginning of kinematic chains
+ def forward_kinematics(self, quat_params, root_pos, skel_joints=None, do_root_R=True):
+ # quat_params (batch_size, joints_num, 4)
+ # joints (batch_size, joints_num, 3)
+ # root_pos (batch_size, 3)
+ if skel_joints is not None:
+ offsets = self.get_offsets_joints_batch(skel_joints)
+ if len(self._offset.shape) == 2:
+ offsets = self._offset.expand(quat_params.shape[0], -1, -1)
+ joints = torch.zeros(quat_params.shape[:-1] + (3,)).to(self.device)
+ joints[:, 0] = root_pos
+ for chain in self._kinematic_tree:
+ if do_root_R:
+ R = quat_params[:, 0]
+ else:
+ R = torch.tensor([[1.0, 0.0, 0.0, 0.0]]).expand(len(quat_params), -1).detach().to(self.device)
+ for i in range(1, len(chain)):
+ R = qmul(R, quat_params[:, chain[i]])
+ offset_vec = offsets[:, chain[i]]
+ joints[:, chain[i]] = qrot(R, offset_vec) + joints[:, chain[i-1]]
+ return joints
+
+ # Be sure root joint is at the beginning of kinematic chains
+ def forward_kinematics_np(self, quat_params, root_pos, skel_joints=None, do_root_R=True):
+ # quat_params (batch_size, joints_num, 4)
+ # joints (batch_size, joints_num, 3)
+ # root_pos (batch_size, 3)
+ if skel_joints is not None:
+ skel_joints = torch.from_numpy(skel_joints)
+ offsets = self.get_offsets_joints_batch(skel_joints)
+ if len(self._offset.shape) == 2:
+ offsets = self._offset.expand(quat_params.shape[0], -1, -1)
+ offsets = offsets.numpy()
+ joints = np.zeros(quat_params.shape[:-1] + (3,))
+ joints[:, 0] = root_pos
+ for chain in self._kinematic_tree:
+ if do_root_R:
+ R = quat_params[:, 0]
+ else:
+ R = np.array([[1.0, 0.0, 0.0, 0.0]]).repeat(len(quat_params), axis=0)
+ for i in range(1, len(chain)):
+ R = qmul_np(R, quat_params[:, chain[i]])
+ offset_vec = offsets[:, chain[i]]
+ joints[:, chain[i]] = qrot_np(R, offset_vec) + joints[:, chain[i - 1]]
+ return joints
+
+ def forward_kinematics_cont6d_np(self, cont6d_params, root_pos, skel_joints=None, do_root_R=True):
+ # cont6d_params (batch_size, joints_num, 6)
+ # joints (batch_size, joints_num, 3)
+ # root_pos (batch_size, 3)
+ if skel_joints is not None:
+ skel_joints = torch.from_numpy(skel_joints)
+ offsets = self.get_offsets_joints_batch(skel_joints)
+ if len(self._offset.shape) == 2:
+ offsets = self._offset.expand(cont6d_params.shape[0], -1, -1)
+ offsets = offsets.numpy()
+ joints = np.zeros(cont6d_params.shape[:-1] + (3,))
+ joints[:, 0] = root_pos
+ for chain in self._kinematic_tree:
+ if do_root_R:
+ matR = cont6d_to_matrix_np(cont6d_params[:, 0])
+ else:
+ matR = np.eye(3)[np.newaxis, :].repeat(len(cont6d_params), axis=0)
+ for i in range(1, len(chain)):
+ matR = np.matmul(matR, cont6d_to_matrix_np(cont6d_params[:, chain[i]]))
+ offset_vec = offsets[:, chain[i]][..., np.newaxis]
+ # print(matR.shape, offset_vec.shape)
+ joints[:, chain[i]] = np.matmul(matR, offset_vec).squeeze(-1) + joints[:, chain[i-1]]
+ return joints
+
+ def forward_kinematics_cont6d(self, cont6d_params, root_pos, skel_joints=None, do_root_R=True):
+ # cont6d_params (batch_size, joints_num, 6)
+ # joints (batch_size, joints_num, 3)
+ # root_pos (batch_size, 3)
+ if skel_joints is not None:
+ # skel_joints = torch.from_numpy(skel_joints)
+ offsets = self.get_offsets_joints_batch(skel_joints)
+ if len(self._offset.shape) == 2:
+ offsets = self._offset.expand(cont6d_params.shape[0], -1, -1)
+ joints = torch.zeros(cont6d_params.shape[:-1] + (3,)).to(cont6d_params.device)
+ joints[..., 0, :] = root_pos
+ for chain in self._kinematic_tree:
+ if do_root_R:
+ matR = cont6d_to_matrix(cont6d_params[:, 0])
+ else:
+ matR = torch.eye(3).expand((len(cont6d_params), -1, -1)).detach().to(cont6d_params.device)
+ for i in range(1, len(chain)):
+ matR = torch.matmul(matR, cont6d_to_matrix(cont6d_params[:, chain[i]]))
+ offset_vec = offsets[:, chain[i]].unsqueeze(-1)
+ # print(matR.shape, offset_vec.shape)
+ joints[:, chain[i]] = torch.matmul(matR, offset_vec).squeeze(-1) + joints[:, chain[i-1]]
+ return joints
+
+
+
+
+
diff --git a/data/__init__.py b/data/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/data/t2m_dataset.py b/data/t2m_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..38f952a5970a9a5f16074d1c621c1b9e2f4f6574
--- /dev/null
+++ b/data/t2m_dataset.py
@@ -0,0 +1,348 @@
+from os.path import join as pjoin
+import torch
+from torch.utils import data
+import numpy as np
+from tqdm import tqdm
+from torch.utils.data._utils.collate import default_collate
+import random
+import codecs as cs
+
+
+def collate_fn(batch):
+ batch.sort(key=lambda x: x[3], reverse=True)
+ return default_collate(batch)
+
+class MotionDataset(data.Dataset):
+ def __init__(self, opt, mean, std, split_file):
+ self.opt = opt
+ joints_num = opt.joints_num
+
+ self.data = []
+ self.lengths = []
+ id_list = []
+ with open(split_file, 'r') as f:
+ for line in f.readlines():
+ id_list.append(line.strip())
+
+ for name in tqdm(id_list):
+ try:
+ motion = np.load(pjoin(opt.motion_dir, name + '.npy'))
+ if motion.shape[0] < opt.window_size:
+ continue
+ self.lengths.append(motion.shape[0] - opt.window_size)
+ self.data.append(motion)
+ except Exception as e:
+ # Some motion may not exist in KIT dataset
+ print(e)
+ pass
+
+ self.cumsum = np.cumsum([0] + self.lengths)
+
+ if opt.is_train:
+ # root_rot_velocity (B, seq_len, 1)
+ std[0:1] = std[0:1] / opt.feat_bias
+ # root_linear_velocity (B, seq_len, 2)
+ std[1:3] = std[1:3] / opt.feat_bias
+ # root_y (B, seq_len, 1)
+ std[3:4] = std[3:4] / opt.feat_bias
+ # ric_data (B, seq_len, (joint_num - 1)*3)
+ std[4: 4 + (joints_num - 1) * 3] = std[4: 4 + (joints_num - 1) * 3] / 1.0
+ # rot_data (B, seq_len, (joint_num - 1)*6)
+ std[4 + (joints_num - 1) * 3: 4 + (joints_num - 1) * 9] = std[4 + (joints_num - 1) * 3: 4 + (
+ joints_num - 1) * 9] / 1.0
+ # local_velocity (B, seq_len, joint_num*3)
+ std[4 + (joints_num - 1) * 9: 4 + (joints_num - 1) * 9 + joints_num * 3] = std[
+ 4 + (joints_num - 1) * 9: 4 + (
+ joints_num - 1) * 9 + joints_num * 3] / 1.0
+ # foot contact (B, seq_len, 4)
+ std[4 + (joints_num - 1) * 9 + joints_num * 3:] = std[
+ 4 + (
+ joints_num - 1) * 9 + joints_num * 3:] / opt.feat_bias
+
+ assert 4 + (joints_num - 1) * 9 + joints_num * 3 + 4 == mean.shape[-1]
+ np.save(pjoin(opt.meta_dir, 'mean.npy'), mean)
+ np.save(pjoin(opt.meta_dir, 'std.npy'), std)
+
+ self.mean = mean
+ self.std = std
+ print("Total number of motions {}, snippets {}".format(len(self.data), self.cumsum[-1]))
+
+ def inv_transform(self, data):
+ return data * self.std + self.mean
+
+ def __len__(self):
+ return self.cumsum[-1]
+
+ def __getitem__(self, item):
+ if item != 0:
+ motion_id = np.searchsorted(self.cumsum, item) - 1
+ idx = item - self.cumsum[motion_id] - 1
+ else:
+ motion_id = 0
+ idx = 0
+ motion = self.data[motion_id][idx:idx + self.opt.window_size]
+ "Z Normalization"
+ motion = (motion - self.mean) / self.std
+
+ return motion
+
+
+class Text2MotionDatasetEval(data.Dataset):
+ def __init__(self, opt, mean, std, split_file, w_vectorizer):
+ self.opt = opt
+ self.w_vectorizer = w_vectorizer
+ self.max_length = 20
+ self.pointer = 0
+ self.max_motion_length = opt.max_motion_length
+ min_motion_len = 40 if self.opt.dataset_name =='t2m' else 24
+
+ data_dict = {}
+ id_list = []
+ with cs.open(split_file, 'r') as f:
+ for line in f.readlines():
+ id_list.append(line.strip())
+ # id_list = id_list[:250]
+
+ new_name_list = []
+ length_list = []
+ for name in tqdm(id_list):
+ try:
+ motion = np.load(pjoin(opt.motion_dir, name + '.npy'))
+ if (len(motion)) < min_motion_len or (len(motion) >= 200):
+ continue
+ text_data = []
+ flag = False
+ with cs.open(pjoin(opt.text_dir, name + '.txt')) as f:
+ for line in f.readlines():
+ text_dict = {}
+ line_split = line.strip().split('#')
+ caption = line_split[0]
+ tokens = line_split[1].split(' ')
+ f_tag = float(line_split[2])
+ to_tag = float(line_split[3])
+ f_tag = 0.0 if np.isnan(f_tag) else f_tag
+ to_tag = 0.0 if np.isnan(to_tag) else to_tag
+
+ text_dict['caption'] = caption
+ text_dict['tokens'] = tokens
+ if f_tag == 0.0 and to_tag == 0.0:
+ flag = True
+ text_data.append(text_dict)
+ else:
+ try:
+ n_motion = motion[int(f_tag*20) : int(to_tag*20)]
+ if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200):
+ continue
+ new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
+ while new_name in data_dict:
+ new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
+ data_dict[new_name] = {'motion': n_motion,
+ 'length': len(n_motion),
+ 'text':[text_dict]}
+ new_name_list.append(new_name)
+ length_list.append(len(n_motion))
+ except:
+ print(line_split)
+ print(line_split[2], line_split[3], f_tag, to_tag, name)
+ # break
+
+ if flag:
+ data_dict[name] = {'motion': motion,
+ 'length': len(motion),
+ 'text': text_data}
+ new_name_list.append(name)
+ length_list.append(len(motion))
+ except:
+ pass
+
+ name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1]))
+
+ self.mean = mean
+ self.std = std
+ self.length_arr = np.array(length_list)
+ self.data_dict = data_dict
+ self.name_list = name_list
+ self.reset_max_len(self.max_length)
+
+ def reset_max_len(self, length):
+ assert length <= self.max_motion_length
+ self.pointer = np.searchsorted(self.length_arr, length)
+ print("Pointer Pointing at %d"%self.pointer)
+ self.max_length = length
+
+ def inv_transform(self, data):
+ return data * self.std + self.mean
+
+ def __len__(self):
+ return len(self.data_dict) - self.pointer
+
+ def __getitem__(self, item):
+ idx = self.pointer + item
+ data = self.data_dict[self.name_list[idx]]
+ motion, m_length, text_list = data['motion'], data['length'], data['text']
+ # Randomly select a caption
+ text_data = random.choice(text_list)
+ caption, tokens = text_data['caption'], text_data['tokens']
+
+ if len(tokens) < self.opt.max_text_len:
+ # pad with "unk"
+ tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
+ sent_len = len(tokens)
+ tokens = tokens + ['unk/OTHER'] * (self.opt.max_text_len + 2 - sent_len)
+ else:
+ # crop
+ tokens = tokens[:self.opt.max_text_len]
+ tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
+ sent_len = len(tokens)
+ pos_one_hots = []
+ word_embeddings = []
+ for token in tokens:
+ word_emb, pos_oh = self.w_vectorizer[token]
+ pos_one_hots.append(pos_oh[None, :])
+ word_embeddings.append(word_emb[None, :])
+ pos_one_hots = np.concatenate(pos_one_hots, axis=0)
+ word_embeddings = np.concatenate(word_embeddings, axis=0)
+
+ if self.opt.unit_length < 10:
+ coin2 = np.random.choice(['single', 'single', 'double'])
+ else:
+ coin2 = 'single'
+
+ if coin2 == 'double':
+ m_length = (m_length // self.opt.unit_length - 1) * self.opt.unit_length
+ elif coin2 == 'single':
+ m_length = (m_length // self.opt.unit_length) * self.opt.unit_length
+ idx = random.randint(0, len(motion) - m_length)
+ motion = motion[idx:idx+m_length]
+
+ "Z Normalization"
+ motion = (motion - self.mean) / self.std
+
+ if m_length < self.max_motion_length:
+ motion = np.concatenate([motion,
+ np.zeros((self.max_motion_length - m_length, motion.shape[1]))
+ ], axis=0)
+ # print(word_embeddings.shape, motion.shape)
+ # print(tokens)
+ return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, '_'.join(tokens)
+
+
+class Text2MotionDataset(data.Dataset):
+ def __init__(self, opt, mean, std, split_file):
+ self.opt = opt
+ self.max_length = 20
+ self.pointer = 0
+ self.max_motion_length = opt.max_motion_length
+ min_motion_len = 40 if self.opt.dataset_name =='t2m' else 24
+
+ data_dict = {}
+ id_list = []
+ with cs.open(split_file, 'r') as f:
+ for line in f.readlines():
+ id_list.append(line.strip())
+ # id_list = id_list[:250]
+
+ new_name_list = []
+ length_list = []
+ for name in tqdm(id_list):
+ try:
+ motion = np.load(pjoin(opt.motion_dir, name + '.npy'))
+ if (len(motion)) < min_motion_len or (len(motion) >= 200):
+ continue
+ text_data = []
+ flag = False
+ with cs.open(pjoin(opt.text_dir, name + '.txt')) as f:
+ for line in f.readlines():
+ text_dict = {}
+ line_split = line.strip().split('#')
+ # print(line)
+ caption = line_split[0]
+ tokens = line_split[1].split(' ')
+ f_tag = float(line_split[2])
+ to_tag = float(line_split[3])
+ f_tag = 0.0 if np.isnan(f_tag) else f_tag
+ to_tag = 0.0 if np.isnan(to_tag) else to_tag
+
+ text_dict['caption'] = caption
+ text_dict['tokens'] = tokens
+ if f_tag == 0.0 and to_tag == 0.0:
+ flag = True
+ text_data.append(text_dict)
+ else:
+ try:
+ n_motion = motion[int(f_tag*20) : int(to_tag*20)]
+ if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200):
+ continue
+ new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
+ while new_name in data_dict:
+ new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
+ data_dict[new_name] = {'motion': n_motion,
+ 'length': len(n_motion),
+ 'text':[text_dict]}
+ new_name_list.append(new_name)
+ length_list.append(len(n_motion))
+ except:
+ print(line_split)
+ print(line_split[2], line_split[3], f_tag, to_tag, name)
+ # break
+
+ if flag:
+ data_dict[name] = {'motion': motion,
+ 'length': len(motion),
+ 'text': text_data}
+ new_name_list.append(name)
+ length_list.append(len(motion))
+ except Exception as e:
+ # print(e)
+ pass
+
+ # name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1]))
+ name_list, length_list = new_name_list, length_list
+
+ self.mean = mean
+ self.std = std
+ self.length_arr = np.array(length_list)
+ self.data_dict = data_dict
+ self.name_list = name_list
+
+ def inv_transform(self, data):
+ return data * self.std + self.mean
+
+ def __len__(self):
+ return len(self.data_dict) - self.pointer
+
+ def __getitem__(self, item):
+ idx = self.pointer + item
+ data = self.data_dict[self.name_list[idx]]
+ motion, m_length, text_list = data['motion'], data['length'], data['text']
+ # Randomly select a caption
+ text_data = random.choice(text_list)
+ caption, tokens = text_data['caption'], text_data['tokens']
+
+ if self.opt.unit_length < 10:
+ coin2 = np.random.choice(['single', 'single', 'double'])
+ else:
+ coin2 = 'single'
+
+ if coin2 == 'double':
+ m_length = (m_length // self.opt.unit_length - 1) * self.opt.unit_length
+ elif coin2 == 'single':
+ m_length = (m_length // self.opt.unit_length) * self.opt.unit_length
+ idx = random.randint(0, len(motion) - m_length)
+ motion = motion[idx:idx+m_length]
+
+ "Z Normalization"
+ motion = (motion - self.mean) / self.std
+
+ if m_length < self.max_motion_length:
+ motion = np.concatenate([motion,
+ np.zeros((self.max_motion_length - m_length, motion.shape[1]))
+ ], axis=0)
+ # print(word_embeddings.shape, motion.shape)
+ # print(tokens)
+ return caption, motion, m_length
+
+ def reset_min_len(self, length):
+ assert length <= self.max_motion_length
+ self.pointer = np.searchsorted(self.length_arr, length)
+ print("Pointer Pointing at %d" % self.pointer)
\ No newline at end of file
diff --git a/dataset/__init__.py b/dataset/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/edit_t2m.py b/edit_t2m.py
new file mode 100644
index 0000000000000000000000000000000000000000..1feb379b462d89cfaad1399291b9156b37cb91e8
--- /dev/null
+++ b/edit_t2m.py
@@ -0,0 +1,195 @@
+import os
+from os.path import join as pjoin
+
+import torch
+import torch.nn.functional as F
+
+from models.mask_transformer.transformer import MaskTransformer, ResidualTransformer
+from models.vq.model import RVQVAE, LengthEstimator
+
+from options.eval_option import EvalT2MOptions
+from utils.get_opt import get_opt
+
+from utils.fixseed import fixseed
+from visualization.joints2bvh import Joint2BVHConvertor
+
+from utils.motion_process import recover_from_ric
+from utils.plot_script import plot_3d_motion
+
+from utils.paramUtil import t2m_kinematic_chain
+
+import numpy as np
+
+from gen_t2m import load_vq_model, load_res_model, load_trans_model
+
+if __name__ == '__main__':
+ parser = EvalT2MOptions()
+ opt = parser.parse()
+ fixseed(opt.seed)
+
+ opt.device = torch.device("cpu" if opt.gpu_id == -1 else "cuda:" + str(opt.gpu_id))
+ torch.autograd.set_detect_anomaly(True)
+
+ dim_pose = 251 if opt.dataset_name == 'kit' else 263
+
+ root_dir = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
+ model_dir = pjoin(root_dir, 'model')
+ result_dir = pjoin('./editing', opt.ext)
+ joints_dir = pjoin(result_dir, 'joints')
+ animation_dir = pjoin(result_dir, 'animations')
+ os.makedirs(joints_dir, exist_ok=True)
+ os.makedirs(animation_dir,exist_ok=True)
+
+ model_opt_path = pjoin(root_dir, 'opt.txt')
+ model_opt = get_opt(model_opt_path, device=opt.device)
+
+ #######################
+ ######Loading RVQ######
+ #######################
+ vq_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'opt.txt')
+ vq_opt = get_opt(vq_opt_path, device=opt.device)
+ vq_opt.dim_pose = dim_pose
+ vq_model, vq_opt = load_vq_model(vq_opt)
+
+ model_opt.num_tokens = vq_opt.nb_code
+ model_opt.num_quantizers = vq_opt.num_quantizers
+ model_opt.code_dim = vq_opt.code_dim
+
+ #################################
+ ######Loading R-Transformer######
+ #################################
+ res_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.res_name, 'opt.txt')
+ res_opt = get_opt(res_opt_path, device=opt.device)
+ res_model = load_res_model(res_opt, vq_opt, opt)
+
+ assert res_opt.vq_name == model_opt.vq_name
+
+ #################################
+ ######Loading M-Transformer######
+ #################################
+ t2m_transformer = load_trans_model(model_opt, opt, 'latest.tar')
+
+ t2m_transformer.eval()
+ vq_model.eval()
+ res_model.eval()
+
+ res_model.to(opt.device)
+ t2m_transformer.to(opt.device)
+ vq_model.to(opt.device)
+
+ ##### ---- Data ---- #####
+ max_motion_length = 196
+ mean = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'meta', 'mean.npy'))
+ std = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'meta', 'std.npy'))
+ def inv_transform(data):
+ return data * std + mean
+ ### We provided an example source motion (from 'new_joint_vecs') for editing. See './example_data/000612.mp4'###
+ motion = np.load(opt.source_motion)
+ m_length = len(motion)
+ motion = (motion - mean) / std
+ if max_motion_length > m_length:
+ motion = np.concatenate([motion, np.zeros((max_motion_length - m_length, motion.shape[1])) ], axis=0)
+ motion = torch.from_numpy(motion)[None].to(opt.device)
+
+ prompt_list = []
+ length_list = []
+ if opt.motion_length == 0:
+ opt.motion_length = m_length
+ print("Using default motion length.")
+
+ prompt_list.append(opt.text_prompt)
+ length_list.append(opt.motion_length)
+ if opt.text_prompt == "":
+ raise "Using an empty text prompt."
+
+ token_lens = torch.LongTensor(length_list) // 4
+ token_lens = token_lens.to(opt.device).long()
+
+ m_length = token_lens * 4
+ captions = prompt_list
+ print_captions = captions[0]
+
+ _edit_slice = opt.mask_edit_section
+ edit_slice = []
+ for eds in _edit_slice:
+ _start, _end = eds.split(',')
+ _start = eval(_start)
+ _end = eval(_end)
+ edit_slice.append([_start, _end])
+
+ sample = 0
+ kinematic_chain = t2m_kinematic_chain
+ converter = Joint2BVHConvertor()
+
+ with torch.no_grad():
+ tokens, features = vq_model.encode(motion)
+ ### build editing mask, TOEDIT marked as 1 ###
+ edit_mask = torch.zeros_like(tokens[..., 0])
+ seq_len = tokens.shape[1]
+ for _start, _end in edit_slice:
+ if isinstance(_start, float):
+ _start = int(_start*seq_len)
+ _end = int(_end*seq_len)
+ else:
+ _start //= 4
+ _end //= 4
+ edit_mask[:, _start: _end] = 1
+ print_captions = f'{print_captions} [{_start*4/20.}s - {_end*4/20.}s]'
+ edit_mask = edit_mask.bool()
+ for r in range(opt.repeat_times):
+ print("-->Repeat %d"%r)
+ with torch.no_grad():
+ mids = t2m_transformer.edit(
+ captions, tokens[..., 0].clone(), m_length//4,
+ timesteps=opt.time_steps,
+ cond_scale=opt.cond_scale,
+ temperature=opt.temperature,
+ topk_filter_thres=opt.topkr,
+ gsample=opt.gumbel_sample,
+ force_mask=opt.force_mask,
+ edit_mask=edit_mask.clone(),
+ )
+ if opt.use_res_model:
+ mids = res_model.generate(mids, captions, m_length//4, temperature=1, cond_scale=2)
+ else:
+ mids.unsqueeze_(-1)
+
+ pred_motions = vq_model.forward_decoder(mids)
+
+ pred_motions = pred_motions.detach().cpu().numpy()
+
+ source_motions = motion.detach().cpu().numpy()
+
+ data = inv_transform(pred_motions)
+ source_data = inv_transform(source_motions)
+
+ for k, (caption, joint_data, source_data) in enumerate(zip(captions, data, source_data)):
+ print("---->Sample %d: %s %d"%(k, caption, m_length[k]))
+ animation_path = pjoin(animation_dir, str(k))
+ joint_path = pjoin(joints_dir, str(k))
+
+ os.makedirs(animation_path, exist_ok=True)
+ os.makedirs(joint_path, exist_ok=True)
+
+ joint_data = joint_data[:m_length[k]]
+ joint = recover_from_ric(torch.from_numpy(joint_data).float(), 22).numpy()
+
+ source_data = source_data[:m_length[k]]
+ soucre_joint = recover_from_ric(torch.from_numpy(source_data).float(), 22).numpy()
+
+ bvh_path = pjoin(animation_path, "sample%d_repeat%d_len%d_ik.bvh"%(k, r, m_length[k]))
+ _, ik_joint = converter.convert(joint, filename=bvh_path, iterations=100)
+
+ bvh_path = pjoin(animation_path, "sample%d_repeat%d_len%d.bvh" % (k, r, m_length[k]))
+ _, joint = converter.convert(joint, filename=bvh_path, iterations=100, foot_ik=False)
+
+
+ save_path = pjoin(animation_path, "sample%d_repeat%d_len%d.mp4"%(k, r, m_length[k]))
+ ik_save_path = pjoin(animation_path, "sample%d_repeat%d_len%d_ik.mp4"%(k, r, m_length[k]))
+ source_save_path = pjoin(animation_path, "sample%d_source_len%d.mp4"%(k, m_length[k]))
+
+ plot_3d_motion(ik_save_path, kinematic_chain, ik_joint, title=print_captions, fps=20)
+ plot_3d_motion(save_path, kinematic_chain, joint, title=print_captions, fps=20)
+ plot_3d_motion(source_save_path, kinematic_chain, soucre_joint, title='None', fps=20)
+ np.save(pjoin(joint_path, "sample%d_repeat%d_len%d.npy"%(k, r, m_length[k])), joint)
+ np.save(pjoin(joint_path, "sample%d_repeat%d_len%d_ik.npy"%(k, r, m_length[k])), ik_joint)
\ No newline at end of file
diff --git a/environment.yml b/environment.yml
new file mode 100644
index 0000000000000000000000000000000000000000..8dcbe8622a900f10c88ab5762ff8371bfc2d156f
--- /dev/null
+++ b/environment.yml
@@ -0,0 +1,204 @@
+name: momask
+channels:
+ - pytorch
+ - anaconda
+ - conda-forge
+ - defaults
+dependencies:
+ - _libgcc_mutex=0.1=main
+ - _openmp_mutex=5.1=1_gnu
+ - absl-py=1.4.0=pyhd8ed1ab_0
+ - aiohttp=3.8.3=py37h5eee18b_0
+ - aiosignal=1.2.0=pyhd3eb1b0_0
+ - argon2-cffi=21.3.0=pyhd3eb1b0_0
+ - argon2-cffi-bindings=21.2.0=py37h7f8727e_0
+ - async-timeout=4.0.2=py37h06a4308_0
+ - asynctest=0.13.0=py_0
+ - attrs=22.1.0=py37h06a4308_0
+ - backcall=0.2.0=pyhd3eb1b0_0
+ - beautifulsoup4=4.11.1=pyha770c72_0
+ - blas=1.0=mkl
+ - bleach=4.1.0=pyhd3eb1b0_0
+ - blinker=1.4=py37h06a4308_0
+ - brotlipy=0.7.0=py37h540881e_1004
+ - c-ares=1.19.0=h5eee18b_0
+ - ca-certificates=2023.05.30=h06a4308_0
+ - catalogue=2.0.8=py37h89c1867_0
+ - certifi=2022.12.7=py37h06a4308_0
+ - cffi=1.15.1=py37h74dc2b5_0
+ - charset-normalizer=2.1.1=pyhd8ed1ab_0
+ - click=8.0.4=py37h89c1867_0
+ - colorama=0.4.5=pyhd8ed1ab_0
+ - cryptography=35.0.0=py37hf1a17b8_2
+ - cudatoolkit=11.0.221=h6bb024c_0
+ - cycler=0.11.0=pyhd3eb1b0_0
+ - cymem=2.0.6=py37hd23a5d3_3
+ - cython-blis=0.7.7=py37hda87dfa_1
+ - dataclasses=0.8=pyhc8e2a94_3
+ - dbus=1.13.18=hb2f20db_0
+ - debugpy=1.5.1=py37h295c915_0
+ - decorator=5.1.1=pyhd3eb1b0_0
+ - defusedxml=0.7.1=pyhd3eb1b0_0
+ - entrypoints=0.4=py37h06a4308_0
+ - expat=2.4.9=h6a678d5_0
+ - fftw=3.3.9=h27cfd23_1
+ - filelock=3.8.0=pyhd8ed1ab_0
+ - fontconfig=2.13.1=h6c09931_0
+ - freetype=2.11.0=h70c0345_0
+ - frozenlist=1.3.3=py37h5eee18b_0
+ - giflib=5.2.1=h7b6447c_0
+ - glib=2.69.1=h4ff587b_1
+ - gst-plugins-base=1.14.0=h8213a91_2
+ - gstreamer=1.14.0=h28cd5cc_2
+ - h5py=3.7.0=py37h737f45e_0
+ - hdf5=1.10.6=h3ffc7dd_1
+ - icu=58.2=he6710b0_3
+ - idna=3.4=pyhd8ed1ab_0
+ - importlib-metadata=4.11.4=py37h89c1867_0
+ - intel-openmp=2021.4.0=h06a4308_3561
+ - ipykernel=6.15.2=py37h06a4308_0
+ - ipython=7.31.1=py37h06a4308_1
+ - ipython_genutils=0.2.0=pyhd3eb1b0_1
+ - jedi=0.18.1=py37h06a4308_1
+ - jinja2=3.1.2=pyhd8ed1ab_1
+ - joblib=1.1.0=pyhd3eb1b0_0
+ - jpeg=9b=h024ee3a_2
+ - jsonschema=3.0.2=py37_0
+ - jupyter_client=7.4.9=py37h06a4308_0
+ - jupyter_core=4.11.2=py37h06a4308_0
+ - jupyterlab_pygments=0.1.2=py_0
+ - kiwisolver=1.4.2=py37h295c915_0
+ - langcodes=3.3.0=pyhd8ed1ab_0
+ - lcms2=2.12=h3be6417_0
+ - ld_impl_linux-64=2.38=h1181459_1
+ - libffi=3.3=he6710b0_2
+ - libgcc-ng=11.2.0=h1234567_1
+ - libgfortran-ng=11.2.0=h00389a5_1
+ - libgfortran5=11.2.0=h1234567_1
+ - libgomp=11.2.0=h1234567_1
+ - libpng=1.6.37=hbc83047_0
+ - libprotobuf=3.15.8=h780b84a_1
+ - libsodium=1.0.18=h7b6447c_0
+ - libstdcxx-ng=11.2.0=h1234567_1
+ - libtiff=4.1.0=h2733197_1
+ - libuuid=1.0.3=h7f8727e_2
+ - libuv=1.40.0=h7b6447c_0
+ - libwebp=1.2.0=h89dd481_0
+ - libxcb=1.15=h7f8727e_0
+ - libxml2=2.9.14=h74e7548_0
+ - lz4-c=1.9.3=h295c915_1
+ - markdown=3.4.3=pyhd8ed1ab_0
+ - markupsafe=2.1.1=py37h540881e_1
+ - matplotlib=3.1.3=py37_0
+ - matplotlib-base=3.1.3=py37hef1b27d_0
+ - matplotlib-inline=0.1.6=py37h06a4308_0
+ - mistune=0.8.4=py37h14c3975_1001
+ - mkl=2021.4.0=h06a4308_640
+ - mkl-service=2.4.0=py37h7f8727e_0
+ - mkl_fft=1.3.1=py37hd3c417c_0
+ - mkl_random=1.2.2=py37h51133e4_0
+ - multidict=6.0.2=py37h5eee18b_0
+ - murmurhash=1.0.7=py37hd23a5d3_0
+ - nb_conda_kernels=2.3.1=py37h06a4308_0
+ - nbclient=0.5.13=py37h06a4308_0
+ - nbconvert=6.4.4=py37h06a4308_0
+ - nbformat=5.5.0=py37h06a4308_0
+ - ncurses=6.3=h5eee18b_3
+ - nest-asyncio=1.5.6=py37h06a4308_0
+ - ninja=1.10.2=h06a4308_5
+ - ninja-base=1.10.2=hd09550d_5
+ - notebook=6.4.12=py37h06a4308_0
+ - numpy=1.21.5=py37h6c91a56_3
+ - numpy-base=1.21.5=py37ha15fc14_3
+ - openssl=1.1.1v=h7f8727e_0
+ - packaging=21.3=pyhd8ed1ab_0
+ - pandocfilters=1.5.0=pyhd3eb1b0_0
+ - parso=0.8.3=pyhd3eb1b0_0
+ - pathy=0.6.2=pyhd8ed1ab_0
+ - pcre=8.45=h295c915_0
+ - pexpect=4.8.0=pyhd3eb1b0_3
+ - pickleshare=0.7.5=pyhd3eb1b0_1003
+ - pillow=9.2.0=py37hace64e9_1
+ - pip=22.2.2=py37h06a4308_0
+ - preshed=3.0.6=py37hd23a5d3_2
+ - prometheus_client=0.14.1=py37h06a4308_0
+ - prompt-toolkit=3.0.36=py37h06a4308_0
+ - psutil=5.9.0=py37h5eee18b_0
+ - ptyprocess=0.7.0=pyhd3eb1b0_2
+ - pycparser=2.21=pyhd8ed1ab_0
+ - pydantic=1.8.2=py37h5e8e339_2
+ - pygments=2.11.2=pyhd3eb1b0_0
+ - pyjwt=2.4.0=py37h06a4308_0
+ - pyopenssl=22.0.0=pyhd8ed1ab_1
+ - pyparsing=3.0.9=py37h06a4308_0
+ - pyqt=5.9.2=py37h05f1152_2
+ - pyrsistent=0.18.0=py37heee7806_0
+ - pysocks=1.7.1=py37h89c1867_5
+ - python=3.7.13=h12debd9_0
+ - python-dateutil=2.8.2=pyhd3eb1b0_0
+ - python-fastjsonschema=2.16.2=py37h06a4308_0
+ - python_abi=3.7=2_cp37m
+ - pytorch=1.7.1=py3.7_cuda11.0.221_cudnn8.0.5_0
+ - pyzmq=23.2.0=py37h6a678d5_0
+ - qt=5.9.7=h5867ecd_1
+ - readline=8.1.2=h7f8727e_1
+ - requests=2.28.1=pyhd8ed1ab_1
+ - scikit-learn=1.0.2=py37h51133e4_1
+ - scipy=1.7.3=py37h6c91a56_2
+ - send2trash=1.8.0=pyhd3eb1b0_1
+ - setuptools=63.4.1=py37h06a4308_0
+ - shellingham=1.5.0=pyhd8ed1ab_0
+ - sip=4.19.8=py37hf484d3e_0
+ - six=1.16.0=pyhd3eb1b0_1
+ - smart_open=5.2.1=pyhd8ed1ab_0
+ - soupsieve=2.3.2.post1=pyhd8ed1ab_0
+ - spacy=3.3.1=py37h79cecc1_0
+ - spacy-legacy=3.0.10=pyhd8ed1ab_0
+ - spacy-loggers=1.0.3=pyhd8ed1ab_0
+ - sqlite=3.39.3=h5082296_0
+ - srsly=2.4.3=py37hd23a5d3_1
+ - tensorboard-plugin-wit=1.8.1=py37h06a4308_0
+ - terminado=0.17.1=py37h06a4308_0
+ - testpath=0.6.0=py37h06a4308_0
+ - thinc=8.0.15=py37h48bf904_0
+ - threadpoolctl=2.2.0=pyh0d69192_0
+ - tk=8.6.12=h1ccaba5_0
+ - torchaudio=0.7.2=py37
+ - torchvision=0.8.2=py37_cu110
+ - tornado=6.2=py37h5eee18b_0
+ - tqdm=4.64.1=py37h06a4308_0
+ - traitlets=5.7.1=py37h06a4308_0
+ - trimesh=3.15.3=pyh1a96a4e_0
+ - typer=0.4.2=pyhd8ed1ab_0
+ - typing-extensions=3.10.0.2=hd8ed1ab_0
+ - typing_extensions=3.10.0.2=pyha770c72_0
+ - urllib3=1.26.15=pyhd8ed1ab_0
+ - wasabi=0.10.1=pyhd8ed1ab_1
+ - webencodings=0.5.1=py37_1
+ - werkzeug=2.2.3=pyhd8ed1ab_0
+ - wheel=0.37.1=pyhd3eb1b0_0
+ - xz=5.2.6=h5eee18b_0
+ - yarl=1.8.1=py37h5eee18b_0
+ - zeromq=4.3.4=h2531618_0
+ - zipp=3.8.1=pyhd8ed1ab_0
+ - zlib=1.2.12=h5eee18b_3
+ - zstd=1.4.9=haebb681_0
+ - pip:
+ - cachetools==5.3.1
+ - einops==0.6.1
+ - ftfy==6.1.1
+ - gdown==4.7.1
+ - google-auth==2.22.0
+ - google-auth-oauthlib==0.4.6
+ - grpcio==1.57.0
+ - oauthlib==3.2.2
+ - protobuf==3.20.3
+ - pyasn1==0.5.0
+ - pyasn1-modules==0.3.0
+ - regex==2023.8.8
+ - requests-oauthlib==1.3.1
+ - rsa==4.9
+ - tensorboard==2.11.2
+ - tensorboard-data-server==0.6.1
+ - wcwidth==0.2.6
+prefix: /home/chuan/anaconda3/envs/momask
\ No newline at end of file
diff --git a/eval_t2m_trans_res.py b/eval_t2m_trans_res.py
new file mode 100644
index 0000000000000000000000000000000000000000..005642dcb8bd76d3efc6fb6f850002e3c5c68bcc
--- /dev/null
+++ b/eval_t2m_trans_res.py
@@ -0,0 +1,199 @@
+import os
+from os.path import join as pjoin
+
+import torch
+
+from models.mask_transformer.transformer import MaskTransformer, ResidualTransformer
+from models.vq.model import RVQVAE
+
+from options.eval_option import EvalT2MOptions
+from utils.get_opt import get_opt
+from motion_loaders.dataset_motion_loader import get_dataset_motion_loader
+from models.t2m_eval_wrapper import EvaluatorModelWrapper
+
+import utils.eval_t2m as eval_t2m
+from utils.fixseed import fixseed
+
+import numpy as np
+
+def load_vq_model(vq_opt):
+ # opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.vq_name, 'opt.txt')
+ vq_model = RVQVAE(vq_opt,
+ dim_pose,
+ vq_opt.nb_code,
+ vq_opt.code_dim,
+ vq_opt.output_emb_width,
+ vq_opt.down_t,
+ vq_opt.stride_t,
+ vq_opt.width,
+ vq_opt.depth,
+ vq_opt.dilation_growth_rate,
+ vq_opt.vq_act,
+ vq_opt.vq_norm)
+ ckpt = torch.load(pjoin(vq_opt.checkpoints_dir, vq_opt.dataset_name, vq_opt.name, 'model', 'net_best_fid.tar'),
+ map_location=opt.device)
+ model_key = 'vq_model' if 'vq_model' in ckpt else 'net'
+ vq_model.load_state_dict(ckpt[model_key])
+ print(f'Loading VQ Model {vq_opt.name} Completed!')
+ return vq_model, vq_opt
+
+def load_trans_model(model_opt, which_model):
+ t2m_transformer = MaskTransformer(code_dim=model_opt.code_dim,
+ cond_mode='text',
+ latent_dim=model_opt.latent_dim,
+ ff_size=model_opt.ff_size,
+ num_layers=model_opt.n_layers,
+ num_heads=model_opt.n_heads,
+ dropout=model_opt.dropout,
+ clip_dim=512,
+ cond_drop_prob=model_opt.cond_drop_prob,
+ clip_version=clip_version,
+ opt=model_opt)
+ ckpt = torch.load(pjoin(model_opt.checkpoints_dir, model_opt.dataset_name, model_opt.name, 'model', which_model),
+ map_location=opt.device)
+ model_key = 't2m_transformer' if 't2m_transformer' in ckpt else 'trans'
+ # print(ckpt.keys())
+ missing_keys, unexpected_keys = t2m_transformer.load_state_dict(ckpt[model_key], strict=False)
+ assert len(unexpected_keys) == 0
+ assert all([k.startswith('clip_model.') for k in missing_keys])
+ print(f'Loading Mask Transformer {opt.name} from epoch {ckpt["ep"]}!')
+ return t2m_transformer
+
+def load_res_model(res_opt):
+ res_opt.num_quantizers = vq_opt.num_quantizers
+ res_opt.num_tokens = vq_opt.nb_code
+ res_transformer = ResidualTransformer(code_dim=vq_opt.code_dim,
+ cond_mode='text',
+ latent_dim=res_opt.latent_dim,
+ ff_size=res_opt.ff_size,
+ num_layers=res_opt.n_layers,
+ num_heads=res_opt.n_heads,
+ dropout=res_opt.dropout,
+ clip_dim=512,
+ shared_codebook=vq_opt.shared_codebook,
+ cond_drop_prob=res_opt.cond_drop_prob,
+ # codebook=vq_model.quantizer.codebooks[0] if opt.fix_token_emb else None,
+ share_weight=res_opt.share_weight,
+ clip_version=clip_version,
+ opt=res_opt)
+
+ ckpt = torch.load(pjoin(res_opt.checkpoints_dir, res_opt.dataset_name, res_opt.name, 'model', 'net_best_fid.tar'),
+ map_location=opt.device)
+ missing_keys, unexpected_keys = res_transformer.load_state_dict(ckpt['res_transformer'], strict=False)
+ assert len(unexpected_keys) == 0
+ assert all([k.startswith('clip_model.') for k in missing_keys])
+ print(f'Loading Residual Transformer {res_opt.name} from epoch {ckpt["ep"]}!')
+ return res_transformer
+
+if __name__ == '__main__':
+ parser = EvalT2MOptions()
+ opt = parser.parse()
+ fixseed(opt.seed)
+
+ opt.device = torch.device("cpu" if opt.gpu_id == -1 else "cuda:" + str(opt.gpu_id))
+ torch.autograd.set_detect_anomaly(True)
+
+ dim_pose = 251 if opt.dataset_name == 'kit' else 263
+
+ # out_dir = pjoin(opt.check)
+ root_dir = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
+ model_dir = pjoin(root_dir, 'model')
+ out_dir = pjoin(root_dir, 'eval')
+ os.makedirs(out_dir, exist_ok=True)
+
+ out_path = pjoin(out_dir, "%s.log"%opt.ext)
+
+ f = open(pjoin(out_path), 'w')
+
+ model_opt_path = pjoin(root_dir, 'opt.txt')
+ model_opt = get_opt(model_opt_path, device=opt.device)
+ clip_version = 'ViT-B/32'
+
+ vq_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'opt.txt')
+ vq_opt = get_opt(vq_opt_path, device=opt.device)
+ vq_model, vq_opt = load_vq_model(vq_opt)
+
+ model_opt.num_tokens = vq_opt.nb_code
+ model_opt.num_quantizers = vq_opt.num_quantizers
+ model_opt.code_dim = vq_opt.code_dim
+
+ res_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.res_name, 'opt.txt')
+ res_opt = get_opt(res_opt_path, device=opt.device)
+ res_model = load_res_model(res_opt)
+
+ assert res_opt.vq_name == model_opt.vq_name
+
+ dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if opt.dataset_name == 'kit' \
+ else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
+
+ wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
+ eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
+
+ ##### ---- Dataloader ---- #####
+ opt.nb_joints = 21 if opt.dataset_name == 'kit' else 22
+
+ eval_val_loader, _ = get_dataset_motion_loader(dataset_opt_path, 32, 'test', device=opt.device)
+
+ # model_dir = pjoin(opt.)
+ for file in os.listdir(model_dir):
+ if opt.which_epoch != "all" and opt.which_epoch not in file:
+ continue
+ print('loading checkpoint {}'.format(file))
+ t2m_transformer = load_trans_model(model_opt, file)
+ t2m_transformer.eval()
+ vq_model.eval()
+ res_model.eval()
+
+ t2m_transformer.to(opt.device)
+ vq_model.to(opt.device)
+ res_model.to(opt.device)
+
+ fid = []
+ div = []
+ top1 = []
+ top2 = []
+ top3 = []
+ matching = []
+ mm = []
+
+ repeat_time = 20
+ for i in range(repeat_time):
+ with torch.no_grad():
+ best_fid, best_div, Rprecision, best_matching, best_mm = \
+ eval_t2m.evaluation_mask_transformer_test_plus_res(eval_val_loader, vq_model, res_model, t2m_transformer,
+ i, eval_wrapper=eval_wrapper,
+ time_steps=opt.time_steps, cond_scale=opt.cond_scale,
+ temperature=opt.temperature, topkr=opt.topkr,
+ force_mask=opt.force_mask, cal_mm=True)
+ fid.append(best_fid)
+ div.append(best_div)
+ top1.append(Rprecision[0])
+ top2.append(Rprecision[1])
+ top3.append(Rprecision[2])
+ matching.append(best_matching)
+ mm.append(best_mm)
+
+ fid = np.array(fid)
+ div = np.array(div)
+ top1 = np.array(top1)
+ top2 = np.array(top2)
+ top3 = np.array(top3)
+ matching = np.array(matching)
+ mm = np.array(mm)
+
+ print(f'{file} final result:')
+ print(f'{file} final result:', file=f, flush=True)
+
+ msg_final = f"\tFID: {np.mean(fid):.3f}, conf. {np.std(fid) * 1.96 / np.sqrt(repeat_time):.3f}\n" \
+ f"\tDiversity: {np.mean(div):.3f}, conf. {np.std(div) * 1.96 / np.sqrt(repeat_time):.3f}\n" \
+ f"\tTOP1: {np.mean(top1):.3f}, conf. {np.std(top1) * 1.96 / np.sqrt(repeat_time):.3f}, TOP2. {np.mean(top2):.3f}, conf. {np.std(top2) * 1.96 / np.sqrt(repeat_time):.3f}, TOP3. {np.mean(top3):.3f}, conf. {np.std(top3) * 1.96 / np.sqrt(repeat_time):.3f}\n" \
+ f"\tMatching: {np.mean(matching):.3f}, conf. {np.std(matching) * 1.96 / np.sqrt(repeat_time):.3f}\n" \
+ f"\tMultimodality:{np.mean(mm):.3f}, conf.{np.std(mm) * 1.96 / np.sqrt(repeat_time):.3f}\n\n"
+ # logger.info(msg_final)
+ print(msg_final)
+ print(msg_final, file=f, flush=True)
+
+ f.close()
+
+
+# python eval_t2m_trans.py --name t2m_nlayer8_nhead6_ld384_ff1024_cdp0.1_vq --dataset_name t2m --gpu_id 3 --cond_scale 4 --time_steps 18 --temperature 1 --topkr 0.9 --gumbel_sample --ext cs4_ts18_tau1_topkr0.9_gs
\ No newline at end of file
diff --git a/eval_t2m_vq.py b/eval_t2m_vq.py
new file mode 100644
index 0000000000000000000000000000000000000000..cb5d7438ffa498a46902194760b718b5744d89d8
--- /dev/null
+++ b/eval_t2m_vq.py
@@ -0,0 +1,123 @@
+import sys
+import os
+from os.path import join as pjoin
+
+import torch
+from models.vq.model import RVQVAE
+from options.vq_option import arg_parse
+from motion_loaders.dataset_motion_loader import get_dataset_motion_loader
+import utils.eval_t2m as eval_t2m
+from utils.get_opt import get_opt
+from models.t2m_eval_wrapper import EvaluatorModelWrapper
+import warnings
+warnings.filterwarnings('ignore')
+import numpy as np
+from utils.word_vectorizer import WordVectorizer
+
+def load_vq_model(vq_opt, which_epoch):
+ # opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.vq_name, 'opt.txt')
+
+ vq_model = RVQVAE(vq_opt,
+ dim_pose,
+ vq_opt.nb_code,
+ vq_opt.code_dim,
+ vq_opt.code_dim,
+ vq_opt.down_t,
+ vq_opt.stride_t,
+ vq_opt.width,
+ vq_opt.depth,
+ vq_opt.dilation_growth_rate,
+ vq_opt.vq_act,
+ vq_opt.vq_norm)
+ ckpt = torch.load(pjoin(vq_opt.checkpoints_dir, vq_opt.dataset_name, vq_opt.name, 'model', which_epoch),
+ map_location='cpu')
+ model_key = 'vq_model' if 'vq_model' in ckpt else 'net'
+ vq_model.load_state_dict(ckpt[model_key])
+ vq_epoch = ckpt['ep'] if 'ep' in ckpt else -1
+ print(f'Loading VQ Model {vq_opt.name} Completed!, Epoch {vq_epoch}')
+ return vq_model, vq_epoch
+
+if __name__ == "__main__":
+ ##### ---- Exp dirs ---- #####
+ args = arg_parse(False)
+ args.device = torch.device("cpu" if args.gpu_id == -1 else "cuda:" + str(args.gpu_id))
+
+ args.out_dir = pjoin(args.checkpoints_dir, args.dataset_name, args.name, 'eval')
+ os.makedirs(args.out_dir, exist_ok=True)
+
+ f = open(pjoin(args.out_dir, '%s.log'%args.ext), 'w')
+
+ dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataset_name == 'kit' \
+ else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
+
+ wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
+ eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
+
+ ##### ---- Dataloader ---- #####
+ args.nb_joints = 21 if args.dataset_name == 'kit' else 22
+ dim_pose = 251 if args.dataset_name == 'kit' else 263
+
+ eval_val_loader, _ = get_dataset_motion_loader(dataset_opt_path, 32, 'test', device=args.device)
+
+ print(len(eval_val_loader))
+
+ ##### ---- Network ---- #####
+ vq_opt_path = pjoin(args.checkpoints_dir, args.dataset_name, args.name, 'opt.txt')
+ vq_opt = get_opt(vq_opt_path, device=args.device)
+ # net = load_vq_model()
+
+ model_dir = pjoin(args.checkpoints_dir, args.dataset_name, args.name, 'model')
+ for file in os.listdir(model_dir):
+ # if not file.endswith('tar'):
+ # continue
+ # if not file.startswith('net_best_fid'):
+ # continue
+ if args.which_epoch != "all" and args.which_epoch not in file:
+ continue
+ print(file)
+ net, ep = load_vq_model(vq_opt, file)
+
+ net.eval()
+ net.cuda()
+
+ fid = []
+ div = []
+ top1 = []
+ top2 = []
+ top3 = []
+ matching = []
+ mae = []
+ repeat_time = 20
+ for i in range(repeat_time):
+ best_fid, best_div, Rprecision, best_matching, l1_dist = \
+ eval_t2m.evaluation_vqvae_plus_mpjpe(eval_val_loader, net, i, eval_wrapper=eval_wrapper, num_joint=args.nb_joints)
+ fid.append(best_fid)
+ div.append(best_div)
+ top1.append(Rprecision[0])
+ top2.append(Rprecision[1])
+ top3.append(Rprecision[2])
+ matching.append(best_matching)
+ mae.append(l1_dist)
+
+ fid = np.array(fid)
+ div = np.array(div)
+ top1 = np.array(top1)
+ top2 = np.array(top2)
+ top3 = np.array(top3)
+ matching = np.array(matching)
+ mae = np.array(mae)
+
+ print(f'{file} final result, epoch {ep}')
+ print(f'{file} final result, epoch {ep}', file=f, flush=True)
+
+ msg_final = f"\tFID: {np.mean(fid):.3f}, conf. {np.std(fid)*1.96/np.sqrt(repeat_time):.3f}\n" \
+ f"\tDiversity: {np.mean(div):.3f}, conf. {np.std(div)*1.96/np.sqrt(repeat_time):.3f}\n" \
+ f"\tTOP1: {np.mean(top1):.3f}, conf. {np.std(top1)*1.96/np.sqrt(repeat_time):.3f}, TOP2. {np.mean(top2):.3f}, conf. {np.std(top2)*1.96/np.sqrt(repeat_time):.3f}, TOP3. {np.mean(top3):.3f}, conf. {np.std(top3)*1.96/np.sqrt(repeat_time):.3f}\n" \
+ f"\tMatching: {np.mean(matching):.3f}, conf. {np.std(matching)*1.96/np.sqrt(repeat_time):.3f}\n" \
+ f"\tMAE:{np.mean(mae):.3f}, conf.{np.std(mae)*1.96/np.sqrt(repeat_time):.3f}\n\n"
+ # logger.info(msg_final)
+ print(msg_final)
+ print(msg_final, file=f, flush=True)
+
+ f.close()
+
diff --git a/example_data/000612.mp4 b/example_data/000612.mp4
new file mode 100644
index 0000000000000000000000000000000000000000..f1c435ba67bbe96cf60cb145069a6365e2f234f0
Binary files /dev/null and b/example_data/000612.mp4 differ
diff --git a/example_data/000612.npy b/example_data/000612.npy
new file mode 100644
index 0000000000000000000000000000000000000000..403f5eca3ea59eeadebfc6236f274d283644b126
--- /dev/null
+++ b/example_data/000612.npy
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:85e5a8081278a0e31488eaa29386940b9e4b739fb401042f7ad883afb475ab10
+size 418824
diff --git a/gen_t2m.py b/gen_t2m.py
new file mode 100644
index 0000000000000000000000000000000000000000..b1a0335a8a0083887a766b8e5848b319fb8da65b
--- /dev/null
+++ b/gen_t2m.py
@@ -0,0 +1,261 @@
+import os
+from os.path import join as pjoin
+
+import torch
+import torch.nn.functional as F
+
+from models.mask_transformer.transformer import MaskTransformer, ResidualTransformer
+from models.vq.model import RVQVAE, LengthEstimator
+
+from options.eval_option import EvalT2MOptions
+from utils.get_opt import get_opt
+
+from utils.fixseed import fixseed
+from visualization.joints2bvh import Joint2BVHConvertor
+from torch.distributions.categorical import Categorical
+
+
+from utils.motion_process import recover_from_ric
+from utils.plot_script import plot_3d_motion
+
+from utils.paramUtil import t2m_kinematic_chain
+
+import numpy as np
+clip_version = 'ViT-B/32'
+
+def load_vq_model(vq_opt):
+ # opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.vq_name, 'opt.txt')
+ vq_model = RVQVAE(vq_opt,
+ vq_opt.dim_pose,
+ vq_opt.nb_code,
+ vq_opt.code_dim,
+ vq_opt.output_emb_width,
+ vq_opt.down_t,
+ vq_opt.stride_t,
+ vq_opt.width,
+ vq_opt.depth,
+ vq_opt.dilation_growth_rate,
+ vq_opt.vq_act,
+ vq_opt.vq_norm)
+ ckpt = torch.load(pjoin(vq_opt.checkpoints_dir, vq_opt.dataset_name, vq_opt.name, 'model', 'net_best_fid.tar'),
+ map_location='cpu')
+ model_key = 'vq_model' if 'vq_model' in ckpt else 'net'
+ vq_model.load_state_dict(ckpt[model_key])
+ print(f'Loading VQ Model {vq_opt.name} Completed!')
+ return vq_model, vq_opt
+
+def load_trans_model(model_opt, opt, which_model):
+ t2m_transformer = MaskTransformer(code_dim=model_opt.code_dim,
+ cond_mode='text',
+ latent_dim=model_opt.latent_dim,
+ ff_size=model_opt.ff_size,
+ num_layers=model_opt.n_layers,
+ num_heads=model_opt.n_heads,
+ dropout=model_opt.dropout,
+ clip_dim=512,
+ cond_drop_prob=model_opt.cond_drop_prob,
+ clip_version=clip_version,
+ opt=model_opt)
+ ckpt = torch.load(pjoin(model_opt.checkpoints_dir, model_opt.dataset_name, model_opt.name, 'model', which_model),
+ map_location='cpu')
+ model_key = 't2m_transformer' if 't2m_transformer' in ckpt else 'trans'
+ # print(ckpt.keys())
+ missing_keys, unexpected_keys = t2m_transformer.load_state_dict(ckpt[model_key], strict=False)
+ assert len(unexpected_keys) == 0
+ assert all([k.startswith('clip_model.') for k in missing_keys])
+ print(f'Loading Transformer {opt.name} from epoch {ckpt["ep"]}!')
+ return t2m_transformer
+
+def load_res_model(res_opt, vq_opt, opt):
+ res_opt.num_quantizers = vq_opt.num_quantizers
+ res_opt.num_tokens = vq_opt.nb_code
+ res_transformer = ResidualTransformer(code_dim=vq_opt.code_dim,
+ cond_mode='text',
+ latent_dim=res_opt.latent_dim,
+ ff_size=res_opt.ff_size,
+ num_layers=res_opt.n_layers,
+ num_heads=res_opt.n_heads,
+ dropout=res_opt.dropout,
+ clip_dim=512,
+ shared_codebook=vq_opt.shared_codebook,
+ cond_drop_prob=res_opt.cond_drop_prob,
+ # codebook=vq_model.quantizer.codebooks[0] if opt.fix_token_emb else None,
+ share_weight=res_opt.share_weight,
+ clip_version=clip_version,
+ opt=res_opt)
+
+ ckpt = torch.load(pjoin(res_opt.checkpoints_dir, res_opt.dataset_name, res_opt.name, 'model', 'net_best_fid.tar'),
+ map_location=opt.device)
+ missing_keys, unexpected_keys = res_transformer.load_state_dict(ckpt['res_transformer'], strict=False)
+ assert len(unexpected_keys) == 0
+ assert all([k.startswith('clip_model.') for k in missing_keys])
+ print(f'Loading Residual Transformer {res_opt.name} from epoch {ckpt["ep"]}!')
+ return res_transformer
+
+def load_len_estimator(opt):
+ model = LengthEstimator(512, 50)
+ ckpt = torch.load(pjoin(opt.checkpoints_dir, opt.dataset_name, 'length_estimator', 'model', 'finest.tar'),
+ map_location=opt.device)
+ model.load_state_dict(ckpt['estimator'])
+ print(f'Loading Length Estimator from epoch {ckpt["epoch"]}!')
+ return model
+
+
+if __name__ == '__main__':
+ parser = EvalT2MOptions()
+ opt = parser.parse()
+ fixseed(opt.seed)
+
+ opt.device = torch.device("cpu" if opt.gpu_id == -1 else "cuda:" + str(opt.gpu_id))
+ torch.autograd.set_detect_anomaly(True)
+
+ dim_pose = 251 if opt.dataset_name == 'kit' else 263
+
+ # out_dir = pjoin(opt.check)
+ root_dir = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
+ model_dir = pjoin(root_dir, 'model')
+ result_dir = pjoin('./generation', opt.ext)
+ joints_dir = pjoin(result_dir, 'joints')
+ animation_dir = pjoin(result_dir, 'animations')
+ os.makedirs(joints_dir, exist_ok=True)
+ os.makedirs(animation_dir,exist_ok=True)
+
+ model_opt_path = pjoin(root_dir, 'opt.txt')
+ model_opt = get_opt(model_opt_path, device=opt.device)
+
+
+ #######################
+ ######Loading RVQ######
+ #######################
+ vq_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'opt.txt')
+ vq_opt = get_opt(vq_opt_path, device=opt.device)
+ vq_opt.dim_pose = dim_pose
+ vq_model, vq_opt = load_vq_model(vq_opt)
+
+ model_opt.num_tokens = vq_opt.nb_code
+ model_opt.num_quantizers = vq_opt.num_quantizers
+ model_opt.code_dim = vq_opt.code_dim
+
+ #################################
+ ######Loading R-Transformer######
+ #################################
+ res_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.res_name, 'opt.txt')
+ res_opt = get_opt(res_opt_path, device=opt.device)
+ res_model = load_res_model(res_opt, vq_opt, opt)
+
+ assert res_opt.vq_name == model_opt.vq_name
+
+ #################################
+ ######Loading M-Transformer######
+ #################################
+ t2m_transformer = load_trans_model(model_opt, opt, 'latest.tar')
+
+ ##################################
+ #####Loading Length Predictor#####
+ ##################################
+ length_estimator = load_len_estimator(model_opt)
+
+ t2m_transformer.eval()
+ vq_model.eval()
+ res_model.eval()
+ length_estimator.eval()
+
+ res_model.to(opt.device)
+ t2m_transformer.to(opt.device)
+ vq_model.to(opt.device)
+ length_estimator.to(opt.device)
+
+ ##### ---- Dataloader ---- #####
+ opt.nb_joints = 21 if opt.dataset_name == 'kit' else 22
+
+ mean = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'meta', 'mean.npy'))
+ std = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'meta', 'std.npy'))
+ def inv_transform(data):
+ return data * std + mean
+
+ prompt_list = []
+ length_list = []
+
+ est_length = False
+ if opt.text_prompt != "":
+ prompt_list.append(opt.text_prompt)
+ if opt.motion_length == 0:
+ est_length = True
+ else:
+ length_list.append(opt.motion_length)
+ elif opt.text_path != "":
+ with open(opt.text_path, 'r') as f:
+ lines = f.readlines()
+ for line in lines:
+ infos = line.split('#')
+ prompt_list.append(infos[0])
+ if len(infos) == 1 or (not infos[1].isdigit()):
+ est_length = True
+ length_list = []
+ else:
+ length_list.append(int(infos[-1]))
+ else:
+ raise "A text prompt, or a file a text prompts are required!!!"
+ # print('loading checkpoint {}'.format(file))
+
+ if est_length:
+ print("Since no motion length are specified, we will use estimated motion lengthes!!")
+ text_embedding = t2m_transformer.encode_text(prompt_list)
+ pred_dis = length_estimator(text_embedding)
+ probs = F.softmax(pred_dis, dim=-1) # (b, ntoken)
+ token_lens = Categorical(probs).sample() # (b, seqlen)
+ # lengths = torch.multinomial()
+ else:
+ token_lens = torch.LongTensor(length_list) // 4
+ token_lens = token_lens.to(opt.device).long()
+
+ m_length = token_lens * 4
+ captions = prompt_list
+
+ sample = 0
+ kinematic_chain = t2m_kinematic_chain
+ converter = Joint2BVHConvertor()
+
+ for r in range(opt.repeat_times):
+ print("-->Repeat %d"%r)
+ with torch.no_grad():
+ mids = t2m_transformer.generate(captions, token_lens,
+ timesteps=opt.time_steps,
+ cond_scale=opt.cond_scale,
+ temperature=opt.temperature,
+ topk_filter_thres=opt.topkr,
+ gsample=opt.gumbel_sample)
+ # print(mids)
+ # print(mids.shape)
+ mids = res_model.generate(mids, captions, token_lens, temperature=1, cond_scale=5)
+ pred_motions = vq_model.forward_decoder(mids)
+
+ pred_motions = pred_motions.detach().cpu().numpy()
+
+ data = inv_transform(pred_motions)
+
+ for k, (caption, joint_data) in enumerate(zip(captions, data)):
+ print("---->Sample %d: %s %d"%(k, caption, m_length[k]))
+ animation_path = pjoin(animation_dir, str(k))
+ joint_path = pjoin(joints_dir, str(k))
+
+ os.makedirs(animation_path, exist_ok=True)
+ os.makedirs(joint_path, exist_ok=True)
+
+ joint_data = joint_data[:m_length[k]]
+ joint = recover_from_ric(torch.from_numpy(joint_data).float(), 22).numpy()
+
+ bvh_path = pjoin(animation_path, "sample%d_repeat%d_len%d_ik.bvh"%(k, r, m_length[k]))
+ _, ik_joint = converter.convert(joint, filename=bvh_path, iterations=100)
+
+ bvh_path = pjoin(animation_path, "sample%d_repeat%d_len%d.bvh" % (k, r, m_length[k]))
+ _, joint = converter.convert(joint, filename=bvh_path, iterations=100, foot_ik=False)
+
+
+ save_path = pjoin(animation_path, "sample%d_repeat%d_len%d.mp4"%(k, r, m_length[k]))
+ ik_save_path = pjoin(animation_path, "sample%d_repeat%d_len%d_ik.mp4"%(k, r, m_length[k]))
+
+ plot_3d_motion(ik_save_path, kinematic_chain, ik_joint, title=caption, fps=20)
+ plot_3d_motion(save_path, kinematic_chain, joint, title=caption, fps=20)
+ np.save(pjoin(joint_path, "sample%d_repeat%d_len%d.npy"%(k, r, m_length[k])), joint)
+ np.save(pjoin(joint_path, "sample%d_repeat%d_len%d_ik.npy"%(k, r, m_length[k])), ik_joint)
\ No newline at end of file
diff --git a/models/.DS_Store b/models/.DS_Store
new file mode 100644
index 0000000000000000000000000000000000000000..30ae849f64d056a297a5323177cdb909ac8c0899
Binary files /dev/null and b/models/.DS_Store differ
diff --git a/models/__init__.py b/models/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/models/mask_transformer/__init__.py b/models/mask_transformer/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/models/mask_transformer/tools.py b/models/mask_transformer/tools.py
new file mode 100644
index 0000000000000000000000000000000000000000..1911aafd44ef8133b6278450301a0f85362d29e6
--- /dev/null
+++ b/models/mask_transformer/tools.py
@@ -0,0 +1,165 @@
+import torch
+import torch.nn.functional as F
+import math
+from einops import rearrange
+
+# return mask where padding is FALSE
+def lengths_to_mask(lengths, max_len):
+ # max_len = max(lengths)
+ mask = torch.arange(max_len, device=lengths.device).expand(len(lengths), max_len) < lengths.unsqueeze(1)
+ return mask #(b, len)
+
+# return mask where padding is ALL FALSE
+def get_pad_mask_idx(seq, pad_idx):
+ return (seq != pad_idx).unsqueeze(1)
+
+# Given seq: (b, s)
+# Return mat: (1, s, s)
+# Example Output:
+# [[[ True, False, False],
+# [ True, True, False],
+# [ True, True, True]]]
+# For causal attention
+def get_subsequent_mask(seq):
+ sz_b, seq_len = seq.shape
+ subsequent_mask = (1 - torch.triu(
+ torch.ones((1, seq_len, seq_len)), diagonal=1)).bool()
+ return subsequent_mask.to(seq.device)
+
+
+def exists(val):
+ return val is not None
+
+def default(val, d):
+ return val if exists(val) else d
+
+def eval_decorator(fn):
+ def inner(model, *args, **kwargs):
+ was_training = model.training
+ model.eval()
+ out = fn(model, *args, **kwargs)
+ model.train(was_training)
+ return out
+ return inner
+
+def l2norm(t):
+ return F.normalize(t, dim = -1)
+
+# tensor helpers
+
+# Get a random subset of TRUE mask, with prob
+def get_mask_subset_prob(mask, prob):
+ subset_mask = torch.bernoulli(mask, p=prob) & mask
+ return subset_mask
+
+
+# Get mask of special_tokens in ids
+def get_mask_special_tokens(ids, special_ids):
+ mask = torch.zeros_like(ids).bool()
+ for special_id in special_ids:
+ mask |= (ids==special_id)
+ return mask
+
+# network builder helpers
+def _get_activation_fn(activation):
+ if activation == "relu":
+ return F.relu
+ elif activation == "gelu":
+ return F.gelu
+
+ raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
+
+# classifier free guidance functions
+
+def uniform(shape, device=None):
+ return torch.zeros(shape, device=device).float().uniform_(0, 1)
+
+def prob_mask_like(shape, prob, device=None):
+ if prob == 1:
+ return torch.ones(shape, device=device, dtype=torch.bool)
+ elif prob == 0:
+ return torch.zeros(shape, device=device, dtype=torch.bool)
+ else:
+ return uniform(shape, device=device) < prob
+
+# sampling helpers
+
+def log(t, eps = 1e-20):
+ return torch.log(t.clamp(min = eps))
+
+def gumbel_noise(t):
+ noise = torch.zeros_like(t).uniform_(0, 1)
+ return -log(-log(noise))
+
+def gumbel_sample(t, temperature = 1., dim = 1):
+ return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim=dim)
+
+
+# Example input:
+# [[ 0.3596, 0.0862, 0.9771, -1.0000, -1.0000, -1.0000],
+# [ 0.4141, 0.1781, 0.6628, 0.5721, -1.0000, -1.0000],
+# [ 0.9428, 0.3586, 0.1659, 0.8172, 0.9273, -1.0000]]
+# Example output:
+# [[ -inf, -inf, 0.9771, -inf, -inf, -inf],
+# [ -inf, -inf, 0.6628, -inf, -inf, -inf],
+# [0.9428, -inf, -inf, -inf, -inf, -inf]]
+def top_k(logits, thres = 0.9, dim = 1):
+ k = math.ceil((1 - thres) * logits.shape[dim])
+ val, ind = logits.topk(k, dim = dim)
+ probs = torch.full_like(logits, float('-inf'))
+ probs.scatter_(dim, ind, val)
+ # func verified
+ # print(probs)
+ # print(logits)
+ # raise
+ return probs
+
+# noise schedules
+
+# More on large value, less on small
+def cosine_schedule(t):
+ return torch.cos(t * math.pi * 0.5)
+
+def scale_cosine_schedule(t, scale):
+ return torch.clip(scale*torch.cos(t * math.pi * 0.5) + 1 - scale, min=0., max=1.)
+
+# More on small value, less on large
+def q_schedule(bs, low, high, device):
+ noise = uniform((bs,), device=device)
+ schedule = 1 - cosine_schedule(noise)
+ return torch.round(schedule * (high - low - 1)).long() + low
+
+def cal_performance(pred, labels, ignore_index=None, smoothing=0., tk=1):
+ loss = cal_loss(pred, labels, ignore_index, smoothing=smoothing)
+ # pred_id = torch.argmax(pred, dim=1)
+ # mask = labels.ne(ignore_index)
+ # n_correct = pred_id.eq(labels).masked_select(mask)
+ # acc = torch.mean(n_correct.float()).item()
+ pred_id_k = torch.topk(pred, k=tk, dim=1).indices
+ pred_id = pred_id_k[:, 0]
+ mask = labels.ne(ignore_index)
+ n_correct = (pred_id_k == labels.unsqueeze(1)).any(dim=1).masked_select(mask)
+ acc = torch.mean(n_correct.float()).item()
+
+ return loss, pred_id, acc
+
+
+def cal_loss(pred, labels, ignore_index=None, smoothing=0.):
+ '''Calculate cross entropy loss, apply label smoothing if needed.'''
+ # print(pred.shape, labels.shape) #torch.Size([64, 1028, 55]) torch.Size([64, 55])
+ # print(pred.shape, labels.shape) #torch.Size([64, 1027, 55]) torch.Size([64, 55])
+ if smoothing:
+ space = 2
+ n_class = pred.size(1)
+ mask = labels.ne(ignore_index)
+ one_hot = rearrange(F.one_hot(labels, n_class + space), 'a ... b -> a b ...')[:, :n_class]
+ # one_hot = torch.zeros_like(pred).scatter(1, labels.unsqueeze(1), 1)
+ sm_one_hot = one_hot * (1 - smoothing) + (1 - one_hot) * smoothing / (n_class - 1)
+ neg_log_prb = -F.log_softmax(pred, dim=1)
+ loss = (sm_one_hot * neg_log_prb).sum(dim=1)
+ # loss = F.cross_entropy(pred, sm_one_hot, reduction='none')
+ loss = torch.mean(loss.masked_select(mask))
+ else:
+ loss = F.cross_entropy(pred, labels, ignore_index=ignore_index)
+
+ return loss
\ No newline at end of file
diff --git a/models/mask_transformer/transformer.py b/models/mask_transformer/transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..4d02b62e6a85c0ea756908f6c59a9ae17bc71cc3
--- /dev/null
+++ b/models/mask_transformer/transformer.py
@@ -0,0 +1,1039 @@
+import torch
+import torch.nn as nn
+import numpy as np
+# from networks.layers import *
+import torch.nn.functional as F
+import clip
+from einops import rearrange, repeat
+import math
+from random import random
+from tqdm.auto import tqdm
+from typing import Callable, Optional, List, Dict
+from copy import deepcopy
+from functools import partial
+from models.mask_transformer.tools import *
+from torch.distributions.categorical import Categorical
+
+class InputProcess(nn.Module):
+ def __init__(self, input_feats, latent_dim):
+ super().__init__()
+ self.input_feats = input_feats
+ self.latent_dim = latent_dim
+ self.poseEmbedding = nn.Linear(self.input_feats, self.latent_dim)
+
+ def forward(self, x):
+ # [bs, ntokens, input_feats]
+ x = x.permute((1, 0, 2)) # [seqen, bs, input_feats]
+ # print(x.shape)
+ x = self.poseEmbedding(x) # [seqlen, bs, d]
+ return x
+
+class PositionalEncoding(nn.Module):
+ #Borrow from MDM, the same as above, but add dropout, exponential may improve precision
+ def __init__(self, d_model, dropout=0.1, max_len=5000):
+ super(PositionalEncoding, self).__init__()
+ self.dropout = nn.Dropout(p=dropout)
+
+ pe = torch.zeros(max_len, d_model)
+ position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
+ div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
+ pe[:, 0::2] = torch.sin(position * div_term)
+ pe[:, 1::2] = torch.cos(position * div_term)
+ pe = pe.unsqueeze(0).transpose(0, 1) #[max_len, 1, d_model]
+
+ self.register_buffer('pe', pe)
+
+ def forward(self, x):
+ # not used in the final model
+ x = x + self.pe[:x.shape[0], :]
+ return self.dropout(x)
+
+class OutputProcess_Bert(nn.Module):
+ def __init__(self, out_feats, latent_dim):
+ super().__init__()
+ self.dense = nn.Linear(latent_dim, latent_dim)
+ self.transform_act_fn = F.gelu
+ self.LayerNorm = nn.LayerNorm(latent_dim, eps=1e-12)
+ self.poseFinal = nn.Linear(latent_dim, out_feats) #Bias!
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ output = self.poseFinal(hidden_states) # [seqlen, bs, out_feats]
+ output = output.permute(1, 2, 0) # [bs, c, seqlen]
+ return output
+
+class OutputProcess(nn.Module):
+ def __init__(self, out_feats, latent_dim):
+ super().__init__()
+ self.dense = nn.Linear(latent_dim, latent_dim)
+ self.transform_act_fn = F.gelu
+ self.LayerNorm = nn.LayerNorm(latent_dim, eps=1e-12)
+ self.poseFinal = nn.Linear(latent_dim, out_feats) #Bias!
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ output = self.poseFinal(hidden_states) # [seqlen, bs, out_feats]
+ output = output.permute(1, 2, 0) # [bs, e, seqlen]
+ return output
+
+
+class MaskTransformer(nn.Module):
+ def __init__(self, code_dim, cond_mode, latent_dim=256, ff_size=1024, num_layers=8,
+ num_heads=4, dropout=0.1, clip_dim=512, cond_drop_prob=0.1,
+ clip_version=None, opt=None, **kargs):
+ super(MaskTransformer, self).__init__()
+ print(f'latent_dim: {latent_dim}, ff_size: {ff_size}, nlayers: {num_layers}, nheads: {num_heads}, dropout: {dropout}')
+
+ self.code_dim = code_dim
+ self.latent_dim = latent_dim
+ self.clip_dim = clip_dim
+ self.dropout = dropout
+ self.opt = opt
+
+ self.cond_mode = cond_mode
+ self.cond_drop_prob = cond_drop_prob
+
+ if self.cond_mode == 'action':
+ assert 'num_actions' in kargs
+ self.num_actions = kargs.get('num_actions', 1)
+
+ '''
+ Preparing Networks
+ '''
+ self.input_process = InputProcess(self.code_dim, self.latent_dim)
+ self.position_enc = PositionalEncoding(self.latent_dim, self.dropout)
+
+ seqTransEncoderLayer = nn.TransformerEncoderLayer(d_model=self.latent_dim,
+ nhead=num_heads,
+ dim_feedforward=ff_size,
+ dropout=dropout,
+ activation='gelu')
+
+ self.seqTransEncoder = nn.TransformerEncoder(seqTransEncoderLayer,
+ num_layers=num_layers)
+
+ self.encode_action = partial(F.one_hot, num_classes=self.num_actions)
+
+ # if self.cond_mode != 'no_cond':
+ if self.cond_mode == 'text':
+ self.cond_emb = nn.Linear(self.clip_dim, self.latent_dim)
+ elif self.cond_mode == 'action':
+ self.cond_emb = nn.Linear(self.num_actions, self.latent_dim)
+ elif self.cond_mode == 'uncond':
+ self.cond_emb = nn.Identity()
+ else:
+ raise KeyError("Unsupported condition mode!!!")
+
+
+ _num_tokens = opt.num_tokens + 2 # two dummy tokens, one for masking, one for padding
+ self.mask_id = opt.num_tokens
+ self.pad_id = opt.num_tokens + 1
+
+ self.output_process = OutputProcess_Bert(out_feats=opt.num_tokens, latent_dim=latent_dim)
+
+ self.token_emb = nn.Embedding(_num_tokens, self.code_dim)
+
+ self.apply(self.__init_weights)
+
+ '''
+ Preparing frozen weights
+ '''
+
+ if self.cond_mode == 'text':
+ print('Loading CLIP...')
+ self.clip_version = clip_version
+ self.clip_model = self.load_and_freeze_clip(clip_version)
+
+ self.noise_schedule = cosine_schedule
+
+ def load_and_freeze_token_emb(self, codebook):
+ '''
+ :param codebook: (c, d)
+ :return:
+ '''
+ assert self.training, 'Only necessary in training mode'
+ c, d = codebook.shape
+ self.token_emb.weight = nn.Parameter(torch.cat([codebook, torch.zeros(size=(2, d), device=codebook.device)], dim=0)) #add two dummy tokens, 0 vectors
+ self.token_emb.requires_grad_(False)
+ # self.token_emb.weight.requires_grad = False
+ # self.token_emb_ready = True
+ print("Token embedding initialized!")
+
+ def __init_weights(self, module):
+ if isinstance(module, (nn.Linear, nn.Embedding)):
+ module.weight.data.normal_(mean=0.0, std=0.02)
+ if isinstance(module, nn.Linear) and module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+ def parameters_wo_clip(self):
+ return [p for name, p in self.named_parameters() if not name.startswith('clip_model.')]
+
+ def load_and_freeze_clip(self, clip_version):
+ clip_model, clip_preprocess = clip.load(clip_version, device='cpu',
+ jit=False) # Must set jit=False for training
+ # Cannot run on cpu
+ clip.model.convert_weights(
+ clip_model) # Actually this line is unnecessary since clip by default already on float16
+ # Date 0707: It's necessary, only unecessary when load directly to gpu. Disable if need to run on cpu
+
+ # Freeze CLIP weights
+ clip_model.eval()
+ for p in clip_model.parameters():
+ p.requires_grad = False
+
+ return clip_model
+
+ def encode_text(self, raw_text):
+ device = next(self.parameters()).device
+ text = clip.tokenize(raw_text, truncate=True).to(device)
+ feat_clip_text = self.clip_model.encode_text(text).float()
+ return feat_clip_text
+
+ def mask_cond(self, cond, force_mask=False):
+ bs, d = cond.shape
+ if force_mask:
+ return torch.zeros_like(cond)
+ elif self.training and self.cond_drop_prob > 0.:
+ mask = torch.bernoulli(torch.ones(bs, device=cond.device) * self.cond_drop_prob).view(bs, 1)
+ return cond * (1. - mask)
+ else:
+ return cond
+
+ def trans_forward(self, motion_ids, cond, padding_mask, force_mask=False):
+ '''
+ :param motion_ids: (b, seqlen)
+ :padding_mask: (b, seqlen), all pad positions are TRUE else FALSE
+ :param cond: (b, embed_dim) for text, (b, num_actions) for action
+ :param force_mask: boolean
+ :return:
+ -logits: (b, num_token, seqlen)
+ '''
+
+ cond = self.mask_cond(cond, force_mask=force_mask)
+
+ # print(motion_ids.shape)
+ x = self.token_emb(motion_ids)
+ # print(x.shape)
+ # (b, seqlen, d) -> (seqlen, b, latent_dim)
+ x = self.input_process(x)
+
+ cond = self.cond_emb(cond).unsqueeze(0) #(1, b, latent_dim)
+
+ x = self.position_enc(x)
+ xseq = torch.cat([cond, x], dim=0) #(seqlen+1, b, latent_dim)
+
+ padding_mask = torch.cat([torch.zeros_like(padding_mask[:, 0:1]), padding_mask], dim=1) #(b, seqlen+1)
+ # print(xseq.shape, padding_mask.shape)
+
+ # print(padding_mask.shape, xseq.shape)
+
+ output = self.seqTransEncoder(xseq, src_key_padding_mask=padding_mask)[1:] #(seqlen, b, e)
+ logits = self.output_process(output) #(seqlen, b, e) -> (b, ntoken, seqlen)
+ return logits
+
+ def forward(self, ids, y, m_lens):
+ '''
+ :param ids: (b, n)
+ :param y: raw text for cond_mode=text, (b, ) for cond_mode=action
+ :m_lens: (b,)
+ :return:
+ '''
+
+ bs, ntokens = ids.shape
+ device = ids.device
+
+ # Positions that are PADDED are ALL FALSE
+ non_pad_mask = lengths_to_mask(m_lens, ntokens) #(b, n)
+ ids = torch.where(non_pad_mask, ids, self.pad_id)
+
+ force_mask = False
+ if self.cond_mode == 'text':
+ with torch.no_grad():
+ cond_vector = self.encode_text(y)
+ elif self.cond_mode == 'action':
+ cond_vector = self.enc_action(y).to(device).float()
+ elif self.cond_mode == 'uncond':
+ cond_vector = torch.zeros(bs, self.latent_dim).float().to(device)
+ force_mask = True
+ else:
+ raise NotImplementedError("Unsupported condition mode!!!")
+
+
+ '''
+ Prepare mask
+ '''
+ rand_time = uniform((bs,), device=device)
+ rand_mask_probs = self.noise_schedule(rand_time)
+ num_token_masked = (ntokens * rand_mask_probs).round().clamp(min=1)
+
+ batch_randperm = torch.rand((bs, ntokens), device=device).argsort(dim=-1)
+ # Positions to be MASKED are ALL TRUE
+ mask = batch_randperm < num_token_masked.unsqueeze(-1)
+
+ # Positions to be MASKED must also be NON-PADDED
+ mask &= non_pad_mask
+
+ # Note this is our training target, not input
+ labels = torch.where(mask, ids, self.mask_id)
+
+ x_ids = ids.clone()
+
+ # Further Apply Bert Masking Scheme
+ # Step 1: 10% replace with an incorrect token
+ mask_rid = get_mask_subset_prob(mask, 0.1)
+ rand_id = torch.randint_like(x_ids, high=self.opt.num_tokens)
+ x_ids = torch.where(mask_rid, rand_id, x_ids)
+ # Step 2: 90% x 10% replace with correct token, and 90% x 88% replace with mask token
+ mask_mid = get_mask_subset_prob(mask & ~mask_rid, 0.88)
+
+ # mask_mid = mask
+
+ x_ids = torch.where(mask_mid, self.mask_id, x_ids)
+
+ logits = self.trans_forward(x_ids, cond_vector, ~non_pad_mask, force_mask)
+ ce_loss, pred_id, acc = cal_performance(logits, labels, ignore_index=self.mask_id)
+
+ return ce_loss, pred_id, acc
+
+ def forward_with_cond_scale(self,
+ motion_ids,
+ cond_vector,
+ padding_mask,
+ cond_scale=3,
+ force_mask=False):
+ # bs = motion_ids.shape[0]
+ # if cond_scale == 1:
+ if force_mask:
+ return self.trans_forward(motion_ids, cond_vector, padding_mask, force_mask=True)
+
+ logits = self.trans_forward(motion_ids, cond_vector, padding_mask)
+ if cond_scale == 1:
+ return logits
+
+ aux_logits = self.trans_forward(motion_ids, cond_vector, padding_mask, force_mask=True)
+
+ scaled_logits = aux_logits + (logits - aux_logits) * cond_scale
+ return scaled_logits
+
+ @torch.no_grad()
+ @eval_decorator
+ def generate(self,
+ conds,
+ m_lens,
+ timesteps: int,
+ cond_scale: int,
+ temperature=1,
+ topk_filter_thres=0.9,
+ gsample=False,
+ force_mask=False
+ ):
+ # print(self.opt.num_quantizers)
+ # assert len(timesteps) >= len(cond_scales) == self.opt.num_quantizers
+
+ device = next(self.parameters()).device
+ seq_len = max(m_lens)
+ batch_size = len(m_lens)
+
+ if self.cond_mode == 'text':
+ with torch.no_grad():
+ cond_vector = self.encode_text(conds)
+ elif self.cond_mode == 'action':
+ cond_vector = self.enc_action(conds).to(device)
+ elif self.cond_mode == 'uncond':
+ cond_vector = torch.zeros(batch_size, self.latent_dim).float().to(device)
+ else:
+ raise NotImplementedError("Unsupported condition mode!!!")
+
+ padding_mask = ~lengths_to_mask(m_lens, seq_len)
+ # print(padding_mask.shape, )
+
+ # Start from all tokens being masked
+ ids = torch.where(padding_mask, self.pad_id, self.mask_id)
+ scores = torch.where(padding_mask, 1e5, 0.)
+ starting_temperature = temperature
+
+ for timestep, steps_until_x0 in zip(torch.linspace(0, 1, timesteps, device=device), reversed(range(timesteps))):
+ # 0 < timestep < 1
+ rand_mask_prob = self.noise_schedule(timestep) # Tensor
+
+ '''
+ Maskout, and cope with variable length
+ '''
+ # fix: the ratio regarding lengths, instead of seq_len
+ num_token_masked = torch.round(rand_mask_prob * m_lens).clamp(min=1) # (b, )
+
+ # select num_token_masked tokens with lowest scores to be masked
+ sorted_indices = scores.argsort(
+ dim=1) # (b, k), sorted_indices[i, j] = the index of j-th lowest element in scores on dim=1
+ ranks = sorted_indices.argsort(dim=1) # (b, k), rank[i, j] = the rank (0: lowest) of scores[i, j] on dim=1
+ is_mask = (ranks < num_token_masked.unsqueeze(-1))
+ ids = torch.where(is_mask, self.mask_id, ids)
+
+ '''
+ Preparing input
+ '''
+ # (b, num_token, seqlen)
+ logits = self.forward_with_cond_scale(ids, cond_vector=cond_vector,
+ padding_mask=padding_mask,
+ cond_scale=cond_scale,
+ force_mask=force_mask)
+
+ logits = logits.permute(0, 2, 1) # (b, seqlen, ntoken)
+ # print(logits.shape, self.opt.num_tokens)
+ # clean low prob token
+ filtered_logits = top_k(logits, topk_filter_thres, dim=-1)
+
+ '''
+ Update ids
+ '''
+ # if force_mask:
+ temperature = starting_temperature
+ # else:
+ # temperature = starting_temperature * (steps_until_x0 / timesteps)
+ # temperature = max(temperature, 1e-4)
+ # print(filtered_logits.shape)
+ # temperature is annealed, gradually reducing temperature as well as randomness
+ if gsample: # use gumbel_softmax sampling
+ # print("1111")
+ pred_ids = gumbel_sample(filtered_logits, temperature=temperature, dim=-1) # (b, seqlen)
+ else: # use multinomial sampling
+ # print("2222")
+ probs = F.softmax(filtered_logits, dim=-1) # (b, seqlen, ntoken)
+ # print(temperature, starting_temperature, steps_until_x0, timesteps)
+ # print(probs / temperature)
+ pred_ids = Categorical(probs / temperature).sample() # (b, seqlen)
+
+ # print(pred_ids.max(), pred_ids.min())
+ # if pred_ids.
+ ids = torch.where(is_mask, pred_ids, ids)
+
+ '''
+ Updating scores
+ '''
+ probs_without_temperature = logits.softmax(dim=-1) # (b, seqlen, ntoken)
+ scores = probs_without_temperature.gather(2, pred_ids.unsqueeze(dim=-1)) # (b, seqlen, 1)
+ scores = scores.squeeze(-1) # (b, seqlen)
+
+ # We do not want to re-mask the previously kept tokens, or pad tokens
+ scores = scores.masked_fill(~is_mask, 1e5)
+
+ ids = torch.where(padding_mask, -1, ids)
+ # print("Final", ids.max(), ids.min())
+ return ids
+
+
+ @torch.no_grad()
+ @eval_decorator
+ def edit(self,
+ conds,
+ tokens,
+ m_lens,
+ timesteps: int,
+ cond_scale: int,
+ temperature=1,
+ topk_filter_thres=0.9,
+ gsample=False,
+ force_mask=False,
+ edit_mask=None,
+ padding_mask=None,
+ ):
+
+ assert edit_mask.shape == tokens.shape if edit_mask is not None else True
+ device = next(self.parameters()).device
+ seq_len = tokens.shape[1]
+
+ if self.cond_mode == 'text':
+ with torch.no_grad():
+ cond_vector = self.encode_text(conds)
+ elif self.cond_mode == 'action':
+ cond_vector = self.enc_action(conds).to(device)
+ elif self.cond_mode == 'uncond':
+ cond_vector = torch.zeros(1, self.latent_dim).float().to(device)
+ else:
+ raise NotImplementedError("Unsupported condition mode!!!")
+
+ if padding_mask == None:
+ padding_mask = ~lengths_to_mask(m_lens, seq_len)
+
+ # Start from all tokens being masked
+ if edit_mask == None:
+ mask_free = True
+ ids = torch.where(padding_mask, self.pad_id, tokens)
+ edit_mask = torch.ones_like(padding_mask)
+ edit_mask = edit_mask & ~padding_mask
+ edit_len = edit_mask.sum(dim=-1)
+ scores = torch.where(edit_mask, 0., 1e5)
+ else:
+ mask_free = False
+ edit_mask = edit_mask & ~padding_mask
+ edit_len = edit_mask.sum(dim=-1)
+ ids = torch.where(edit_mask, self.mask_id, tokens)
+ scores = torch.where(edit_mask, 0., 1e5)
+ starting_temperature = temperature
+
+ for timestep, steps_until_x0 in zip(torch.linspace(0, 1, timesteps, device=device), reversed(range(timesteps))):
+ # 0 < timestep < 1
+ rand_mask_prob = 0.16 if mask_free else self.noise_schedule(timestep) # Tensor
+
+ '''
+ Maskout, and cope with variable length
+ '''
+ # fix: the ratio regarding lengths, instead of seq_len
+ num_token_masked = torch.round(rand_mask_prob * edit_len).clamp(min=1) # (b, )
+
+ # select num_token_masked tokens with lowest scores to be masked
+ sorted_indices = scores.argsort(
+ dim=1) # (b, k), sorted_indices[i, j] = the index of j-th lowest element in scores on dim=1
+ ranks = sorted_indices.argsort(dim=1) # (b, k), rank[i, j] = the rank (0: lowest) of scores[i, j] on dim=1
+ is_mask = (ranks < num_token_masked.unsqueeze(-1))
+ # is_mask = (torch.rand_like(scores) < 0.8) * ~padding_mask if mask_free else is_mask
+ ids = torch.where(is_mask, self.mask_id, ids)
+
+ '''
+ Preparing input
+ '''
+ # (b, num_token, seqlen)
+ logits = self.forward_with_cond_scale(ids, cond_vector=cond_vector,
+ padding_mask=padding_mask,
+ cond_scale=cond_scale,
+ force_mask=force_mask)
+
+ logits = logits.permute(0, 2, 1) # (b, seqlen, ntoken)
+ # print(logits.shape, self.opt.num_tokens)
+ # clean low prob token
+ filtered_logits = top_k(logits, topk_filter_thres, dim=-1)
+
+ '''
+ Update ids
+ '''
+ # if force_mask:
+ temperature = starting_temperature
+ # else:
+ # temperature = starting_temperature * (steps_until_x0 / timesteps)
+ # temperature = max(temperature, 1e-4)
+ # print(filtered_logits.shape)
+ # temperature is annealed, gradually reducing temperature as well as randomness
+ if gsample: # use gumbel_softmax sampling
+ # print("1111")
+ pred_ids = gumbel_sample(filtered_logits, temperature=temperature, dim=-1) # (b, seqlen)
+ else: # use multinomial sampling
+ # print("2222")
+ probs = F.softmax(filtered_logits, dim=-1) # (b, seqlen, ntoken)
+ # print(temperature, starting_temperature, steps_until_x0, timesteps)
+ # print(probs / temperature)
+ pred_ids = Categorical(probs / temperature).sample() # (b, seqlen)
+
+ # print(pred_ids.max(), pred_ids.min())
+ # if pred_ids.
+ ids = torch.where(is_mask, pred_ids, ids)
+
+ '''
+ Updating scores
+ '''
+ probs_without_temperature = logits.softmax(dim=-1) # (b, seqlen, ntoken)
+ scores = probs_without_temperature.gather(2, pred_ids.unsqueeze(dim=-1)) # (b, seqlen, 1)
+ scores = scores.squeeze(-1) # (b, seqlen)
+
+ # We do not want to re-mask the previously kept tokens, or pad tokens
+ scores = scores.masked_fill(~edit_mask, 1e5) if mask_free else scores.masked_fill(~is_mask, 1e5)
+
+ ids = torch.where(padding_mask, -1, ids)
+ # print("Final", ids.max(), ids.min())
+ return ids
+
+ @torch.no_grad()
+ @eval_decorator
+ def edit_beta(self,
+ conds,
+ conds_og,
+ tokens,
+ m_lens,
+ cond_scale: int,
+ force_mask=False,
+ ):
+
+ device = next(self.parameters()).device
+ seq_len = tokens.shape[1]
+
+ if self.cond_mode == 'text':
+ with torch.no_grad():
+ cond_vector = self.encode_text(conds)
+ if conds_og is not None:
+ cond_vector_og = self.encode_text(conds_og)
+ else:
+ cond_vector_og = None
+ elif self.cond_mode == 'action':
+ cond_vector = self.enc_action(conds).to(device)
+ if conds_og is not None:
+ cond_vector_og = self.enc_action(conds_og).to(device)
+ else:
+ cond_vector_og = None
+ else:
+ raise NotImplementedError("Unsupported condition mode!!!")
+
+ padding_mask = ~lengths_to_mask(m_lens, seq_len)
+
+ # Start from all tokens being masked
+ ids = torch.where(padding_mask, self.pad_id, tokens) # Do not mask anything
+
+ '''
+ Preparing input
+ '''
+ # (b, num_token, seqlen)
+ logits = self.forward_with_cond_scale(ids,
+ cond_vector=cond_vector,
+ cond_vector_neg=cond_vector_og,
+ padding_mask=padding_mask,
+ cond_scale=cond_scale,
+ force_mask=force_mask)
+
+ logits = logits.permute(0, 2, 1) # (b, seqlen, ntoken)
+
+ '''
+ Updating scores
+ '''
+ probs_without_temperature = logits.softmax(dim=-1) # (b, seqlen, ntoken)
+ tokens[tokens == -1] = 0 # just to get through an error when index = -1 using gather
+ og_tokens_scores = probs_without_temperature.gather(2, tokens.unsqueeze(dim=-1)) # (b, seqlen, 1)
+ og_tokens_scores = og_tokens_scores.squeeze(-1) # (b, seqlen)
+
+ return og_tokens_scores
+
+
+class ResidualTransformer(nn.Module):
+ def __init__(self, code_dim, cond_mode, latent_dim=256, ff_size=1024, num_layers=8, cond_drop_prob=0.1,
+ num_heads=4, dropout=0.1, clip_dim=512, shared_codebook=False, share_weight=False,
+ clip_version=None, opt=None, **kargs):
+ super(ResidualTransformer, self).__init__()
+ print(f'latent_dim: {latent_dim}, ff_size: {ff_size}, nlayers: {num_layers}, nheads: {num_heads}, dropout: {dropout}')
+
+ # assert shared_codebook == True, "Only support shared codebook right now!"
+
+ self.code_dim = code_dim
+ self.latent_dim = latent_dim
+ self.clip_dim = clip_dim
+ self.dropout = dropout
+ self.opt = opt
+
+ self.cond_mode = cond_mode
+ # self.cond_drop_prob = cond_drop_prob
+
+ if self.cond_mode == 'action':
+ assert 'num_actions' in kargs
+ self.num_actions = kargs.get('num_actions', 1)
+ self.cond_drop_prob = cond_drop_prob
+
+ '''
+ Preparing Networks
+ '''
+ self.input_process = InputProcess(self.code_dim, self.latent_dim)
+ self.position_enc = PositionalEncoding(self.latent_dim, self.dropout)
+
+ seqTransEncoderLayer = nn.TransformerEncoderLayer(d_model=self.latent_dim,
+ nhead=num_heads,
+ dim_feedforward=ff_size,
+ dropout=dropout,
+ activation='gelu')
+
+ self.seqTransEncoder = nn.TransformerEncoder(seqTransEncoderLayer,
+ num_layers=num_layers)
+
+ self.encode_quant = partial(F.one_hot, num_classes=self.opt.num_quantizers)
+ self.encode_action = partial(F.one_hot, num_classes=self.num_actions)
+
+ self.quant_emb = nn.Linear(self.opt.num_quantizers, self.latent_dim)
+ # if self.cond_mode != 'no_cond':
+ if self.cond_mode == 'text':
+ self.cond_emb = nn.Linear(self.clip_dim, self.latent_dim)
+ elif self.cond_mode == 'action':
+ self.cond_emb = nn.Linear(self.num_actions, self.latent_dim)
+ else:
+ raise KeyError("Unsupported condition mode!!!")
+
+
+ _num_tokens = opt.num_tokens + 1 # one dummy tokens for padding
+ self.pad_id = opt.num_tokens
+
+ # self.output_process = OutputProcess_Bert(out_feats=opt.num_tokens, latent_dim=latent_dim)
+ self.output_process = OutputProcess(out_feats=code_dim, latent_dim=latent_dim)
+
+ if shared_codebook:
+ token_embed = nn.Parameter(torch.normal(mean=0, std=0.02, size=(_num_tokens, code_dim)))
+ self.token_embed_weight = token_embed.expand(opt.num_quantizers-1, _num_tokens, code_dim)
+ if share_weight:
+ self.output_proj_weight = self.token_embed_weight
+ self.output_proj_bias = None
+ else:
+ output_proj = nn.Parameter(torch.normal(mean=0, std=0.02, size=(_num_tokens, code_dim)))
+ output_bias = nn.Parameter(torch.zeros(size=(_num_tokens,)))
+ # self.output_proj_bias = 0
+ self.output_proj_weight = output_proj.expand(opt.num_quantizers-1, _num_tokens, code_dim)
+ self.output_proj_bias = output_bias.expand(opt.num_quantizers-1, _num_tokens)
+
+ else:
+ if share_weight:
+ self.embed_proj_shared_weight = nn.Parameter(torch.normal(mean=0, std=0.02, size=(opt.num_quantizers - 2, _num_tokens, code_dim)))
+ self.token_embed_weight_ = nn.Parameter(torch.normal(mean=0, std=0.02, size=(1, _num_tokens, code_dim)))
+ self.output_proj_weight_ = nn.Parameter(torch.normal(mean=0, std=0.02, size=(1, _num_tokens, code_dim)))
+ self.output_proj_bias = None
+ self.registered = False
+ else:
+ output_proj_weight = torch.normal(mean=0, std=0.02,
+ size=(opt.num_quantizers - 1, _num_tokens, code_dim))
+
+ self.output_proj_weight = nn.Parameter(output_proj_weight)
+ self.output_proj_bias = nn.Parameter(torch.zeros(size=(opt.num_quantizers, _num_tokens)))
+ token_embed_weight = torch.normal(mean=0, std=0.02,
+ size=(opt.num_quantizers - 1, _num_tokens, code_dim))
+ self.token_embed_weight = nn.Parameter(token_embed_weight)
+
+ self.apply(self.__init_weights)
+ self.shared_codebook = shared_codebook
+ self.share_weight = share_weight
+
+ if self.cond_mode == 'text':
+ print('Loading CLIP...')
+ self.clip_version = clip_version
+ self.clip_model = self.load_and_freeze_clip(clip_version)
+
+ # def
+
+ def mask_cond(self, cond, force_mask=False):
+ bs, d = cond.shape
+ if force_mask:
+ return torch.zeros_like(cond)
+ elif self.training and self.cond_drop_prob > 0.:
+ mask = torch.bernoulli(torch.ones(bs, device=cond.device) * self.cond_drop_prob).view(bs, 1)
+ return cond * (1. - mask)
+ else:
+ return cond
+
+ def __init_weights(self, module):
+ if isinstance(module, (nn.Linear, nn.Embedding)):
+ module.weight.data.normal_(mean=0.0, std=0.02)
+ if isinstance(module, nn.Linear) and module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+ def parameters_wo_clip(self):
+ return [p for name, p in self.named_parameters() if not name.startswith('clip_model.')]
+
+ def load_and_freeze_clip(self, clip_version):
+ clip_model, clip_preprocess = clip.load(clip_version, device='cpu',
+ jit=False) # Must set jit=False for training
+ # Cannot run on cpu
+ clip.model.convert_weights(
+ clip_model) # Actually this line is unnecessary since clip by default already on float16
+ # Date 0707: It's necessary, only unecessary when load directly to gpu. Disable if need to run on cpu
+
+ # Freeze CLIP weights
+ clip_model.eval()
+ for p in clip_model.parameters():
+ p.requires_grad = False
+
+ return clip_model
+
+ def encode_text(self, raw_text):
+ device = next(self.parameters()).device
+ text = clip.tokenize(raw_text, truncate=True).to(device)
+ feat_clip_text = self.clip_model.encode_text(text).float()
+ return feat_clip_text
+
+
+ def q_schedule(self, bs, low, high):
+ noise = uniform((bs,), device=self.opt.device)
+ schedule = 1 - cosine_schedule(noise)
+ return torch.round(schedule * (high - low)) + low
+
+ def process_embed_proj_weight(self):
+ if self.share_weight and (not self.shared_codebook):
+ # if not self.registered:
+ self.output_proj_weight = torch.cat([self.embed_proj_shared_weight, self.output_proj_weight_], dim=0)
+ self.token_embed_weight = torch.cat([self.token_embed_weight_, self.embed_proj_shared_weight], dim=0)
+ # self.registered = True
+
+ def output_project(self, logits, qids):
+ '''
+ :logits: (bs, code_dim, seqlen)
+ :qids: (bs)
+
+ :return:
+ -logits (bs, ntoken, seqlen)
+ '''
+ # (num_qlayers-1, num_token, code_dim) -> (bs, ntoken, code_dim)
+ output_proj_weight = self.output_proj_weight[qids]
+ # (num_qlayers, ntoken) -> (bs, ntoken)
+ output_proj_bias = None if self.output_proj_bias is None else self.output_proj_bias[qids]
+
+ output = torch.einsum('bnc, bcs->bns', output_proj_weight, logits)
+ if output_proj_bias is not None:
+ output += output + output_proj_bias.unsqueeze(-1)
+ return output
+
+
+
+ def trans_forward(self, motion_codes, qids, cond, padding_mask, force_mask=False):
+ '''
+ :param motion_codes: (b, seqlen, d)
+ :padding_mask: (b, seqlen), all pad positions are TRUE else FALSE
+ :param qids: (b), quantizer layer ids
+ :param cond: (b, embed_dim) for text, (b, num_actions) for action
+ :return:
+ -logits: (b, num_token, seqlen)
+ '''
+ cond = self.mask_cond(cond, force_mask=force_mask)
+
+ # (b, seqlen, d) -> (seqlen, b, latent_dim)
+ x = self.input_process(motion_codes)
+
+ # (b, num_quantizer)
+ q_onehot = self.encode_quant(qids).float().to(x.device)
+
+ q_emb = self.quant_emb(q_onehot).unsqueeze(0) # (1, b, latent_dim)
+ cond = self.cond_emb(cond).unsqueeze(0) # (1, b, latent_dim)
+
+ x = self.position_enc(x)
+ xseq = torch.cat([cond, q_emb, x], dim=0) # (seqlen+2, b, latent_dim)
+
+ padding_mask = torch.cat([torch.zeros_like(padding_mask[:, 0:2]), padding_mask], dim=1) # (b, seqlen+2)
+ output = self.seqTransEncoder(xseq, src_key_padding_mask=padding_mask)[2:] # (seqlen, b, e)
+ logits = self.output_process(output)
+ return logits
+
+ def forward_with_cond_scale(self,
+ motion_codes,
+ q_id,
+ cond_vector,
+ padding_mask,
+ cond_scale=3,
+ force_mask=False):
+ bs = motion_codes.shape[0]
+ # if cond_scale == 1:
+ qids = torch.full((bs,), q_id, dtype=torch.long, device=motion_codes.device)
+ if force_mask:
+ logits = self.trans_forward(motion_codes, qids, cond_vector, padding_mask, force_mask=True)
+ logits = self.output_project(logits, qids-1)
+ return logits
+
+ logits = self.trans_forward(motion_codes, qids, cond_vector, padding_mask)
+ logits = self.output_project(logits, qids-1)
+ if cond_scale == 1:
+ return logits
+
+ aux_logits = self.trans_forward(motion_codes, qids, cond_vector, padding_mask, force_mask=True)
+ aux_logits = self.output_project(aux_logits, qids-1)
+
+ scaled_logits = aux_logits + (logits - aux_logits) * cond_scale
+ return scaled_logits
+
+ def forward(self, all_indices, y, m_lens):
+ '''
+ :param all_indices: (b, n, q)
+ :param y: raw text for cond_mode=text, (b, ) for cond_mode=action
+ :m_lens: (b,)
+ :return:
+ '''
+
+ self.process_embed_proj_weight()
+
+ bs, ntokens, num_quant_layers = all_indices.shape
+ device = all_indices.device
+
+ # Positions that are PADDED are ALL FALSE
+ non_pad_mask = lengths_to_mask(m_lens, ntokens) # (b, n)
+
+ q_non_pad_mask = repeat(non_pad_mask, 'b n -> b n q', q=num_quant_layers)
+ all_indices = torch.where(q_non_pad_mask, all_indices, self.pad_id) #(b, n, q)
+
+ # randomly sample quantization layers to work on, [1, num_q)
+ active_q_layers = q_schedule(bs, low=1, high=num_quant_layers, device=device)
+
+ # print(self.token_embed_weight.shape, all_indices.shape)
+ token_embed = repeat(self.token_embed_weight, 'q c d-> b c d q', b=bs)
+ gather_indices = repeat(all_indices[..., :-1], 'b n q -> b n d q', d=token_embed.shape[2])
+ # print(token_embed.shape, gather_indices.shape)
+ all_codes = token_embed.gather(1, gather_indices) # (b, n, d, q-1)
+
+ cumsum_codes = torch.cumsum(all_codes, dim=-1) #(b, n, d, q-1)
+
+ active_indices = all_indices[torch.arange(bs), :, active_q_layers] # (b, n)
+ history_sum = cumsum_codes[torch.arange(bs), :, :, active_q_layers - 1]
+
+ force_mask = False
+ if self.cond_mode == 'text':
+ with torch.no_grad():
+ cond_vector = self.encode_text(y)
+ elif self.cond_mode == 'action':
+ cond_vector = self.enc_action(y).to(device).float()
+ elif self.cond_mode == 'uncond':
+ cond_vector = torch.zeros(bs, self.latent_dim).float().to(device)
+ force_mask = True
+ else:
+ raise NotImplementedError("Unsupported condition mode!!!")
+
+ logits = self.trans_forward(history_sum, active_q_layers, cond_vector, ~non_pad_mask, force_mask)
+ logits = self.output_project(logits, active_q_layers-1)
+ ce_loss, pred_id, acc = cal_performance(logits, active_indices, ignore_index=self.pad_id)
+
+ return ce_loss, pred_id, acc
+
+ @torch.no_grad()
+ @eval_decorator
+ def generate(self,
+ motion_ids,
+ conds,
+ m_lens,
+ temperature=1,
+ topk_filter_thres=0.9,
+ cond_scale=2,
+ num_res_layers=-1, # If it's -1, use all.
+ ):
+
+ # print(self.opt.num_quantizers)
+ # assert len(timesteps) >= len(cond_scales) == self.opt.num_quantizers
+ self.process_embed_proj_weight()
+
+ device = next(self.parameters()).device
+ seq_len = motion_ids.shape[1]
+ batch_size = len(conds)
+
+ if self.cond_mode == 'text':
+ with torch.no_grad():
+ cond_vector = self.encode_text(conds)
+ elif self.cond_mode == 'action':
+ cond_vector = self.enc_action(conds).to(device)
+ elif self.cond_mode == 'uncond':
+ cond_vector = torch.zeros(batch_size, self.latent_dim).float().to(device)
+ else:
+ raise NotImplementedError("Unsupported condition mode!!!")
+
+ # token_embed = repeat(self.token_embed_weight, 'c d -> b c d', b=batch_size)
+ # gathered_ids = repeat(motion_ids, 'b n -> b n d', d=token_embed.shape[-1])
+ # history_sum = token_embed.gather(1, gathered_ids)
+
+ # print(pa, seq_len)
+ padding_mask = ~lengths_to_mask(m_lens, seq_len)
+ # print(padding_mask.shape, motion_ids.shape)
+ motion_ids = torch.where(padding_mask, self.pad_id, motion_ids)
+ all_indices = [motion_ids]
+ history_sum = 0
+ num_quant_layers = self.opt.num_quantizers if num_res_layers==-1 else num_res_layers+1
+
+ for i in range(1, num_quant_layers):
+ # print(f"--> Working on {i}-th quantizer")
+ # Start from all tokens being masked
+ # qids = torch.full((batch_size,), i, dtype=torch.long, device=motion_ids.device)
+ token_embed = self.token_embed_weight[i-1]
+ token_embed = repeat(token_embed, 'c d -> b c d', b=batch_size)
+ gathered_ids = repeat(motion_ids, 'b n -> b n d', d=token_embed.shape[-1])
+ history_sum += token_embed.gather(1, gathered_ids)
+
+ logits = self.forward_with_cond_scale(history_sum, i, cond_vector, padding_mask, cond_scale=cond_scale)
+ # logits = self.trans_forward(history_sum, qids, cond_vector, padding_mask)
+
+ logits = logits.permute(0, 2, 1) # (b, seqlen, ntoken)
+ # clean low prob token
+ filtered_logits = top_k(logits, topk_filter_thres, dim=-1)
+
+ pred_ids = gumbel_sample(filtered_logits, temperature=temperature, dim=-1) # (b, seqlen)
+
+ # probs = F.softmax(filtered_logits, dim=-1) # (b, seqlen, ntoken)
+ # # print(temperature, starting_temperature, steps_until_x0, timesteps)
+ # # print(probs / temperature)
+ # pred_ids = Categorical(probs / temperature).sample() # (b, seqlen)
+
+ ids = torch.where(padding_mask, self.pad_id, pred_ids)
+
+ motion_ids = ids
+ all_indices.append(ids)
+
+ all_indices = torch.stack(all_indices, dim=-1)
+ # padding_mask = repeat(padding_mask, 'b n -> b n q', q=all_indices.shape[-1])
+ # all_indices = torch.where(padding_mask, -1, all_indices)
+ all_indices = torch.where(all_indices==self.pad_id, -1, all_indices)
+ # all_indices = all_indices.masked_fill()
+ return all_indices
+
+ @torch.no_grad()
+ @eval_decorator
+ def edit(self,
+ motion_ids,
+ conds,
+ m_lens,
+ temperature=1,
+ topk_filter_thres=0.9,
+ cond_scale=2
+ ):
+
+ # print(self.opt.num_quantizers)
+ # assert len(timesteps) >= len(cond_scales) == self.opt.num_quantizers
+ self.process_embed_proj_weight()
+
+ device = next(self.parameters()).device
+ seq_len = motion_ids.shape[1]
+ batch_size = len(conds)
+
+ if self.cond_mode == 'text':
+ with torch.no_grad():
+ cond_vector = self.encode_text(conds)
+ elif self.cond_mode == 'action':
+ cond_vector = self.enc_action(conds).to(device)
+ elif self.cond_mode == 'uncond':
+ cond_vector = torch.zeros(batch_size, self.latent_dim).float().to(device)
+ else:
+ raise NotImplementedError("Unsupported condition mode!!!")
+
+ # token_embed = repeat(self.token_embed_weight, 'c d -> b c d', b=batch_size)
+ # gathered_ids = repeat(motion_ids, 'b n -> b n d', d=token_embed.shape[-1])
+ # history_sum = token_embed.gather(1, gathered_ids)
+
+ # print(pa, seq_len)
+ padding_mask = ~lengths_to_mask(m_lens, seq_len)
+ # print(padding_mask.shape, motion_ids.shape)
+ motion_ids = torch.where(padding_mask, self.pad_id, motion_ids)
+ all_indices = [motion_ids]
+ history_sum = 0
+
+ for i in range(1, self.opt.num_quantizers):
+ # print(f"--> Working on {i}-th quantizer")
+ # Start from all tokens being masked
+ # qids = torch.full((batch_size,), i, dtype=torch.long, device=motion_ids.device)
+ token_embed = self.token_embed_weight[i-1]
+ token_embed = repeat(token_embed, 'c d -> b c d', b=batch_size)
+ gathered_ids = repeat(motion_ids, 'b n -> b n d', d=token_embed.shape[-1])
+ history_sum += token_embed.gather(1, gathered_ids)
+
+ logits = self.forward_with_cond_scale(history_sum, i, cond_vector, padding_mask, cond_scale=cond_scale)
+ # logits = self.trans_forward(history_sum, qids, cond_vector, padding_mask)
+
+ logits = logits.permute(0, 2, 1) # (b, seqlen, ntoken)
+ # clean low prob token
+ filtered_logits = top_k(logits, topk_filter_thres, dim=-1)
+
+ pred_ids = gumbel_sample(filtered_logits, temperature=temperature, dim=-1) # (b, seqlen)
+
+ # probs = F.softmax(filtered_logits, dim=-1) # (b, seqlen, ntoken)
+ # # print(temperature, starting_temperature, steps_until_x0, timesteps)
+ # # print(probs / temperature)
+ # pred_ids = Categorical(probs / temperature).sample() # (b, seqlen)
+
+ ids = torch.where(padding_mask, self.pad_id, pred_ids)
+
+ motion_ids = ids
+ all_indices.append(ids)
+
+ all_indices = torch.stack(all_indices, dim=-1)
+ # padding_mask = repeat(padding_mask, 'b n -> b n q', q=all_indices.shape[-1])
+ # all_indices = torch.where(padding_mask, -1, all_indices)
+ all_indices = torch.where(all_indices==self.pad_id, -1, all_indices)
+ # all_indices = all_indices.masked_fill()
+ return all_indices
\ No newline at end of file
diff --git a/models/mask_transformer/transformer_trainer.py b/models/mask_transformer/transformer_trainer.py
new file mode 100644
index 0000000000000000000000000000000000000000..4b6c6c0e4f47789fb01762ea50b785d0acdf91da
--- /dev/null
+++ b/models/mask_transformer/transformer_trainer.py
@@ -0,0 +1,359 @@
+import torch
+from collections import defaultdict
+import torch.optim as optim
+# import tensorflow as tf
+from torch.utils.tensorboard import SummaryWriter
+from collections import OrderedDict
+from utils.utils import *
+from os.path import join as pjoin
+from utils.eval_t2m import evaluation_mask_transformer, evaluation_res_transformer
+from models.mask_transformer.tools import *
+
+from einops import rearrange, repeat
+
+def def_value():
+ return 0.0
+
+class MaskTransformerTrainer:
+ def __init__(self, args, t2m_transformer, vq_model):
+ self.opt = args
+ self.t2m_transformer = t2m_transformer
+ self.vq_model = vq_model
+ self.device = args.device
+ self.vq_model.eval()
+
+ if args.is_train:
+ self.logger = SummaryWriter(args.log_dir)
+
+
+ def update_lr_warm_up(self, nb_iter, warm_up_iter, lr):
+
+ current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1)
+ for param_group in self.opt_t2m_transformer.param_groups:
+ param_group["lr"] = current_lr
+
+ return current_lr
+
+
+ def forward(self, batch_data):
+
+ conds, motion, m_lens = batch_data
+ motion = motion.detach().float().to(self.device)
+ m_lens = m_lens.detach().long().to(self.device)
+
+ # (b, n, q)
+ code_idx, _ = self.vq_model.encode(motion)
+ m_lens = m_lens // 4
+
+ conds = conds.to(self.device).float() if torch.is_tensor(conds) else conds
+
+ # loss_dict = {}
+ # self.pred_ids = []
+ # self.acc = []
+
+ _loss, _pred_ids, _acc = self.t2m_transformer(code_idx[..., 0], conds, m_lens)
+
+ return _loss, _acc
+
+ def update(self, batch_data):
+ loss, acc = self.forward(batch_data)
+
+ self.opt_t2m_transformer.zero_grad()
+ loss.backward()
+ self.opt_t2m_transformer.step()
+ self.scheduler.step()
+
+ return loss.item(), acc
+
+ def save(self, file_name, ep, total_it):
+ t2m_trans_state_dict = self.t2m_transformer.state_dict()
+ clip_weights = [e for e in t2m_trans_state_dict.keys() if e.startswith('clip_model.')]
+ for e in clip_weights:
+ del t2m_trans_state_dict[e]
+ state = {
+ 't2m_transformer': t2m_trans_state_dict,
+ 'opt_t2m_transformer': self.opt_t2m_transformer.state_dict(),
+ 'scheduler':self.scheduler.state_dict(),
+ 'ep': ep,
+ 'total_it': total_it,
+ }
+ torch.save(state, file_name)
+
+ def resume(self, model_dir):
+ checkpoint = torch.load(model_dir, map_location=self.device)
+ missing_keys, unexpected_keys = self.t2m_transformer.load_state_dict(checkpoint['t2m_transformer'], strict=False)
+ assert len(unexpected_keys) == 0
+ assert all([k.startswith('clip_model.') for k in missing_keys])
+
+ try:
+ self.opt_t2m_transformer.load_state_dict(checkpoint['opt_t2m_transformer']) # Optimizer
+
+ self.scheduler.load_state_dict(checkpoint['scheduler']) # Scheduler
+ except:
+ print('Resume wo optimizer')
+ return checkpoint['ep'], checkpoint['total_it']
+
+ def train(self, train_loader, val_loader, eval_val_loader, eval_wrapper, plot_eval):
+ self.t2m_transformer.to(self.device)
+ self.vq_model.to(self.device)
+
+ self.opt_t2m_transformer = optim.AdamW(self.t2m_transformer.parameters(), betas=(0.9, 0.99), lr=self.opt.lr, weight_decay=1e-5)
+ self.scheduler = optim.lr_scheduler.MultiStepLR(self.opt_t2m_transformer,
+ milestones=self.opt.milestones,
+ gamma=self.opt.gamma)
+
+ epoch = 0
+ it = 0
+
+ if self.opt.is_continue:
+ model_dir = pjoin(self.opt.model_dir, 'latest.tar') # TODO
+ epoch, it = self.resume(model_dir)
+ print("Load model epoch:%d iterations:%d"%(epoch, it))
+
+ start_time = time.time()
+ total_iters = self.opt.max_epoch * len(train_loader)
+ print(f'Total Epochs: {self.opt.max_epoch}, Total Iters: {total_iters}')
+ print('Iters Per Epoch, Training: %04d, Validation: %03d' % (len(train_loader), len(val_loader)))
+ logs = defaultdict(def_value, OrderedDict())
+
+ best_fid, best_div, best_top1, best_top2, best_top3, best_matching, writer = evaluation_mask_transformer(
+ self.opt.save_root, eval_val_loader, self.t2m_transformer, self.vq_model, self.logger, epoch,
+ best_fid=100, best_div=100,
+ best_top1=0, best_top2=0, best_top3=0,
+ best_matching=100, eval_wrapper=eval_wrapper,
+ plot_func=plot_eval, save_ckpt=False, save_anim=False
+ )
+ best_acc = 0.
+
+ while epoch < self.opt.max_epoch:
+ self.t2m_transformer.train()
+ self.vq_model.eval()
+
+ for i, batch in enumerate(train_loader):
+ it += 1
+ if it < self.opt.warm_up_iter:
+ self.update_lr_warm_up(it, self.opt.warm_up_iter, self.opt.lr)
+
+ loss, acc = self.update(batch_data=batch)
+ logs['loss'] += loss
+ logs['acc'] += acc
+ logs['lr'] += self.opt_t2m_transformer.param_groups[0]['lr']
+
+ if it % self.opt.log_every == 0:
+ mean_loss = OrderedDict()
+ # self.logger.add_scalar('val_loss', val_loss, it)
+ # self.l
+ for tag, value in logs.items():
+ self.logger.add_scalar('Train/%s'%tag, value / self.opt.log_every, it)
+ mean_loss[tag] = value / self.opt.log_every
+ logs = defaultdict(def_value, OrderedDict())
+ print_current_loss(start_time, it, total_iters, mean_loss, epoch=epoch, inner_iter=i)
+
+ if it % self.opt.save_latest == 0:
+ self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)
+
+ self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)
+ epoch += 1
+
+ print('Validation time:')
+ self.vq_model.eval()
+ self.t2m_transformer.eval()
+
+ val_loss = []
+ val_acc = []
+ with torch.no_grad():
+ for i, batch_data in enumerate(val_loader):
+ loss, acc = self.forward(batch_data)
+ val_loss.append(loss.item())
+ val_acc.append(acc)
+
+ print(f"Validation loss:{np.mean(val_loss):.3f}, accuracy:{np.mean(val_acc):.3f}")
+
+ self.logger.add_scalar('Val/loss', np.mean(val_loss), epoch)
+ self.logger.add_scalar('Val/acc', np.mean(val_acc), epoch)
+
+ if np.mean(val_acc) > best_acc:
+ print(f"Improved accuracy from {best_acc:.02f} to {np.mean(val_acc)}!!!")
+ self.save(pjoin(self.opt.model_dir, 'net_best_acc.tar'), epoch, it)
+ best_acc = np.mean(val_acc)
+
+ best_fid, best_div, best_top1, best_top2, best_top3, best_matching, writer = evaluation_mask_transformer(
+ self.opt.save_root, eval_val_loader, self.t2m_transformer, self.vq_model, self.logger, epoch, best_fid=best_fid,
+ best_div=best_div, best_top1=best_top1, best_top2=best_top2, best_top3=best_top3,
+ best_matching=best_matching, eval_wrapper=eval_wrapper,
+ plot_func=plot_eval, save_ckpt=True, save_anim=(epoch%self.opt.eval_every_e==0)
+ )
+
+
+class ResidualTransformerTrainer:
+ def __init__(self, args, res_transformer, vq_model):
+ self.opt = args
+ self.res_transformer = res_transformer
+ self.vq_model = vq_model
+ self.device = args.device
+ self.vq_model.eval()
+
+ if args.is_train:
+ self.logger = SummaryWriter(args.log_dir)
+ # self.l1_criterion = torch.nn.SmoothL1Loss()
+
+
+ def update_lr_warm_up(self, nb_iter, warm_up_iter, lr):
+
+ current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1)
+ for param_group in self.opt_res_transformer.param_groups:
+ param_group["lr"] = current_lr
+
+ return current_lr
+
+
+ def forward(self, batch_data):
+
+ conds, motion, m_lens = batch_data
+ motion = motion.detach().float().to(self.device)
+ m_lens = m_lens.detach().long().to(self.device)
+
+ # (b, n, q), (q, b, n ,d)
+ code_idx, all_codes = self.vq_model.encode(motion)
+ m_lens = m_lens // 4
+
+ conds = conds.to(self.device).float() if torch.is_tensor(conds) else conds
+
+ ce_loss, pred_ids, acc = self.res_transformer(code_idx, conds, m_lens)
+
+ return ce_loss, acc
+
+ def update(self, batch_data):
+ loss, acc = self.forward(batch_data)
+
+ self.opt_res_transformer.zero_grad()
+ loss.backward()
+ self.opt_res_transformer.step()
+ self.scheduler.step()
+
+ return loss.item(), acc
+
+ def save(self, file_name, ep, total_it):
+ res_trans_state_dict = self.res_transformer.state_dict()
+ clip_weights = [e for e in res_trans_state_dict.keys() if e.startswith('clip_model.')]
+ for e in clip_weights:
+ del res_trans_state_dict[e]
+ state = {
+ 'res_transformer': res_trans_state_dict,
+ 'opt_res_transformer': self.opt_res_transformer.state_dict(),
+ 'scheduler':self.scheduler.state_dict(),
+ 'ep': ep,
+ 'total_it': total_it,
+ }
+ torch.save(state, file_name)
+
+ def resume(self, model_dir):
+ checkpoint = torch.load(model_dir, map_location=self.device)
+ missing_keys, unexpected_keys = self.res_transformer.load_state_dict(checkpoint['res_transformer'], strict=False)
+ assert len(unexpected_keys) == 0
+ assert all([k.startswith('clip_model.') for k in missing_keys])
+
+ try:
+ self.opt_res_transformer.load_state_dict(checkpoint['opt_res_transformer']) # Optimizer
+
+ self.scheduler.load_state_dict(checkpoint['scheduler']) # Scheduler
+ except:
+ print('Resume wo optimizer')
+ return checkpoint['ep'], checkpoint['total_it']
+
+ def train(self, train_loader, val_loader, eval_val_loader, eval_wrapper, plot_eval):
+ self.res_transformer.to(self.device)
+ self.vq_model.to(self.device)
+
+ self.opt_res_transformer = optim.AdamW(self.res_transformer.parameters(), betas=(0.9, 0.99), lr=self.opt.lr, weight_decay=1e-5)
+ self.scheduler = optim.lr_scheduler.MultiStepLR(self.opt_res_transformer,
+ milestones=self.opt.milestones,
+ gamma=self.opt.gamma)
+
+ epoch = 0
+ it = 0
+
+ if self.opt.is_continue:
+ model_dir = pjoin(self.opt.model_dir, 'latest.tar') # TODO
+ epoch, it = self.resume(model_dir)
+ print("Load model epoch:%d iterations:%d"%(epoch, it))
+
+ start_time = time.time()
+ total_iters = self.opt.max_epoch * len(train_loader)
+ print(f'Total Epochs: {self.opt.max_epoch}, Total Iters: {total_iters}')
+ print('Iters Per Epoch, Training: %04d, Validation: %03d' % (len(train_loader), len(val_loader)))
+ logs = defaultdict(def_value, OrderedDict())
+
+ best_fid, best_div, best_top1, best_top2, best_top3, best_matching, writer = evaluation_res_transformer(
+ self.opt.save_root, eval_val_loader, self.res_transformer, self.vq_model, self.logger, epoch,
+ best_fid=100, best_div=100,
+ best_top1=0, best_top2=0, best_top3=0,
+ best_matching=100, eval_wrapper=eval_wrapper,
+ plot_func=plot_eval, save_ckpt=False, save_anim=False
+ )
+ best_loss = 100
+ best_acc = 0
+
+ while epoch < self.opt.max_epoch:
+ self.res_transformer.train()
+ self.vq_model.eval()
+
+ for i, batch in enumerate(train_loader):
+ it += 1
+ if it < self.opt.warm_up_iter:
+ self.update_lr_warm_up(it, self.opt.warm_up_iter, self.opt.lr)
+
+ loss, acc = self.update(batch_data=batch)
+ logs['loss'] += loss
+ logs["acc"] += acc
+ logs['lr'] += self.opt_res_transformer.param_groups[0]['lr']
+
+ if it % self.opt.log_every == 0:
+ mean_loss = OrderedDict()
+ # self.logger.add_scalar('val_loss', val_loss, it)
+ # self.l
+ for tag, value in logs.items():
+ self.logger.add_scalar('Train/%s'%tag, value / self.opt.log_every, it)
+ mean_loss[tag] = value / self.opt.log_every
+ logs = defaultdict(def_value, OrderedDict())
+ print_current_loss(start_time, it, total_iters, mean_loss, epoch=epoch, inner_iter=i)
+
+ if it % self.opt.save_latest == 0:
+ self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)
+
+ epoch += 1
+ self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)
+
+ print('Validation time:')
+ self.vq_model.eval()
+ self.res_transformer.eval()
+
+ val_loss = []
+ val_acc = []
+ with torch.no_grad():
+ for i, batch_data in enumerate(val_loader):
+ loss, acc = self.forward(batch_data)
+ val_loss.append(loss.item())
+ val_acc.append(acc)
+
+ print(f"Validation loss:{np.mean(val_loss):.3f}, Accuracy:{np.mean(val_acc):.3f}")
+
+ self.logger.add_scalar('Val/loss', np.mean(val_loss), epoch)
+ self.logger.add_scalar('Val/acc', np.mean(val_acc), epoch)
+
+ if np.mean(val_loss) < best_loss:
+ print(f"Improved loss from {best_loss:.02f} to {np.mean(val_loss)}!!!")
+ self.save(pjoin(self.opt.model_dir, 'net_best_loss.tar'), epoch, it)
+ best_loss = np.mean(val_loss)
+
+ if np.mean(val_acc) > best_acc:
+ print(f"Improved acc from {best_acc:.02f} to {np.mean(val_acc)}!!!")
+ # self.save(pjoin(self.opt.model_dir, 'net_best_loss.tar'), epoch, it)
+ best_acc = np.mean(val_acc)
+
+ best_fid, best_div, best_top1, best_top2, best_top3, best_matching, writer = evaluation_res_transformer(
+ self.opt.save_root, eval_val_loader, self.res_transformer, self.vq_model, self.logger, epoch, best_fid=best_fid,
+ best_div=best_div, best_top1=best_top1, best_top2=best_top2, best_top3=best_top3,
+ best_matching=best_matching, eval_wrapper=eval_wrapper,
+ plot_func=plot_eval, save_ckpt=True, save_anim=(epoch%self.opt.eval_every_e==0)
+ )
\ No newline at end of file
diff --git a/models/t2m_eval_modules.py b/models/t2m_eval_modules.py
new file mode 100644
index 0000000000000000000000000000000000000000..87cbb730da08b9cc0ab4b0d52970ad08435d02dc
--- /dev/null
+++ b/models/t2m_eval_modules.py
@@ -0,0 +1,182 @@
+import torch
+import torch.nn as nn
+import numpy as np
+import time
+import math
+import random
+from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
+# from networks.layers import *
+
+
+def init_weight(m):
+ if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d):
+ nn.init.xavier_normal_(m.weight)
+ # m.bias.data.fill_(0.01)
+ if m.bias is not None:
+ nn.init.constant_(m.bias, 0)
+
+
+# batch_size, dimension and position
+# output: (batch_size, dim)
+def positional_encoding(batch_size, dim, pos):
+ assert batch_size == pos.shape[0]
+ positions_enc = np.array([
+ [pos[j] / np.power(10000, (i-i%2)/dim) for i in range(dim)]
+ for j in range(batch_size)
+ ], dtype=np.float32)
+ positions_enc[:, 0::2] = np.sin(positions_enc[:, 0::2])
+ positions_enc[:, 1::2] = np.cos(positions_enc[:, 1::2])
+ return torch.from_numpy(positions_enc).float()
+
+
+def get_padding_mask(batch_size, seq_len, cap_lens):
+ cap_lens = cap_lens.data.tolist()
+ mask_2d = torch.ones((batch_size, seq_len, seq_len), dtype=torch.float32)
+ for i, cap_len in enumerate(cap_lens):
+ mask_2d[i, :, :cap_len] = 0
+ return mask_2d.bool(), 1 - mask_2d[:, :, 0].clone()
+
+
+def top_k_logits(logits, k):
+ v, ix = torch.topk(logits, k)
+ out = logits.clone()
+ out[out < v[:, [-1]]] = -float('Inf')
+ return out
+
+
+class PositionalEncoding(nn.Module):
+
+ def __init__(self, d_model, max_len=300):
+ super(PositionalEncoding, self).__init__()
+
+ pe = torch.zeros(max_len, d_model)
+ position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
+ div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
+ pe[:, 0::2] = torch.sin(position * div_term)
+ pe[:, 1::2] = torch.cos(position * div_term)
+ # pe = pe.unsqueeze(0).transpose(0, 1)
+ self.register_buffer('pe', pe)
+
+ def forward(self, pos):
+ return self.pe[pos]
+
+
+class MovementConvEncoder(nn.Module):
+ def __init__(self, input_size, hidden_size, output_size):
+ super(MovementConvEncoder, self).__init__()
+ self.main = nn.Sequential(
+ nn.Conv1d(input_size, hidden_size, 4, 2, 1),
+ nn.Dropout(0.2, inplace=True),
+ nn.LeakyReLU(0.2, inplace=True),
+ nn.Conv1d(hidden_size, output_size, 4, 2, 1),
+ nn.Dropout(0.2, inplace=True),
+ nn.LeakyReLU(0.2, inplace=True),
+ )
+ self.out_net = nn.Linear(output_size, output_size)
+ self.main.apply(init_weight)
+ self.out_net.apply(init_weight)
+
+ def forward(self, inputs):
+ inputs = inputs.permute(0, 2, 1)
+ outputs = self.main(inputs).permute(0, 2, 1)
+ # print(outputs.shape)
+ return self.out_net(outputs)
+
+
+class MovementConvDecoder(nn.Module):
+ def __init__(self, input_size, hidden_size, output_size):
+ super(MovementConvDecoder, self).__init__()
+ self.main = nn.Sequential(
+ nn.ConvTranspose1d(input_size, hidden_size, 4, 2, 1),
+ # nn.Dropout(0.2, inplace=True),
+ nn.LeakyReLU(0.2, inplace=True),
+ nn.ConvTranspose1d(hidden_size, output_size, 4, 2, 1),
+ # nn.Dropout(0.2, inplace=True),
+ nn.LeakyReLU(0.2, inplace=True),
+ )
+ self.out_net = nn.Linear(output_size, output_size)
+
+ self.main.apply(init_weight)
+ self.out_net.apply(init_weight)
+
+ def forward(self, inputs):
+ inputs = inputs.permute(0, 2, 1)
+ outputs = self.main(inputs).permute(0, 2, 1)
+ return self.out_net(outputs)
+
+class TextEncoderBiGRUCo(nn.Module):
+ def __init__(self, word_size, pos_size, hidden_size, output_size, device):
+ super(TextEncoderBiGRUCo, self).__init__()
+ self.device = device
+
+ self.pos_emb = nn.Linear(pos_size, word_size)
+ self.input_emb = nn.Linear(word_size, hidden_size)
+ self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
+ self.output_net = nn.Sequential(
+ nn.Linear(hidden_size * 2, hidden_size),
+ nn.LayerNorm(hidden_size),
+ nn.LeakyReLU(0.2, inplace=True),
+ nn.Linear(hidden_size, output_size)
+ )
+
+ self.input_emb.apply(init_weight)
+ self.pos_emb.apply(init_weight)
+ self.output_net.apply(init_weight)
+ # self.linear2.apply(init_weight)
+ # self.batch_size = batch_size
+ self.hidden_size = hidden_size
+ self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
+
+ # input(batch_size, seq_len, dim)
+ def forward(self, word_embs, pos_onehot, cap_lens):
+ num_samples = word_embs.shape[0]
+
+ pos_embs = self.pos_emb(pos_onehot)
+ inputs = word_embs + pos_embs
+ input_embs = self.input_emb(inputs)
+ hidden = self.hidden.repeat(1, num_samples, 1)
+
+ cap_lens = cap_lens.data.tolist()
+ emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True)
+
+ gru_seq, gru_last = self.gru(emb, hidden)
+
+ gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
+
+ return self.output_net(gru_last)
+
+
+class MotionEncoderBiGRUCo(nn.Module):
+ def __init__(self, input_size, hidden_size, output_size, device):
+ super(MotionEncoderBiGRUCo, self).__init__()
+ self.device = device
+
+ self.input_emb = nn.Linear(input_size, hidden_size)
+ self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
+ self.output_net = nn.Sequential(
+ nn.Linear(hidden_size*2, hidden_size),
+ nn.LayerNorm(hidden_size),
+ nn.LeakyReLU(0.2, inplace=True),
+ nn.Linear(hidden_size, output_size)
+ )
+
+ self.input_emb.apply(init_weight)
+ self.output_net.apply(init_weight)
+ self.hidden_size = hidden_size
+ self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
+
+ # input(batch_size, seq_len, dim)
+ def forward(self, inputs, m_lens):
+ num_samples = inputs.shape[0]
+
+ input_embs = self.input_emb(inputs)
+ hidden = self.hidden.repeat(1, num_samples, 1)
+
+ cap_lens = m_lens.data.tolist()
+ emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True)
+
+ gru_seq, gru_last = self.gru(emb, hidden)
+
+ gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
+
+ return self.output_net(gru_last)
\ No newline at end of file
diff --git a/models/t2m_eval_wrapper.py b/models/t2m_eval_wrapper.py
new file mode 100644
index 0000000000000000000000000000000000000000..39b208995216e1389ee2a7b42143ae485bbdb8f0
--- /dev/null
+++ b/models/t2m_eval_wrapper.py
@@ -0,0 +1,191 @@
+from models.t2m_eval_modules import *
+from utils.word_vectorizer import POS_enumerator
+from os.path import join as pjoin
+
+def build_models(opt):
+ movement_enc = MovementConvEncoder(opt.dim_pose-4, opt.dim_movement_enc_hidden, opt.dim_movement_latent)
+ text_enc = TextEncoderBiGRUCo(word_size=opt.dim_word,
+ pos_size=opt.dim_pos_ohot,
+ hidden_size=opt.dim_text_hidden,
+ output_size=opt.dim_coemb_hidden,
+ device=opt.device)
+
+ motion_enc = MotionEncoderBiGRUCo(input_size=opt.dim_movement_latent,
+ hidden_size=opt.dim_motion_hidden,
+ output_size=opt.dim_coemb_hidden,
+ device=opt.device)
+
+ checkpoint = torch.load(pjoin(opt.checkpoints_dir, opt.dataset_name, 'text_mot_match', 'model', 'finest.tar'),
+ map_location=opt.device)
+ movement_enc.load_state_dict(checkpoint['movement_encoder'])
+ text_enc.load_state_dict(checkpoint['text_encoder'])
+ motion_enc.load_state_dict(checkpoint['motion_encoder'])
+ print('Loading Evaluation Model Wrapper (Epoch %d) Completed!!' % (checkpoint['epoch']))
+ return text_enc, motion_enc, movement_enc
+
+
+class EvaluatorModelWrapper(object):
+
+ def __init__(self, opt):
+
+ if opt.dataset_name == 't2m':
+ opt.dim_pose = 263
+ elif opt.dataset_name == 'kit':
+ opt.dim_pose = 251
+ else:
+ raise KeyError('Dataset not Recognized!!!')
+
+ opt.dim_word = 300
+ opt.max_motion_length = 196
+ opt.dim_pos_ohot = len(POS_enumerator)
+ opt.dim_motion_hidden = 1024
+ opt.max_text_len = 20
+ opt.dim_text_hidden = 512
+ opt.dim_coemb_hidden = 512
+
+ # print(opt)
+
+ self.text_encoder, self.motion_encoder, self.movement_encoder = build_models(opt)
+ self.opt = opt
+ self.device = opt.device
+
+ self.text_encoder.to(opt.device)
+ self.motion_encoder.to(opt.device)
+ self.movement_encoder.to(opt.device)
+
+ self.text_encoder.eval()
+ self.motion_encoder.eval()
+ self.movement_encoder.eval()
+
+ # Please note that the results does not follow the order of inputs
+ def get_co_embeddings(self, word_embs, pos_ohot, cap_lens, motions, m_lens):
+ with torch.no_grad():
+ word_embs = word_embs.detach().to(self.device).float()
+ pos_ohot = pos_ohot.detach().to(self.device).float()
+ motions = motions.detach().to(self.device).float()
+
+ align_idx = np.argsort(m_lens.data.tolist())[::-1].copy()
+ motions = motions[align_idx]
+ m_lens = m_lens[align_idx]
+
+ '''Movement Encoding'''
+ movements = self.movement_encoder(motions[..., :-4]).detach()
+ m_lens = m_lens // self.opt.unit_length
+ motion_embedding = self.motion_encoder(movements, m_lens)
+
+ '''Text Encoding'''
+ text_embedding = self.text_encoder(word_embs, pos_ohot, cap_lens)
+ text_embedding = text_embedding[align_idx]
+ return text_embedding, motion_embedding
+
+ # Please note that the results does not follow the order of inputs
+ def get_motion_embeddings(self, motions, m_lens):
+ with torch.no_grad():
+ motions = motions.detach().to(self.device).float()
+
+ align_idx = np.argsort(m_lens.data.tolist())[::-1].copy()
+ motions = motions[align_idx]
+ m_lens = m_lens[align_idx]
+
+ '''Movement Encoding'''
+ movements = self.movement_encoder(motions[..., :-4]).detach()
+ m_lens = m_lens // self.opt.unit_length
+ motion_embedding = self.motion_encoder(movements, m_lens)
+ return motion_embedding
+
+## Borrowed form MDM
+# our version
+def build_evaluators(opt):
+ movement_enc = MovementConvEncoder(opt['dim_pose']-4, opt['dim_movement_enc_hidden'], opt['dim_movement_latent'])
+ text_enc = TextEncoderBiGRUCo(word_size=opt['dim_word'],
+ pos_size=opt['dim_pos_ohot'],
+ hidden_size=opt['dim_text_hidden'],
+ output_size=opt['dim_coemb_hidden'],
+ device=opt['device'])
+
+ motion_enc = MotionEncoderBiGRUCo(input_size=opt['dim_movement_latent'],
+ hidden_size=opt['dim_motion_hidden'],
+ output_size=opt['dim_coemb_hidden'],
+ device=opt['device'])
+
+ ckpt_dir = opt['dataset_name']
+ if opt['dataset_name'] == 'humanml':
+ ckpt_dir = 't2m'
+
+ checkpoint = torch.load(pjoin(opt['checkpoints_dir'], ckpt_dir, 'text_mot_match', 'model', 'finest.tar'),
+ map_location=opt['device'])
+ movement_enc.load_state_dict(checkpoint['movement_encoder'])
+ text_enc.load_state_dict(checkpoint['text_encoder'])
+ motion_enc.load_state_dict(checkpoint['motion_encoder'])
+ print('Loading Evaluation Model Wrapper (Epoch %d) Completed!!' % (checkpoint['epoch']))
+ return text_enc, motion_enc, movement_enc
+
+# our wrapper
+class EvaluatorWrapper(object):
+
+ def __init__(self, dataset_name, device):
+ opt = {
+ 'dataset_name': dataset_name,
+ 'device': device,
+ 'dim_word': 300,
+ 'max_motion_length': 196,
+ 'dim_pos_ohot': len(POS_enumerator),
+ 'dim_motion_hidden': 1024,
+ 'max_text_len': 20,
+ 'dim_text_hidden': 512,
+ 'dim_coemb_hidden': 512,
+ 'dim_pose': 263 if dataset_name == 'humanml' else 251,
+ 'dim_movement_enc_hidden': 512,
+ 'dim_movement_latent': 512,
+ 'checkpoints_dir': './checkpoints',
+ 'unit_length': 4,
+ }
+
+ self.text_encoder, self.motion_encoder, self.movement_encoder = build_evaluators(opt)
+ self.opt = opt
+ self.device = opt['device']
+
+ self.text_encoder.to(opt['device'])
+ self.motion_encoder.to(opt['device'])
+ self.movement_encoder.to(opt['device'])
+
+ self.text_encoder.eval()
+ self.motion_encoder.eval()
+ self.movement_encoder.eval()
+
+ # Please note that the results does not following the order of inputs
+ def get_co_embeddings(self, word_embs, pos_ohot, cap_lens, motions, m_lens):
+ with torch.no_grad():
+ word_embs = word_embs.detach().to(self.device).float()
+ pos_ohot = pos_ohot.detach().to(self.device).float()
+ motions = motions.detach().to(self.device).float()
+
+ align_idx = np.argsort(m_lens.data.tolist())[::-1].copy()
+ motions = motions[align_idx]
+ m_lens = m_lens[align_idx]
+
+ '''Movement Encoding'''
+ movements = self.movement_encoder(motions[..., :-4]).detach()
+ m_lens = m_lens // self.opt['unit_length']
+ motion_embedding = self.motion_encoder(movements, m_lens)
+ # print(motions.shape, movements.shape, motion_embedding.shape, m_lens)
+
+ '''Text Encoding'''
+ text_embedding = self.text_encoder(word_embs, pos_ohot, cap_lens)
+ text_embedding = text_embedding[align_idx]
+ return text_embedding, motion_embedding
+
+ # Please note that the results does not following the order of inputs
+ def get_motion_embeddings(self, motions, m_lens):
+ with torch.no_grad():
+ motions = motions.detach().to(self.device).float()
+
+ align_idx = np.argsort(m_lens.data.tolist())[::-1].copy()
+ motions = motions[align_idx]
+ m_lens = m_lens[align_idx]
+
+ '''Movement Encoding'''
+ movements = self.movement_encoder(motions[..., :-4]).detach()
+ m_lens = m_lens // self.opt['unit_length']
+ motion_embedding = self.motion_encoder(movements, m_lens)
+ return motion_embedding
\ No newline at end of file
diff --git a/models/vq/__init__.py b/models/vq/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/models/vq/encdec.py b/models/vq/encdec.py
new file mode 100644
index 0000000000000000000000000000000000000000..0ee18696f1051439ebb6d73a746ea811a5e17973
--- /dev/null
+++ b/models/vq/encdec.py
@@ -0,0 +1,68 @@
+import torch.nn as nn
+from models.vq.resnet import Resnet1D
+
+
+class Encoder(nn.Module):
+ def __init__(self,
+ input_emb_width=3,
+ output_emb_width=512,
+ down_t=2,
+ stride_t=2,
+ width=512,
+ depth=3,
+ dilation_growth_rate=3,
+ activation='relu',
+ norm=None):
+ super().__init__()
+
+ blocks = []
+ filter_t, pad_t = stride_t * 2, stride_t // 2
+ blocks.append(nn.Conv1d(input_emb_width, width, 3, 1, 1))
+ blocks.append(nn.ReLU())
+
+ for i in range(down_t):
+ input_dim = width
+ block = nn.Sequential(
+ nn.Conv1d(input_dim, width, filter_t, stride_t, pad_t),
+ Resnet1D(width, depth, dilation_growth_rate, activation=activation, norm=norm),
+ )
+ blocks.append(block)
+ blocks.append(nn.Conv1d(width, output_emb_width, 3, 1, 1))
+ self.model = nn.Sequential(*blocks)
+
+ def forward(self, x):
+ return self.model(x)
+
+
+class Decoder(nn.Module):
+ def __init__(self,
+ input_emb_width=3,
+ output_emb_width=512,
+ down_t=2,
+ stride_t=2,
+ width=512,
+ depth=3,
+ dilation_growth_rate=3,
+ activation='relu',
+ norm=None):
+ super().__init__()
+ blocks = []
+
+ blocks.append(nn.Conv1d(output_emb_width, width, 3, 1, 1))
+ blocks.append(nn.ReLU())
+ for i in range(down_t):
+ out_dim = width
+ block = nn.Sequential(
+ Resnet1D(width, depth, dilation_growth_rate, reverse_dilation=True, activation=activation, norm=norm),
+ nn.Upsample(scale_factor=2, mode='nearest'),
+ nn.Conv1d(width, out_dim, 3, 1, 1)
+ )
+ blocks.append(block)
+ blocks.append(nn.Conv1d(width, width, 3, 1, 1))
+ blocks.append(nn.ReLU())
+ blocks.append(nn.Conv1d(width, input_emb_width, 3, 1, 1))
+ self.model = nn.Sequential(*blocks)
+
+ def forward(self, x):
+ x = self.model(x)
+ return x.permute(0, 2, 1)
\ No newline at end of file
diff --git a/models/vq/model.py b/models/vq/model.py
new file mode 100644
index 0000000000000000000000000000000000000000..d6fbe9423380e729b569f8f02a09840d320d3cdd
--- /dev/null
+++ b/models/vq/model.py
@@ -0,0 +1,124 @@
+import random
+
+import torch.nn as nn
+from models.vq.encdec import Encoder, Decoder
+from models.vq.residual_vq import ResidualVQ
+
+class RVQVAE(nn.Module):
+ def __init__(self,
+ args,
+ input_width=263,
+ nb_code=1024,
+ code_dim=512,
+ output_emb_width=512,
+ down_t=3,
+ stride_t=2,
+ width=512,
+ depth=3,
+ dilation_growth_rate=3,
+ activation='relu',
+ norm=None):
+
+ super().__init__()
+ assert output_emb_width == code_dim
+ self.code_dim = code_dim
+ self.num_code = nb_code
+ # self.quant = args.quantizer
+ self.encoder = Encoder(input_width, output_emb_width, down_t, stride_t, width, depth,
+ dilation_growth_rate, activation=activation, norm=norm)
+ self.decoder = Decoder(input_width, output_emb_width, down_t, stride_t, width, depth,
+ dilation_growth_rate, activation=activation, norm=norm)
+ rvqvae_config = {
+ 'num_quantizers': args.num_quantizers,
+ 'shared_codebook': args.shared_codebook,
+ 'quantize_dropout_prob': args.quantize_dropout_prob,
+ 'quantize_dropout_cutoff_index': 0,
+ 'nb_code': nb_code,
+ 'code_dim':code_dim,
+ 'args': args,
+ }
+ self.quantizer = ResidualVQ(**rvqvae_config)
+
+ def preprocess(self, x):
+ # (bs, T, Jx3) -> (bs, Jx3, T)
+ x = x.permute(0, 2, 1).float()
+ return x
+
+ def postprocess(self, x):
+ # (bs, Jx3, T) -> (bs, T, Jx3)
+ x = x.permute(0, 2, 1)
+ return x
+
+ def encode(self, x):
+ N, T, _ = x.shape
+ x_in = self.preprocess(x)
+ x_encoder = self.encoder(x_in)
+ # print(x_encoder.shape)
+ code_idx, all_codes = self.quantizer.quantize(x_encoder, return_latent=True)
+ # print(code_idx.shape)
+ # code_idx = code_idx.view(N, -1)
+ # (N, T, Q)
+ # print()
+ return code_idx, all_codes
+
+ def forward(self, x):
+ x_in = self.preprocess(x)
+ # Encode
+ x_encoder = self.encoder(x_in)
+
+ ## quantization
+ # x_quantized, code_idx, commit_loss, perplexity = self.quantizer(x_encoder, sample_codebook_temp=0.5,
+ # force_dropout_index=0) #TODO hardcode
+ x_quantized, code_idx, commit_loss, perplexity = self.quantizer(x_encoder, sample_codebook_temp=0.5)
+
+ # print(code_idx[0, :, 1])
+ ## decoder
+ x_out = self.decoder(x_quantized)
+ # x_out = self.postprocess(x_decoder)
+ return x_out, commit_loss, perplexity
+
+ def forward_decoder(self, x):
+ x_d = self.quantizer.get_codes_from_indices(x)
+ # x_d = x_d.view(1, -1, self.code_dim).permute(0, 2, 1).contiguous()
+ x = x_d.sum(dim=0).permute(0, 2, 1)
+
+ # decoder
+ x_out = self.decoder(x)
+ # x_out = self.postprocess(x_decoder)
+ return x_out
+
+class LengthEstimator(nn.Module):
+ def __init__(self, input_size, output_size):
+ super(LengthEstimator, self).__init__()
+ nd = 512
+ self.output = nn.Sequential(
+ nn.Linear(input_size, nd),
+ nn.LayerNorm(nd),
+ nn.LeakyReLU(0.2, inplace=True),
+
+ nn.Dropout(0.2),
+ nn.Linear(nd, nd // 2),
+ nn.LayerNorm(nd // 2),
+ nn.LeakyReLU(0.2, inplace=True),
+
+ nn.Dropout(0.2),
+ nn.Linear(nd // 2, nd // 4),
+ nn.LayerNorm(nd // 4),
+ nn.LeakyReLU(0.2, inplace=True),
+
+ nn.Linear(nd // 4, output_size)
+ )
+
+ self.output.apply(self.__init_weights)
+
+ def __init_weights(self, module):
+ if isinstance(module, (nn.Linear, nn.Embedding)):
+ module.weight.data.normal_(mean=0.0, std=0.02)
+ if isinstance(module, nn.Linear) and module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+ def forward(self, text_emb):
+ return self.output(text_emb)
\ No newline at end of file
diff --git a/models/vq/quantizer.py b/models/vq/quantizer.py
new file mode 100644
index 0000000000000000000000000000000000000000..23ebff7dad1e1342e442a17342678f240cb31123
--- /dev/null
+++ b/models/vq/quantizer.py
@@ -0,0 +1,180 @@
+import numpy as np
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from einops import rearrange, repeat, reduce, pack, unpack
+
+# from vector_quantize_pytorch import ResidualVQ
+
+#Borrow from vector_quantize_pytorch
+
+def log(t, eps = 1e-20):
+ return torch.log(t.clamp(min = eps))
+
+def gumbel_noise(t):
+ noise = torch.zeros_like(t).uniform_(0, 1)
+ return -log(-log(noise))
+
+def gumbel_sample(
+ logits,
+ temperature = 1.,
+ stochastic = False,
+ dim = -1,
+ training = True
+):
+
+ if training and stochastic and temperature > 0:
+ sampling_logits = (logits / temperature) + gumbel_noise(logits)
+ else:
+ sampling_logits = logits
+
+ ind = sampling_logits.argmax(dim = dim)
+
+ return ind
+
+class QuantizeEMAReset(nn.Module):
+ def __init__(self, nb_code, code_dim, args):
+ super(QuantizeEMAReset, self).__init__()
+ self.nb_code = nb_code
+ self.code_dim = code_dim
+ self.mu = args.mu ##TO_DO
+ self.reset_codebook()
+
+ def reset_codebook(self):
+ self.init = False
+ self.code_sum = None
+ self.code_count = None
+ self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim, requires_grad=False).cuda())
+
+ def _tile(self, x):
+ nb_code_x, code_dim = x.shape
+ if nb_code_x < self.nb_code:
+ n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
+ std = 0.01 / np.sqrt(code_dim)
+ out = x.repeat(n_repeats, 1)
+ out = out + torch.randn_like(out) * std
+ else:
+ out = x
+ return out
+
+ def init_codebook(self, x):
+ out = self._tile(x)
+ self.codebook = out[:self.nb_code]
+ self.code_sum = self.codebook.clone()
+ self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
+ self.init = True
+
+ def quantize(self, x, sample_codebook_temp=0.):
+ # N X C -> C X N
+ k_w = self.codebook.t()
+ # x: NT X C
+ # NT X N
+ distance = torch.sum(x ** 2, dim=-1, keepdim=True) - \
+ 2 * torch.matmul(x, k_w) + \
+ torch.sum(k_w ** 2, dim=0, keepdim=True) # (N * L, b)
+
+ # code_idx = torch.argmin(distance, dim=-1)
+
+ code_idx = gumbel_sample(-distance, dim = -1, temperature = sample_codebook_temp, stochastic=True, training = self.training)
+
+ return code_idx
+
+ def dequantize(self, code_idx):
+ x = F.embedding(code_idx, self.codebook)
+ return x
+
+ def get_codebook_entry(self, indices):
+ return self.dequantize(indices).permute(0, 2, 1)
+
+ @torch.no_grad()
+ def compute_perplexity(self, code_idx):
+ # Calculate new centres
+ code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
+ code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
+
+ code_count = code_onehot.sum(dim=-1) # nb_code
+ prob = code_count / torch.sum(code_count)
+ perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
+ return perplexity
+
+ @torch.no_grad()
+ def update_codebook(self, x, code_idx):
+ code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
+ code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
+
+ code_sum = torch.matmul(code_onehot, x) # nb_code, c
+ code_count = code_onehot.sum(dim=-1) # nb_code
+
+ out = self._tile(x)
+ code_rand = out[:self.nb_code]
+
+ # Update centres
+ self.code_sum = self.mu * self.code_sum + (1. - self.mu) * code_sum
+ self.code_count = self.mu * self.code_count + (1. - self.mu) * code_count
+
+ usage = (self.code_count.view(self.nb_code, 1) >= 1.0).float()
+ code_update = self.code_sum.view(self.nb_code, self.code_dim) / self.code_count.view(self.nb_code, 1)
+ self.codebook = usage * code_update + (1-usage) * code_rand
+
+
+ prob = code_count / torch.sum(code_count)
+ perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
+
+ return perplexity
+
+ def preprocess(self, x):
+ # NCT -> NTC -> [NT, C]
+ # x = x.permute(0, 2, 1).contiguous()
+ # x = x.view(-1, x.shape[-1])
+ x = rearrange(x, 'n c t -> (n t) c')
+ return x
+
+ def forward(self, x, return_idx=False, temperature=0.):
+ N, width, T = x.shape
+
+ x = self.preprocess(x)
+ if self.training and not self.init:
+ self.init_codebook(x)
+
+ code_idx = self.quantize(x, temperature)
+ x_d = self.dequantize(code_idx)
+
+ if self.training:
+ perplexity = self.update_codebook(x, code_idx)
+ else:
+ perplexity = self.compute_perplexity(code_idx)
+
+ commit_loss = F.mse_loss(x, x_d.detach()) # It's right. the t2m-gpt paper is wrong on embed loss and commitment loss.
+
+ # Passthrough
+ x_d = x + (x_d - x).detach()
+
+ # Postprocess
+ x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous()
+ code_idx = code_idx.view(N, T).contiguous()
+ # print(code_idx[0])
+ if return_idx:
+ return x_d, code_idx, commit_loss, perplexity
+ return x_d, commit_loss, perplexity
+
+class QuantizeEMA(QuantizeEMAReset):
+ @torch.no_grad()
+ def update_codebook(self, x, code_idx):
+ code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
+ code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
+
+ code_sum = torch.matmul(code_onehot, x) # nb_code, c
+ code_count = code_onehot.sum(dim=-1) # nb_code
+
+ # Update centres
+ self.code_sum = self.mu * self.code_sum + (1. - self.mu) * code_sum
+ self.code_count = self.mu * self.code_count + (1. - self.mu) * code_count
+
+ usage = (self.code_count.view(self.nb_code, 1) >= 1.0).float()
+ code_update = self.code_sum.view(self.nb_code, self.code_dim) / self.code_count.view(self.nb_code, 1)
+ self.codebook = usage * code_update + (1-usage) * self.codebook
+
+ prob = code_count / torch.sum(code_count)
+ perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
+
+ return perplexity
diff --git a/models/vq/residual_vq.py b/models/vq/residual_vq.py
new file mode 100644
index 0000000000000000000000000000000000000000..6478260124d174ad35f539a612859ce749983fb8
--- /dev/null
+++ b/models/vq/residual_vq.py
@@ -0,0 +1,194 @@
+import random
+from math import ceil
+from functools import partial
+from itertools import zip_longest
+from random import randrange
+
+import torch
+from torch import nn
+import torch.nn.functional as F
+# from vector_quantize_pytorch.vector_quantize_pytorch import VectorQuantize
+from models.vq.quantizer import QuantizeEMAReset, QuantizeEMA
+
+from einops import rearrange, repeat, pack, unpack
+
+# helper functions
+
+def exists(val):
+ return val is not None
+
+def default(val, d):
+ return val if exists(val) else d
+
+def round_up_multiple(num, mult):
+ return ceil(num / mult) * mult
+
+# main class
+
+class ResidualVQ(nn.Module):
+ """ Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf """
+ def __init__(
+ self,
+ num_quantizers,
+ shared_codebook=False,
+ quantize_dropout_prob=0.5,
+ quantize_dropout_cutoff_index=0,
+ **kwargs
+ ):
+ super().__init__()
+
+ self.num_quantizers = num_quantizers
+
+ # self.layers = nn.ModuleList([VectorQuantize(accept_image_fmap = accept_image_fmap, **kwargs) for _ in range(num_quantizers)])
+ if shared_codebook:
+ layer = QuantizeEMAReset(**kwargs)
+ self.layers = nn.ModuleList([layer for _ in range(num_quantizers)])
+ else:
+ self.layers = nn.ModuleList([QuantizeEMAReset(**kwargs) for _ in range(num_quantizers)])
+ # self.layers = nn.ModuleList([QuantizeEMA(**kwargs) for _ in range(num_quantizers)])
+
+ # self.quantize_dropout = quantize_dropout and num_quantizers > 1
+
+ assert quantize_dropout_cutoff_index >= 0 and quantize_dropout_prob >= 0
+
+ self.quantize_dropout_cutoff_index = quantize_dropout_cutoff_index
+ self.quantize_dropout_prob = quantize_dropout_prob
+
+
+ @property
+ def codebooks(self):
+ codebooks = [layer.codebook for layer in self.layers]
+ codebooks = torch.stack(codebooks, dim = 0)
+ return codebooks # 'q c d'
+
+ def get_codes_from_indices(self, indices): #indices shape 'b n q' # dequantize
+
+ batch, quantize_dim = indices.shape[0], indices.shape[-1]
+
+ # because of quantize dropout, one can pass in indices that are coarse
+ # and the network should be able to reconstruct
+
+ if quantize_dim < self.num_quantizers:
+ indices = F.pad(indices, (0, self.num_quantizers - quantize_dim), value = -1)
+
+ # get ready for gathering
+
+ codebooks = repeat(self.codebooks, 'q c d -> q b c d', b = batch)
+ gather_indices = repeat(indices, 'b n q -> q b n d', d = codebooks.shape[-1])
+
+ # take care of quantizer dropout
+
+ mask = gather_indices == -1.
+ gather_indices = gather_indices.masked_fill(mask, 0) # have it fetch a dummy code to be masked out later
+
+ # print(gather_indices.max(), gather_indices.min())
+ all_codes = codebooks.gather(2, gather_indices) # gather all codes
+
+ # mask out any codes that were dropout-ed
+
+ all_codes = all_codes.masked_fill(mask, 0.)
+
+ return all_codes # 'q b n d'
+
+ def get_codebook_entry(self, indices): #indices shape 'b n q'
+ all_codes = self.get_codes_from_indices(indices) #'q b n d'
+ latent = torch.sum(all_codes, dim=0) #'b n d'
+ latent = latent.permute(0, 2, 1)
+ return latent
+
+ def forward(self, x, return_all_codes = False, sample_codebook_temp = None, force_dropout_index=-1):
+ # debug check
+ # print(self.codebooks[:,0,0].detach().cpu().numpy())
+ num_quant, quant_dropout_prob, device = self.num_quantizers, self.quantize_dropout_prob, x.device
+
+ quantized_out = 0.
+ residual = x
+
+ all_losses = []
+ all_indices = []
+ all_perplexity = []
+
+
+ should_quantize_dropout = self.training and random.random() < self.quantize_dropout_prob
+
+ start_drop_quantize_index = num_quant
+ # To ensure the first-k layers learn things as much as possible, we randomly dropout the last q - k layers
+ if should_quantize_dropout:
+ start_drop_quantize_index = randrange(self.quantize_dropout_cutoff_index, num_quant) # keep quant layers <= quantize_dropout_cutoff_index, TODO vary in batch
+ null_indices_shape = [x.shape[0], x.shape[-1]] # 'b*n'
+ null_indices = torch.full(null_indices_shape, -1., device = device, dtype = torch.long)
+ # null_loss = 0.
+
+ if force_dropout_index >= 0:
+ should_quantize_dropout = True
+ start_drop_quantize_index = force_dropout_index
+ null_indices_shape = [x.shape[0], x.shape[-1]] # 'b*n'
+ null_indices = torch.full(null_indices_shape, -1., device=device, dtype=torch.long)
+
+ # print(force_dropout_index)
+ # go through the layers
+
+ for quantizer_index, layer in enumerate(self.layers):
+
+ if should_quantize_dropout and quantizer_index > start_drop_quantize_index:
+ all_indices.append(null_indices)
+ # all_losses.append(null_loss)
+ continue
+
+ # layer_indices = None
+ # if return_loss:
+ # layer_indices = indices[..., quantizer_index] #gt indices
+
+ # quantized, *rest = layer(residual, indices = layer_indices, sample_codebook_temp = sample_codebook_temp) #single quantizer TODO
+ quantized, *rest = layer(residual, return_idx=True, temperature=sample_codebook_temp) #single quantizer
+
+ # print(quantized.shape, residual.shape)
+ residual -= quantized.detach()
+ quantized_out += quantized
+
+ embed_indices, loss, perplexity = rest
+ all_indices.append(embed_indices)
+ all_losses.append(loss)
+ all_perplexity.append(perplexity)
+
+
+ # stack all losses and indices
+ all_indices = torch.stack(all_indices, dim=-1)
+ all_losses = sum(all_losses)/len(all_losses)
+ all_perplexity = sum(all_perplexity)/len(all_perplexity)
+
+ ret = (quantized_out, all_indices, all_losses, all_perplexity)
+
+ if return_all_codes:
+ # whether to return all codes from all codebooks across layers
+ all_codes = self.get_codes_from_indices(all_indices)
+
+ # will return all codes in shape (quantizer, batch, sequence length, codebook dimension)
+ ret = (*ret, all_codes)
+
+ return ret
+
+ def quantize(self, x, return_latent=False):
+ all_indices = []
+ quantized_out = 0.
+ residual = x
+ all_codes = []
+ for quantizer_index, layer in enumerate(self.layers):
+
+ quantized, *rest = layer(residual, return_idx=True) #single quantizer
+
+ residual = residual - quantized.detach()
+ quantized_out = quantized_out + quantized
+
+ embed_indices, loss, perplexity = rest
+ all_indices.append(embed_indices)
+ # print(quantizer_index, embed_indices[0])
+ # print(quantizer_index, quantized[0])
+ # break
+ all_codes.append(quantized)
+
+ code_idx = torch.stack(all_indices, dim=-1)
+ all_codes = torch.stack(all_codes, dim=0)
+ if return_latent:
+ return code_idx, all_codes
+ return code_idx
\ No newline at end of file
diff --git a/models/vq/resnet.py b/models/vq/resnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..88d230d31055a6e66b0c9b75b29fff8935b8a1fd
--- /dev/null
+++ b/models/vq/resnet.py
@@ -0,0 +1,84 @@
+import torch.nn as nn
+import torch
+
+class nonlinearity(nn.Module):
+ def __init(self):
+ super().__init__()
+
+ def forward(self, x):
+ return x * torch.sigmoid(x)
+
+
+class ResConv1DBlock(nn.Module):
+ def __init__(self, n_in, n_state, dilation=1, activation='silu', norm=None, dropout=0.2):
+ super(ResConv1DBlock, self).__init__()
+
+ padding = dilation
+ self.norm = norm
+
+ if norm == "LN":
+ self.norm1 = nn.LayerNorm(n_in)
+ self.norm2 = nn.LayerNorm(n_in)
+ elif norm == "GN":
+ self.norm1 = nn.GroupNorm(num_groups=32, num_channels=n_in, eps=1e-6, affine=True)
+ self.norm2 = nn.GroupNorm(num_groups=32, num_channels=n_in, eps=1e-6, affine=True)
+ elif norm == "BN":
+ self.norm1 = nn.BatchNorm1d(num_features=n_in, eps=1e-6, affine=True)
+ self.norm2 = nn.BatchNorm1d(num_features=n_in, eps=1e-6, affine=True)
+ else:
+ self.norm1 = nn.Identity()
+ self.norm2 = nn.Identity()
+
+ if activation == "relu":
+ self.activation1 = nn.ReLU()
+ self.activation2 = nn.ReLU()
+
+ elif activation == "silu":
+ self.activation1 = nonlinearity()
+ self.activation2 = nonlinearity()
+
+ elif activation == "gelu":
+ self.activation1 = nn.GELU()
+ self.activation2 = nn.GELU()
+
+ self.conv1 = nn.Conv1d(n_in, n_state, 3, 1, padding, dilation)
+ self.conv2 = nn.Conv1d(n_state, n_in, 1, 1, 0, )
+ self.dropout = nn.Dropout(dropout)
+
+ def forward(self, x):
+ x_orig = x
+ if self.norm == "LN":
+ x = self.norm1(x.transpose(-2, -1))
+ x = self.activation1(x.transpose(-2, -1))
+ else:
+ x = self.norm1(x)
+ x = self.activation1(x)
+
+ x = self.conv1(x)
+
+ if self.norm == "LN":
+ x = self.norm2(x.transpose(-2, -1))
+ x = self.activation2(x.transpose(-2, -1))
+ else:
+ x = self.norm2(x)
+ x = self.activation2(x)
+
+ x = self.conv2(x)
+ x = self.dropout(x)
+ x = x + x_orig
+ return x
+
+
+class Resnet1D(nn.Module):
+ def __init__(self, n_in, n_depth, dilation_growth_rate=1, reverse_dilation=True, activation='relu', norm=None):
+ super().__init__()
+
+ blocks = [ResConv1DBlock(n_in, n_in, dilation=dilation_growth_rate ** depth, activation=activation, norm=norm)
+ for depth in range(n_depth)]
+ if reverse_dilation:
+ blocks = blocks[::-1]
+
+ self.model = nn.Sequential(*blocks)
+
+ def forward(self, x):
+ return self.model(x)
\ No newline at end of file
diff --git a/models/vq/vq_trainer.py b/models/vq/vq_trainer.py
new file mode 100644
index 0000000000000000000000000000000000000000..83761ff9b20d16a025ae1eda40e5a38c171757e3
--- /dev/null
+++ b/models/vq/vq_trainer.py
@@ -0,0 +1,359 @@
+import torch
+from torch.utils.data import DataLoader
+from torch.nn.utils import clip_grad_norm_
+from torch.utils.tensorboard import SummaryWriter
+from os.path import join as pjoin
+import torch.nn.functional as F
+
+import torch.optim as optim
+
+import time
+import numpy as np
+from collections import OrderedDict, defaultdict
+from utils.eval_t2m import evaluation_vqvae, evaluation_res_conv
+from utils.utils import print_current_loss
+
+import os
+import sys
+
+def def_value():
+ return 0.0
+
+
+class RVQTokenizerTrainer:
+ def __init__(self, args, vq_model):
+ self.opt = args
+ self.vq_model = vq_model
+ self.device = args.device
+
+ if args.is_train:
+ self.logger = SummaryWriter(args.log_dir)
+ if args.recons_loss == 'l1':
+ self.l1_criterion = torch.nn.L1Loss()
+ elif args.recons_loss == 'l1_smooth':
+ self.l1_criterion = torch.nn.SmoothL1Loss()
+
+ # self.critic = CriticWrapper(self.opt.dataset_name, self.opt.device)
+
+ def forward(self, batch_data):
+ motions = batch_data.detach().to(self.device).float()
+ pred_motion, loss_commit, perplexity = self.vq_model(motions)
+
+ self.motions = motions
+ self.pred_motion = pred_motion
+
+ loss_rec = self.l1_criterion(pred_motion, motions)
+ pred_local_pos = pred_motion[..., 4 : (self.opt.joints_num - 1) * 3 + 4]
+ local_pos = motions[..., 4 : (self.opt.joints_num - 1) * 3 + 4]
+ loss_explicit = self.l1_criterion(pred_local_pos, local_pos)
+
+ loss = loss_rec + self.opt.loss_vel * loss_explicit + self.opt.commit * loss_commit
+
+ # return loss, loss_rec, loss_vel, loss_commit, perplexity
+ # return loss, loss_rec, loss_percept, loss_commit, perplexity
+ return loss, loss_rec, loss_explicit, loss_commit, perplexity
+
+
+ # @staticmethod
+ def update_lr_warm_up(self, nb_iter, warm_up_iter, lr):
+
+ current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1)
+ for param_group in self.opt_vq_model.param_groups:
+ param_group["lr"] = current_lr
+
+ return current_lr
+
+ def save(self, file_name, ep, total_it):
+ state = {
+ "vq_model": self.vq_model.state_dict(),
+ "opt_vq_model": self.opt_vq_model.state_dict(),
+ "scheduler": self.scheduler.state_dict(),
+ 'ep': ep,
+ 'total_it': total_it,
+ }
+ torch.save(state, file_name)
+
+ def resume(self, model_dir):
+ checkpoint = torch.load(model_dir, map_location=self.device)
+ self.vq_model.load_state_dict(checkpoint['vq_model'])
+ self.opt_vq_model.load_state_dict(checkpoint['opt_vq_model'])
+ self.scheduler.load_state_dict(checkpoint['scheduler'])
+ return checkpoint['ep'], checkpoint['total_it']
+
+ def train(self, train_loader, val_loader, eval_val_loader, eval_wrapper, plot_eval=None):
+ self.vq_model.to(self.device)
+
+ self.opt_vq_model = optim.AdamW(self.vq_model.parameters(), lr=self.opt.lr, betas=(0.9, 0.99), weight_decay=self.opt.weight_decay)
+ self.scheduler = torch.optim.lr_scheduler.MultiStepLR(self.opt_vq_model, milestones=self.opt.milestones, gamma=self.opt.gamma)
+
+ epoch = 0
+ it = 0
+ if self.opt.is_continue:
+ model_dir = pjoin(self.opt.model_dir, 'latest.tar')
+ epoch, it = self.resume(model_dir)
+ print("Load model epoch:%d iterations:%d"%(epoch, it))
+
+ start_time = time.time()
+ total_iters = self.opt.max_epoch * len(train_loader)
+ print(f'Total Epochs: {self.opt.max_epoch}, Total Iters: {total_iters}')
+ print('Iters Per Epoch, Training: %04d, Validation: %03d' % (len(train_loader), len(eval_val_loader)))
+ # val_loss = 0
+ # min_val_loss = np.inf
+ # min_val_epoch = epoch
+ current_lr = self.opt.lr
+ logs = defaultdict(def_value, OrderedDict())
+
+ # sys.exit()
+ best_fid, best_div, best_top1, best_top2, best_top3, best_matching, writer = evaluation_vqvae(
+ self.opt.model_dir, eval_val_loader, self.vq_model, self.logger, epoch, best_fid=1000,
+ best_div=100, best_top1=0,
+ best_top2=0, best_top3=0, best_matching=100,
+ eval_wrapper=eval_wrapper, save=False)
+
+ while epoch < self.opt.max_epoch:
+ self.vq_model.train()
+ for i, batch_data in enumerate(train_loader):
+ it += 1
+ if it < self.opt.warm_up_iter:
+ current_lr = self.update_lr_warm_up(it, self.opt.warm_up_iter, self.opt.lr)
+ loss, loss_rec, loss_vel, loss_commit, perplexity = self.forward(batch_data)
+ self.opt_vq_model.zero_grad()
+ loss.backward()
+ self.opt_vq_model.step()
+
+ if it >= self.opt.warm_up_iter:
+ self.scheduler.step()
+
+ logs['loss'] += loss.item()
+ logs['loss_rec'] += loss_rec.item()
+ # Note it not necessarily velocity, too lazy to change the name now
+ logs['loss_vel'] += loss_vel.item()
+ logs['loss_commit'] += loss_commit.item()
+ logs['perplexity'] += perplexity.item()
+ logs['lr'] += self.opt_vq_model.param_groups[0]['lr']
+
+ if it % self.opt.log_every == 0:
+ mean_loss = OrderedDict()
+ # self.logger.add_scalar('val_loss', val_loss, it)
+ # self.l
+ for tag, value in logs.items():
+ self.logger.add_scalar('Train/%s'%tag, value / self.opt.log_every, it)
+ mean_loss[tag] = value / self.opt.log_every
+ logs = defaultdict(def_value, OrderedDict())
+ print_current_loss(start_time, it, total_iters, mean_loss, epoch=epoch, inner_iter=i)
+
+ if it % self.opt.save_latest == 0:
+ self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)
+
+ self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)
+
+ epoch += 1
+ # if epoch % self.opt.save_every_e == 0:
+ # self.save(pjoin(self.opt.model_dir, 'E%04d.tar' % (epoch)), epoch, total_it=it)
+
+ print('Validation time:')
+ self.vq_model.eval()
+ val_loss_rec = []
+ val_loss_vel = []
+ val_loss_commit = []
+ val_loss = []
+ val_perpexity = []
+ with torch.no_grad():
+ for i, batch_data in enumerate(val_loader):
+ loss, loss_rec, loss_vel, loss_commit, perplexity = self.forward(batch_data)
+ # val_loss_rec += self.l1_criterion(self.recon_motions, self.motions).item()
+ # val_loss_emb += self.embedding_loss.item()
+ val_loss.append(loss.item())
+ val_loss_rec.append(loss_rec.item())
+ val_loss_vel.append(loss_vel.item())
+ val_loss_commit.append(loss_commit.item())
+ val_perpexity.append(perplexity.item())
+
+ # val_loss = val_loss_rec / (len(val_dataloader) + 1)
+ # val_loss = val_loss / (len(val_dataloader) + 1)
+ # val_loss_rec = val_loss_rec / (len(val_dataloader) + 1)
+ # val_loss_emb = val_loss_emb / (len(val_dataloader) + 1)
+ self.logger.add_scalar('Val/loss', sum(val_loss) / len(val_loss), epoch)
+ self.logger.add_scalar('Val/loss_rec', sum(val_loss_rec) / len(val_loss_rec), epoch)
+ self.logger.add_scalar('Val/loss_vel', sum(val_loss_vel) / len(val_loss_vel), epoch)
+ self.logger.add_scalar('Val/loss_commit', sum(val_loss_commit) / len(val_loss), epoch)
+ self.logger.add_scalar('Val/loss_perplexity', sum(val_perpexity) / len(val_loss_rec), epoch)
+
+ print('Validation Loss: %.5f Reconstruction: %.5f, Velocity: %.5f, Commit: %.5f' %
+ (sum(val_loss)/len(val_loss), sum(val_loss_rec)/len(val_loss),
+ sum(val_loss_vel)/len(val_loss), sum(val_loss_commit)/len(val_loss)))
+
+ # if sum(val_loss) / len(val_loss) < min_val_loss:
+ # min_val_loss = sum(val_loss) / len(val_loss)
+ # # if sum(val_loss_vel) / len(val_loss_vel) < min_val_loss:
+ # # min_val_loss = sum(val_loss_vel) / len(val_loss_vel)
+ # min_val_epoch = epoch
+ # self.save(pjoin(self.opt.model_dir, 'finest.tar'), epoch, it)
+ # print('Best Validation Model So Far!~')
+
+ best_fid, best_div, best_top1, best_top2, best_top3, best_matching, writer = evaluation_vqvae(
+ self.opt.model_dir, eval_val_loader, self.vq_model, self.logger, epoch, best_fid=best_fid,
+ best_div=best_div, best_top1=best_top1,
+ best_top2=best_top2, best_top3=best_top3, best_matching=best_matching, eval_wrapper=eval_wrapper)
+
+
+ if epoch % self.opt.eval_every_e == 0:
+ data = torch.cat([self.motions[:4], self.pred_motion[:4]], dim=0).detach().cpu().numpy()
+ # np.save(pjoin(self.opt.eval_dir, 'E%04d.npy' % (epoch)), data)
+ save_dir = pjoin(self.opt.eval_dir, 'E%04d' % (epoch))
+ os.makedirs(save_dir, exist_ok=True)
+ plot_eval(data, save_dir)
+ # if plot_eval is not None:
+ # save_dir = pjoin(self.opt.eval_dir, 'E%04d' % (epoch))
+ # os.makedirs(save_dir, exist_ok=True)
+ # plot_eval(data, save_dir)
+
+ # if epoch - min_val_epoch >= self.opt.early_stop_e:
+ # print('Early Stopping!~')
+
+
+class LengthEstTrainer(object):
+
+ def __init__(self, args, estimator, text_encoder, encode_fnc):
+ self.opt = args
+ self.estimator = estimator
+ self.text_encoder = text_encoder
+ self.encode_fnc = encode_fnc
+ self.device = args.device
+
+ if args.is_train:
+ # self.motion_dis
+ self.logger = SummaryWriter(args.log_dir)
+ self.mul_cls_criterion = torch.nn.CrossEntropyLoss()
+
+ def resume(self, model_dir):
+ checkpoints = torch.load(model_dir, map_location=self.device)
+ self.estimator.load_state_dict(checkpoints['estimator'])
+ # self.opt_estimator.load_state_dict(checkpoints['opt_estimator'])
+ return checkpoints['epoch'], checkpoints['iter']
+
+ def save(self, model_dir, epoch, niter):
+ state = {
+ 'estimator': self.estimator.state_dict(),
+ # 'opt_estimator': self.opt_estimator.state_dict(),
+ 'epoch': epoch,
+ 'niter': niter,
+ }
+ torch.save(state, model_dir)
+
+ @staticmethod
+ def zero_grad(opt_list):
+ for opt in opt_list:
+ opt.zero_grad()
+
+ @staticmethod
+ def clip_norm(network_list):
+ for network in network_list:
+ clip_grad_norm_(network.parameters(), 0.5)
+
+ @staticmethod
+ def step(opt_list):
+ for opt in opt_list:
+ opt.step()
+
+ def train(self, train_dataloader, val_dataloader):
+ self.estimator.to(self.device)
+ self.text_encoder.to(self.device)
+
+ self.opt_estimator = optim.Adam(self.estimator.parameters(), lr=self.opt.lr)
+
+ epoch = 0
+ it = 0
+
+ if self.opt.is_continue:
+ model_dir = pjoin(self.opt.model_dir, 'latest.tar')
+ epoch, it = self.resume(model_dir)
+
+ start_time = time.time()
+ total_iters = self.opt.max_epoch * len(train_dataloader)
+ print('Iters Per Epoch, Training: %04d, Validation: %03d' % (len(train_dataloader), len(val_dataloader)))
+ val_loss = 0
+ min_val_loss = np.inf
+ logs = defaultdict(float)
+ while epoch < self.opt.max_epoch:
+ # time0 = time.time()
+ for i, batch_data in enumerate(train_dataloader):
+ self.estimator.train()
+
+ conds, _, m_lens = batch_data
+ # word_emb = word_emb.detach().to(self.device).float()
+ # pos_ohot = pos_ohot.detach().to(self.device).float()
+ # m_lens = m_lens.to(self.device).long()
+ text_embs = self.encode_fnc(self.text_encoder, conds, self.opt.device).detach()
+ # print(text_embs.shape, text_embs.device)
+
+ pred_dis = self.estimator(text_embs)
+
+ self.zero_grad([self.opt_estimator])
+
+ gt_labels = m_lens // self.opt.unit_length
+ gt_labels = gt_labels.long().to(self.device)
+ # print(gt_labels.shape, pred_dis.shape)
+ # print(gt_labels.max(), gt_labels.min())
+ # print(pred_dis)
+ acc = (gt_labels == pred_dis.argmax(dim=-1)).sum() / len(gt_labels)
+ loss = self.mul_cls_criterion(pred_dis, gt_labels)
+
+ loss.backward()
+
+ self.clip_norm([self.estimator])
+ self.step([self.opt_estimator])
+
+ logs['loss'] += loss.item()
+ logs['acc'] += acc.item()
+
+ it += 1
+ if it % self.opt.log_every == 0:
+ mean_loss = OrderedDict({'val_loss': val_loss})
+ # self.logger.add_scalar('Val/loss', val_loss, it)
+
+ for tag, value in logs.items():
+ self.logger.add_scalar("Train/%s"%tag, value / self.opt.log_every, it)
+ mean_loss[tag] = value / self.opt.log_every
+ logs = defaultdict(float)
+ print_current_loss(start_time, it, total_iters, mean_loss, epoch=epoch, inner_iter=i)
+
+ if it % self.opt.save_latest == 0:
+ self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)
+
+ self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)
+
+ epoch += 1
+
+ print('Validation time:')
+
+ val_loss = 0
+ val_acc = 0
+ # self.estimator.eval()
+ with torch.no_grad():
+ for i, batch_data in enumerate(val_dataloader):
+ self.estimator.eval()
+
+ conds, _, m_lens = batch_data
+ # word_emb = word_emb.detach().to(self.device).float()
+ # pos_ohot = pos_ohot.detach().to(self.device).float()
+ # m_lens = m_lens.to(self.device).long()
+ text_embs = self.encode_fnc(self.text_encoder, conds, self.opt.device)
+ pred_dis = self.estimator(text_embs)
+
+ gt_labels = m_lens // self.opt.unit_length
+ gt_labels = gt_labels.long().to(self.device)
+ loss = self.mul_cls_criterion(pred_dis, gt_labels)
+ acc = (gt_labels == pred_dis.argmax(dim=-1)).sum() / len(gt_labels)
+
+ val_loss += loss.item()
+ val_acc += acc.item()
+
+
+ val_loss = val_loss / len(val_dataloader)
+ val_acc = val_acc / len(val_dataloader)
+ print('Validation Loss: %.5f Validation Acc: %.5f' % (val_loss, val_acc))
+
+ if val_loss < min_val_loss:
+ self.save(pjoin(self.opt.model_dir, 'finest.tar'), epoch, it)
+ min_val_loss = val_loss
diff --git a/motion_loaders/__init__.py b/motion_loaders/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/motion_loaders/dataset_motion_loader.py b/motion_loaders/dataset_motion_loader.py
new file mode 100644
index 0000000000000000000000000000000000000000..aec8320a39566a2bcc21931d1ada04aad32e9dc2
--- /dev/null
+++ b/motion_loaders/dataset_motion_loader.py
@@ -0,0 +1,27 @@
+from data.t2m_dataset import Text2MotionDatasetEval, collate_fn # TODO
+from utils.word_vectorizer import WordVectorizer
+import numpy as np
+from os.path import join as pjoin
+from torch.utils.data import DataLoader
+from utils.get_opt import get_opt
+
+def get_dataset_motion_loader(opt_path, batch_size, fname, device):
+ opt = get_opt(opt_path, device)
+
+ # Configurations of T2M dataset and KIT dataset is almost the same
+ if opt.dataset_name == 't2m' or opt.dataset_name == 'kit':
+ print('Loading dataset %s ...' % opt.dataset_name)
+
+ mean = np.load(pjoin(opt.meta_dir, 'mean.npy'))
+ std = np.load(pjoin(opt.meta_dir, 'std.npy'))
+
+ w_vectorizer = WordVectorizer('./glove', 'our_vab')
+ split_file = pjoin(opt.data_root, '%s.txt'%fname)
+ dataset = Text2MotionDatasetEval(opt, mean, std, split_file, w_vectorizer)
+ dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=4, drop_last=True,
+ collate_fn=collate_fn, shuffle=True)
+ else:
+ raise KeyError('Dataset not Recognized !!')
+
+ print('Ground Truth Dataset Loading Completed!!!')
+ return dataloader, dataset
\ No newline at end of file
diff --git a/options/__init__.py b/options/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/options/base_option.py b/options/base_option.py
new file mode 100644
index 0000000000000000000000000000000000000000..6b88c069a065fc1be47db9794348dd7777581c96
--- /dev/null
+++ b/options/base_option.py
@@ -0,0 +1,61 @@
+import argparse
+import os
+import torch
+
+class BaseOptions():
+ def __init__(self):
+ self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
+ self.initialized = False
+
+ def initialize(self):
+ self.parser.add_argument('--name', type=str, default="t2m_nlayer8_nhead6_ld384_ff1024_cdp0.1_rvq6ns", help='Name of this trial')
+
+ self.parser.add_argument('--vq_name', type=str, default="rvq_nq1_dc512_nc512", help='Name of the rvq model.')
+
+ self.parser.add_argument("--gpu_id", type=int, default=-1, help='GPU id')
+ self.parser.add_argument('--dataset_name', type=str, default='t2m', help='Dataset Name, {t2m} for humanml3d, {kit} for kit-ml')
+ self.parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here.')
+
+ self.parser.add_argument('--latent_dim', type=int, default=384, help='Dimension of transformer latent.')
+ self.parser.add_argument('--n_heads', type=int, default=6, help='Number of heads.')
+ self.parser.add_argument('--n_layers', type=int, default=8, help='Number of attention layers.')
+ self.parser.add_argument('--ff_size', type=int, default=1024, help='FF_Size')
+ self.parser.add_argument('--dropout', type=float, default=0.2, help='Dropout ratio in transformer')
+
+ self.parser.add_argument("--max_motion_length", type=int, default=196, help="Max length of motion")
+ self.parser.add_argument("--unit_length", type=int, default=4, help="Downscale ratio of VQ")
+
+ self.parser.add_argument('--force_mask', action="store_true", help='True: mask out conditions')
+
+ self.initialized = True
+
+ def parse(self):
+ if not self.initialized:
+ self.initialize()
+
+ self.opt = self.parser.parse_args()
+
+ self.opt.is_train = self.is_train
+
+ if self.opt.gpu_id != -1:
+ # self.opt.gpu_id = int(self.opt.gpu_id)
+ torch.cuda.set_device(self.opt.gpu_id)
+
+ args = vars(self.opt)
+
+ print('------------ Options -------------')
+ for k, v in sorted(args.items()):
+ print('%s: %s' % (str(k), str(v)))
+ print('-------------- End ----------------')
+ if self.is_train:
+ # save to the disk
+ expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.dataset_name, self.opt.name)
+ if not os.path.exists(expr_dir):
+ os.makedirs(expr_dir)
+ file_name = os.path.join(expr_dir, 'opt.txt')
+ with open(file_name, 'wt') as opt_file:
+ opt_file.write('------------ Options -------------\n')
+ for k, v in sorted(args.items()):
+ opt_file.write('%s: %s\n' % (str(k), str(v)))
+ opt_file.write('-------------- End ----------------\n')
+ return self.opt
\ No newline at end of file
diff --git a/options/eval_option.py b/options/eval_option.py
new file mode 100644
index 0000000000000000000000000000000000000000..2ae26828319a2ad0b7eb71b709556ca5485a421c
--- /dev/null
+++ b/options/eval_option.py
@@ -0,0 +1,38 @@
+from options.base_option import BaseOptions
+
+class EvalT2MOptions(BaseOptions):
+ def initialize(self):
+ BaseOptions.initialize(self)
+ self.parser.add_argument('--which_epoch', type=str, default="latest", help='Checkpoint you want to use, {latest, net_best_fid, etc}')
+ self.parser.add_argument('--batch_size', type=int, default=32, help='Batch size')
+
+ self.parser.add_argument('--ext', type=str, default='text2motion', help='Extension of the result file or folder')
+ self.parser.add_argument("--num_batch", default=2, type=int,
+ help="Number of batch for generation")
+ self.parser.add_argument("--repeat_times", default=1, type=int,
+ help="Number of repetitions, per sample text prompt")
+ self.parser.add_argument("--cond_scale", default=4, type=float,
+ help="For classifier-free sampling - specifies the s parameter, as defined in the paper.")
+ self.parser.add_argument("--temperature", default=1., type=float,
+ help="Sampling Temperature.")
+ self.parser.add_argument("--topkr", default=0.9, type=float,
+ help="Filter out percentil low prop entries.")
+ self.parser.add_argument("--time_steps", default=18, type=int,
+ help="Mask Generate steps.")
+ self.parser.add_argument("--seed", default=10107, type=int)
+
+ self.parser.add_argument('--gumbel_sample', action="store_true", help='True: gumbel sampling, False: categorical sampling.')
+ self.parser.add_argument('--use_res_model', action="store_true", help='Whether to use residual transformer.')
+ # self.parser.add_argument('--est_length', action="store_true", help='Training iterations')
+
+ self.parser.add_argument('--res_name', type=str, default='tres_nlayer8_ld384_ff1024_rvq6ns_cdp0.2_sw', help='Model name of residual transformer')
+ self.parser.add_argument('--text_path', type=str, default="", help='Text prompt file')
+
+
+ self.parser.add_argument('-msec', '--mask_edit_section', nargs='*', type=str, help='Indicate sections for editing, use comma to separate the start and end of a section'
+ 'type int will specify the token frame, type float will specify the ratio of seq_len')
+ self.parser.add_argument('--text_prompt', default='', type=str, help="A text prompt to be generated. If empty, will take text prompts from dataset.")
+ self.parser.add_argument('--source_motion', default='example_data/000612.npy', type=str, help="Source motion path for editing. (new_joint_vecs format .npy file)")
+ self.parser.add_argument("--motion_length", default=0, type=int,
+ help="Motion length for generation, only applicable with single text prompt.")
+ self.is_train = False
\ No newline at end of file
diff --git a/options/train_option.py b/options/train_option.py
new file mode 100644
index 0000000000000000000000000000000000000000..875474d657382752462349aed22e2ec2f3619e0d
--- /dev/null
+++ b/options/train_option.py
@@ -0,0 +1,64 @@
+from options.base_option import BaseOptions
+import argparse
+
+class TrainT2MOptions(BaseOptions):
+ def initialize(self):
+ BaseOptions.initialize(self)
+ self.parser.add_argument('--batch_size', type=int, default=64, help='Batch size')
+ self.parser.add_argument('--max_epoch', type=int, default=500, help='Maximum number of epoch for training')
+ # self.parser.add_argument('--max_iters', type=int, default=150_000, help='Training iterations')
+
+ '''LR scheduler'''
+ self.parser.add_argument('--lr', type=float, default=2e-4, help='Learning rate')
+ self.parser.add_argument('--gamma', type=float, default=0.1, help='Learning rate schedule factor')
+ self.parser.add_argument('--milestones', default=[50_000], nargs="+", type=int,
+ help="learning rate schedule (iterations)")
+ self.parser.add_argument('--warm_up_iter', default=2000, type=int, help='number of total iterations for warmup')
+
+ '''Condition'''
+ self.parser.add_argument('--cond_drop_prob', type=float, default=0.1, help='Drop ratio of condition, for classifier-free guidance')
+ self.parser.add_argument("--seed", default=3407, type=int, help="Seed")
+
+ self.parser.add_argument('--is_continue', action="store_true", help='Is this trial continuing previous state?')
+ self.parser.add_argument('--gumbel_sample', action="store_true", help='Strategy for token sampling, True: Gumbel sampling, False: Categorical sampling')
+ self.parser.add_argument('--share_weight', action="store_true", help='Whether to share weight for projection/embedding, for residual transformer.')
+
+ self.parser.add_argument('--log_every', type=int, default=50, help='Frequency of printing training progress, (iteration)')
+ # self.parser.add_argument('--save_every_e', type=int, default=100, help='Frequency of printing training progress')
+ self.parser.add_argument('--eval_every_e', type=int, default=10, help='Frequency of animating eval results, (epoch)')
+ self.parser.add_argument('--save_latest', type=int, default=500, help='Frequency of saving checkpoint, (iteration)')
+
+
+ self.is_train = True
+
+
+class TrainLenEstOptions():
+ def __init__(self):
+ self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
+ self.parser.add_argument('--name', type=str, default="test", help='Name of this trial')
+ self.parser.add_argument("--gpu_id", type=int, default=-1, help='GPU id')
+
+ self.parser.add_argument('--dataset_name', type=str, default='t2m', help='Dataset Name')
+ self.parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here')
+
+ self.parser.add_argument('--batch_size', type=int, default=64, help='Batch size')
+
+ self.parser.add_argument("--unit_length", type=int, default=4, help="Length of motion")
+ self.parser.add_argument("--max_text_len", type=int, default=20, help="Length of motion")
+
+ self.parser.add_argument('--max_epoch', type=int, default=300, help='Training iterations')
+
+ self.parser.add_argument('--lr', type=float, default=1e-4, help='Layers of GRU')
+
+ self.parser.add_argument('--is_continue', action="store_true", help='Training iterations')
+
+ self.parser.add_argument('--log_every', type=int, default=50, help='Frequency of printing training progress')
+ self.parser.add_argument('--save_every_e', type=int, default=5, help='Frequency of printing training progress')
+ self.parser.add_argument('--eval_every_e', type=int, default=3, help='Frequency of printing training progress')
+ self.parser.add_argument('--save_latest', type=int, default=500, help='Frequency of printing training progress')
+
+ def parse(self):
+ self.opt = self.parser.parse_args()
+ self.opt.is_train = True
+ # args = vars(self.opt)
+ return self.opt
diff --git a/options/vq_option.py b/options/vq_option.py
new file mode 100644
index 0000000000000000000000000000000000000000..5dbd91446675184e358b7687c335f9e99e78fdb9
--- /dev/null
+++ b/options/vq_option.py
@@ -0,0 +1,89 @@
+import argparse
+import os
+import torch
+
+def arg_parse(is_train=False):
+ parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
+
+ ## dataloader
+ parser.add_argument('--dataset_name', type=str, default='humanml3d', help='dataset directory')
+ parser.add_argument('--batch_size', default=256, type=int, help='batch size')
+ parser.add_argument('--window_size', type=int, default=64, help='training motion length')
+ parser.add_argument("--gpu_id", type=int, default=0, help='GPU id')
+
+ ## optimization
+ parser.add_argument('--max_epoch', default=50, type=int, help='number of total epochs to run')
+ # parser.add_argument('--total_iter', default=None, type=int, help='number of total iterations to run')
+ parser.add_argument('--warm_up_iter', default=2000, type=int, help='number of total iterations for warmup')
+ parser.add_argument('--lr', default=2e-4, type=float, help='max learning rate')
+ parser.add_argument('--milestones', default=[150000, 250000], nargs="+", type=int, help="learning rate schedule (iterations)")
+ parser.add_argument('--gamma', default=0.1, type=float, help="learning rate decay")
+
+ parser.add_argument('--weight_decay', default=0.0, type=float, help='weight decay')
+ parser.add_argument("--commit", type=float, default=0.02, help="hyper-parameter for the commitment loss")
+ parser.add_argument('--loss_vel', type=float, default=0.5, help='hyper-parameter for the velocity loss')
+ parser.add_argument('--recons_loss', type=str, default='l1_smooth', help='reconstruction loss')
+
+ ## vqvae arch
+ parser.add_argument("--code_dim", type=int, default=512, help="embedding dimension")
+ parser.add_argument("--nb_code", type=int, default=512, help="nb of embedding")
+ parser.add_argument("--mu", type=float, default=0.99, help="exponential moving average to update the codebook")
+ parser.add_argument("--down_t", type=int, default=2, help="downsampling rate")
+ parser.add_argument("--stride_t", type=int, default=2, help="stride size")
+ parser.add_argument("--width", type=int, default=512, help="width of the network")
+ parser.add_argument("--depth", type=int, default=3, help="num of resblocks for each res")
+ parser.add_argument("--dilation_growth_rate", type=int, default=3, help="dilation growth rate")
+ parser.add_argument("--output_emb_width", type=int, default=512, help="output embedding width")
+ parser.add_argument('--vq_act', type=str, default='relu', choices=['relu', 'silu', 'gelu'],
+ help='dataset directory')
+ parser.add_argument('--vq_norm', type=str, default=None, help='dataset directory')
+
+ parser.add_argument('--num_quantizers', type=int, default=3, help='num_quantizers')
+ parser.add_argument('--shared_codebook', action="store_true")
+ parser.add_argument('--quantize_dropout_prob', type=float, default=0.2, help='quantize_dropout_prob')
+ # parser.add_argument('--use_vq_prob', type=float, default=0.8, help='quantize_dropout_prob')
+
+ parser.add_argument('--ext', type=str, default='default', help='reconstruction loss')
+
+
+ ## other
+ parser.add_argument('--name', type=str, default="test", help='Name of this trial')
+ parser.add_argument('--is_continue', action="store_true", help='Name of this trial')
+ parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here')
+ parser.add_argument('--log_every', default=10, type=int, help='iter log frequency')
+ parser.add_argument('--save_latest', default=500, type=int, help='iter save latest model frequency')
+ parser.add_argument('--save_every_e', default=2, type=int, help='save model every n epoch')
+ parser.add_argument('--eval_every_e', default=1, type=int, help='save eval results every n epoch')
+ # parser.add_argument('--early_stop_e', default=5, type=int, help='early stopping epoch')
+ parser.add_argument('--feat_bias', type=float, default=5, help='Layers of GRU')
+
+ parser.add_argument('--which_epoch', type=str, default="all", help='Name of this trial')
+
+ ## For Res Predictor only
+ parser.add_argument('--vq_name', type=str, default="rvq_nq6_dc512_nc512_noshare_qdp0.2", help='Name of this trial')
+ parser.add_argument('--n_res', type=int, default=2, help='Name of this trial')
+ parser.add_argument('--do_vq_res', action="store_true")
+ parser.add_argument("--seed", default=3407, type=int)
+
+ opt = parser.parse_args()
+ torch.cuda.set_device(opt.gpu_id)
+
+ args = vars(opt)
+
+ print('------------ Options -------------')
+ for k, v in sorted(args.items()):
+ print('%s: %s' % (str(k), str(v)))
+ print('-------------- End ----------------')
+ opt.is_train = is_train
+ if is_train:
+ # save to the disk
+ expr_dir = os.path.join(opt.checkpoints_dir, opt.dataset_name, opt.name)
+ if not os.path.exists(expr_dir):
+ os.makedirs(expr_dir)
+ file_name = os.path.join(expr_dir, 'opt.txt')
+ with open(file_name, 'wt') as opt_file:
+ opt_file.write('------------ Options -------------\n')
+ for k, v in sorted(args.items()):
+ opt_file.write('%s: %s\n' % (str(k), str(v)))
+ opt_file.write('-------------- End ----------------\n')
+ return opt
\ No newline at end of file
diff --git a/prepare/.DS_Store b/prepare/.DS_Store
new file mode 100644
index 0000000000000000000000000000000000000000..fa8e0269a4432e16e6160aa80d06b285af126d69
Binary files /dev/null and b/prepare/.DS_Store differ
diff --git a/prepare/download_evaluator.sh b/prepare/download_evaluator.sh
new file mode 100644
index 0000000000000000000000000000000000000000..f285239cd47b03895ad474ccbdae7e9b65e9d7b9
--- /dev/null
+++ b/prepare/download_evaluator.sh
@@ -0,0 +1,24 @@
+cd checkpoints
+
+cd t2m
+echo -e "Downloading evaluation models for HumanML3D dataset"
+gdown --fuzzy https://drive.google.com/file/d/1oLhSH7zTlYkQdUWPv3-v4opigB7pXkFk/view?usp=sharing
+echo -e "Unzipping humanml3d_evaluator.zip"
+unzip humanml3d_evaluator.zip
+
+echo -e "Clearning humanml3d_evaluator.zip"
+rm humanml3d_evaluator.zip
+
+cd ../kit/
+echo -e "Downloading pretrained models for KIT-ML dataset"
+gdown --fuzzy https://drive.google.com/file/d/115n1ijntyKDDIZZEuA_aBgffyplNE5az/view?usp=sharing
+
+echo -e "Unzipping kit_evaluator.zip"
+unzip kit_evaluator.zip
+
+echo -e "Clearning kit_evaluator.zip"
+rm kit_evaluator.zip
+
+cd ../../
+
+echo -e "Downloading done!"
\ No newline at end of file
diff --git a/prepare/download_glove.sh b/prepare/download_glove.sh
new file mode 100644
index 0000000000000000000000000000000000000000..227312f56d654a01f8437573e14f76699f6d8c3a
--- /dev/null
+++ b/prepare/download_glove.sh
@@ -0,0 +1,9 @@
+echo -e "Downloading glove (in use by the evaluators, not by MoMask itself)"
+gdown --fuzzy https://drive.google.com/file/d/1cmXKUT31pqd7_XpJAiWEo1K81TMYHA5n/view?usp=sharing
+rm -rf glove
+
+unzip glove.zip
+echo -e "Cleaning\n"
+rm glove.zip
+
+echo -e "Downloading done!"
\ No newline at end of file
diff --git a/prepare/download_models.sh b/prepare/download_models.sh
new file mode 100644
index 0000000000000000000000000000000000000000..8697badde2276e22ca0658e077b3aa8fb41d4b95
--- /dev/null
+++ b/prepare/download_models.sh
@@ -0,0 +1,31 @@
+rm -rf checkpoints
+mkdir checkpoints
+cd checkpoints
+mkdir t2m
+
+cd t2m
+echo -e "Downloading pretrained models for HumanML3D dataset"
+gdown --fuzzy https://drive.google.com/file/d/1dtKP2xBk-UjG9o16MVfBJDmGNSI56Dch/view?usp=sharing
+
+echo -e "Unzipping humanml3d_models.zip"
+unzip humanml3d_models.zip
+
+echo -e "Cleaning humanml3d_models.zip"
+rm humanml3d_models.zip
+
+cd ../
+mkdir kit
+cd kit
+
+echo -e "Downloading pretrained models for KIT-ML dataset"
+gdown --fuzzy https://drive.google.com/file/d/1MNMdUdn5QoO8UW1iwTcZ0QNaLSH4A6G9/view?usp=sharing
+
+echo -e "Unzipping kit_models.zip"
+unzip kit_models.zip
+
+echo -e "Cleaning kit_models.zip"
+rm kit_models.zip
+
+cd ../../
+
+echo -e "Downloading done!"
\ No newline at end of file
diff --git a/prepare/download_models_demo.sh b/prepare/download_models_demo.sh
new file mode 100644
index 0000000000000000000000000000000000000000..9439e05620622738568ce95592788a79008bacee
--- /dev/null
+++ b/prepare/download_models_demo.sh
@@ -0,0 +1,10 @@
+rm -rf checkpoints
+mkdir checkpoints
+cd checkpoints
+mkdir t2m
+cd t2m
+echo -e "Downloading pretrained models for HumanML3D dataset"
+gdown --fuzzy https://drive.google.com/file/d/1dtKP2xBk-UjG9o16MVfBJDmGNSI56Dch/view?usp=sharing
+unzip humanml3d_models.zip
+rm humanml3d_models.zip
+cd ../../
\ No newline at end of file
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..c23ac5a52cb1c138878b75c0f803e9c32c7c0ddf
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,140 @@
+absl-py @ file:///home/conda/feedstock_root/build_artifacts/absl-py_1673535674859/work
+aiofiles==23.2.1
+aiohttp @ file:///croot/aiohttp_1670009560265/work
+aiosignal @ file:///tmp/build/80754af9/aiosignal_1637843061372/work
+altair==5.0.1
+anyio==3.7.1
+async-timeout @ file:///opt/conda/conda-bld/async-timeout_1664876359750/work
+asynctest==0.13.0
+attrs @ file:///croot/attrs_1668696182826/work
+beautifulsoup4 @ file:///home/conda/feedstock_root/build_artifacts/beautifulsoup4_1649463573192/work
+blinker==1.4
+blis==0.7.8
+blobfile==2.0.2
+brotlipy @ file:///home/conda/feedstock_root/build_artifacts/brotlipy_1648854164153/work
+cachetools==5.3.1
+catalogue @ file:///home/conda/feedstock_root/build_artifacts/catalogue_1661366519934/work
+certifi @ file:///croot/certifi_1671487769961/work/certifi
+cffi @ file:///tmp/abs_98z5h56wf8/croots/recipe/cffi_1659598650955/work
+charset-normalizer @ file:///home/conda/feedstock_root/build_artifacts/charset-normalizer_1661170624537/work
+chumpy==0.70
+click==8.1.3
+clip @ git+https://github.com/openai/CLIP.git@a9b1bf5920416aaeaec965c25dd9e8f98c864f16
+colorama @ file:///home/conda/feedstock_root/build_artifacts/colorama_1655412516417/work
+confection==0.0.2
+cryptography @ file:///home/conda/feedstock_root/build_artifacts/cryptography_1636040646098/work
+cycler @ file:///tmp/build/80754af9/cycler_1637851556182/work
+cymem @ file:///home/conda/feedstock_root/build_artifacts/cymem_1649412169067/work
+dataclasses @ file:///home/conda/feedstock_root/build_artifacts/dataclasses_1628958434797/work
+einops==0.6.1
+en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.3.0/en_core_web_sm-3.3.0-py3-none-any.whl
+exceptiongroup==1.2.0
+fastapi==0.103.2
+ffmpy==0.3.1
+filelock @ file:///home/conda/feedstock_root/build_artifacts/filelock_1660129891014/work
+frozenlist @ file:///croot/frozenlist_1670004507010/work
+fsspec==2023.1.0
+ftfy==6.1.1
+gdown==4.7.1
+google-auth==2.19.1
+google-auth-oauthlib==0.4.6
+gradio==3.34.0
+gradio_client==0.2.6
+grpcio==1.54.2
+h11==0.14.0
+h5py @ file:///tmp/abs_4aewd3wzey/croots/recipe/h5py_1659091371897/work
+httpcore==0.17.3
+httpx==0.24.1
+huggingface-hub==0.16.4
+idna @ file:///home/conda/feedstock_root/build_artifacts/idna_1663625384323/work
+importlib-metadata==5.0.0
+importlib-resources==5.12.0
+Jinja2 @ file:///home/conda/feedstock_root/build_artifacts/jinja2_1654302431367/work
+joblib @ file:///tmp/build/80754af9/joblib_1635411271373/work
+jsonschema==4.17.3
+kiwisolver @ file:///opt/conda/conda-bld/kiwisolver_1653292039266/work
+langcodes @ file:///home/conda/feedstock_root/build_artifacts/langcodes_1636741340529/work
+linkify-it-py==2.0.2
+loralib==0.1.1
+lxml==4.9.1
+Markdown @ file:///home/conda/feedstock_root/build_artifacts/markdown_1679584000376/work
+markdown-it-py==2.2.0
+MarkupSafe @ file:///home/conda/feedstock_root/build_artifacts/markupsafe_1648737551960/work
+matplotlib==3.1.3
+mdit-py-plugins==0.3.3
+mdurl==0.1.2
+mkl-fft==1.3.1
+mkl-random @ file:///tmp/build/80754af9/mkl_random_1626179032232/work
+mkl-service==2.4.0
+multidict @ file:///croot/multidict_1665674239670/work
+murmurhash==1.0.8
+numpy @ file:///opt/conda/conda-bld/numpy_and_numpy_base_1653915516269/work
+oauthlib==3.2.2
+orjson==3.9.7
+packaging @ file:///home/conda/feedstock_root/build_artifacts/packaging_1637239678211/work
+pandas==1.3.5
+pathy @ file:///home/conda/feedstock_root/build_artifacts/pathy_1656568808184/work
+Pillow==9.2.0
+pkgutil_resolve_name==1.3.10
+preshed==3.0.7
+protobuf==3.20.3
+pyasn1==0.5.0
+pyasn1-modules==0.3.0
+pycparser @ file:///home/conda/feedstock_root/build_artifacts/pycparser_1636257122734/work
+pycryptodomex==3.15.0
+pydantic @ file:///home/conda/feedstock_root/build_artifacts/pydantic_1636021129189/work
+pydub==0.25.1
+Pygments==2.17.2
+PyJWT @ file:///opt/conda/conda-bld/pyjwt_1657544592787/work
+pyOpenSSL @ file:///home/conda/feedstock_root/build_artifacts/pyopenssl_1663846997386/work
+pyparsing @ file:///opt/conda/conda-bld/pyparsing_1661452539315/work
+pyrsistent==0.19.3
+PySocks @ file:///home/conda/feedstock_root/build_artifacts/pysocks_1648857264451/work
+python-dateutil @ file:///tmp/build/80754af9/python-dateutil_1626374649649/work
+python-multipart==0.0.6
+pytz==2023.3
+PyYAML==6.0
+regex==2022.9.13
+requests @ file:///home/conda/feedstock_root/build_artifacts/requests_1661872987712/work
+requests-oauthlib==1.3.1
+rsa==4.9
+scikit-learn @ file:///tmp/build/80754af9/scikit-learn_1642601761909/work
+scipy @ file:///opt/conda/conda-bld/scipy_1661390393401/work
+semantic-version==2.10.0
+shellingham @ file:///home/conda/feedstock_root/build_artifacts/shellingham_1659638615822/work
+six @ file:///tmp/build/80754af9/six_1644875935023/work
+smart-open @ file:///home/conda/feedstock_root/build_artifacts/smart_open_1630238320325/work
+smplx==0.1.28
+sniffio==1.3.0
+soupsieve @ file:///home/conda/feedstock_root/build_artifacts/soupsieve_1658207591808/work
+spacy @ file:///opt/conda/conda-bld/spacy_1656601313568/work
+spacy-legacy @ file:///home/conda/feedstock_root/build_artifacts/spacy-legacy_1660748275723/work
+spacy-loggers @ file:///home/conda/feedstock_root/build_artifacts/spacy-loggers_1661365735520/work
+srsly==2.4.4
+starlette==0.27.0
+tensorboard==2.11.2
+tensorboard-data-server==0.6.1
+tensorboard-plugin-wit @ file:///home/builder/tkoch/workspace/tensorflow/tensorboard-plugin-wit_1658918494740/work/tensorboard_plugin_wit-1.8.1-py3-none-any.whl
+tensorboardX==2.6
+thinc==8.0.17
+threadpoolctl @ file:///Users/ktietz/demo/mc3/conda-bld/threadpoolctl_1629802263681/work
+toolz==0.12.0
+torch==1.7.1
+torch-tb-profiler==0.4.1
+torchaudio==0.7.0a0+a853dff
+torchvision==0.8.2
+tornado @ file:///opt/conda/conda-bld/tornado_1662061693373/work
+tqdm @ file:///opt/conda/conda-bld/tqdm_1664392687731/work
+trimesh @ file:///home/conda/feedstock_root/build_artifacts/trimesh_1664841281434/work
+typer @ file:///home/conda/feedstock_root/build_artifacts/typer_1657029164904/work
+typing_extensions==4.7.1
+uc-micro-py==1.0.2
+urllib3 @ file:///home/conda/feedstock_root/build_artifacts/urllib3_1678635778344/work
+uvicorn==0.22.0
+vector-quantize-pytorch==1.6.30
+wasabi @ file:///home/conda/feedstock_root/build_artifacts/wasabi_1668249950899/work
+wcwidth==0.2.5
+websockets==11.0.3
+Werkzeug @ file:///home/conda/feedstock_root/build_artifacts/werkzeug_1676411946679/work
+yarl @ file:///opt/conda/conda-bld/yarl_1661437085904/work
+zipp @ file:///home/conda/feedstock_root/build_artifacts/zipp_1659400682470/work
diff --git a/train_res_transformer.py b/train_res_transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..2b1bde82bab17ea01e4a96a4718cdf336144f1a5
--- /dev/null
+++ b/train_res_transformer.py
@@ -0,0 +1,171 @@
+import os
+import torch
+import numpy as np
+
+from torch.utils.data import DataLoader
+from os.path import join as pjoin
+
+from models.mask_transformer.transformer import ResidualTransformer
+from models.mask_transformer.transformer_trainer import ResidualTransformerTrainer
+from models.vq.model import RVQVAE
+
+from options.train_option import TrainT2MOptions
+
+from utils.plot_script import plot_3d_motion
+from utils.motion_process import recover_from_ric
+from utils.get_opt import get_opt
+from utils.fixseed import fixseed
+from utils.paramUtil import t2m_kinematic_chain, kit_kinematic_chain
+
+from data.t2m_dataset import Text2MotionDataset
+from motion_loaders.dataset_motion_loader import get_dataset_motion_loader
+from models.t2m_eval_wrapper import EvaluatorModelWrapper
+
+
+def plot_t2m(data, save_dir, captions, m_lengths):
+ data = train_dataset.inv_transform(data)
+
+ # print(ep_curves.shape)
+ for i, (caption, joint_data) in enumerate(zip(captions, data)):
+ joint_data = joint_data[:m_lengths[i]]
+ joint = recover_from_ric(torch.from_numpy(joint_data).float(), opt.joints_num).numpy()
+ save_path = pjoin(save_dir, '%02d.mp4'%i)
+ # print(joint.shape)
+ plot_3d_motion(save_path, kinematic_chain, joint, title=caption, fps=20)
+
+def load_vq_model():
+ opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.vq_name, 'opt.txt')
+ vq_opt = get_opt(opt_path, opt.device)
+ vq_model = RVQVAE(vq_opt,
+ dim_pose,
+ vq_opt.nb_code,
+ vq_opt.code_dim,
+ vq_opt.output_emb_width,
+ vq_opt.down_t,
+ vq_opt.stride_t,
+ vq_opt.width,
+ vq_opt.depth,
+ vq_opt.dilation_growth_rate,
+ vq_opt.vq_act,
+ vq_opt.vq_norm)
+ ckpt = torch.load(pjoin(vq_opt.checkpoints_dir, vq_opt.dataset_name, vq_opt.name, 'model', 'net_best_fid.tar'),
+ map_location=opt.device)
+ model_key = 'vq_model' if 'vq_model' in ckpt else 'net'
+ vq_model.load_state_dict(ckpt[model_key])
+ print(f'Loading VQ Model {opt.vq_name}')
+ vq_model.to(opt.device)
+ return vq_model, vq_opt
+
+if __name__ == '__main__':
+ parser = TrainT2MOptions()
+ opt = parser.parse()
+ fixseed(opt.seed)
+
+ opt.device = torch.device("cpu" if opt.gpu_id == -1 else "cuda:" + str(opt.gpu_id))
+ torch.autograd.set_detect_anomaly(True)
+
+ opt.save_root = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
+ opt.model_dir = pjoin(opt.save_root, 'model')
+ # opt.meta_dir = pjoin(opt.save_root, 'meta')
+ opt.eval_dir = pjoin(opt.save_root, 'animation')
+ opt.log_dir = pjoin('./log/res/', opt.dataset_name, opt.name)
+
+ os.makedirs(opt.model_dir, exist_ok=True)
+ # os.makedirs(opt.meta_dir, exist_ok=True)
+ os.makedirs(opt.eval_dir, exist_ok=True)
+ os.makedirs(opt.log_dir, exist_ok=True)
+
+ if opt.dataset_name == 't2m':
+ opt.data_root = './dataset/HumanML3D'
+ opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
+ opt.joints_num = 22
+ opt.max_motion_len = 55
+ dim_pose = 263
+ radius = 4
+ fps = 20
+ kinematic_chain = t2m_kinematic_chain
+ dataset_opt_path = './checkpoints/t2m/Comp_v6_KLD005/opt.txt'
+
+ elif opt.dataset_name == 'kit': #TODO
+ opt.data_root = './dataset/KIT-ML'
+ opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
+ opt.joints_num = 21
+ radius = 240 * 8
+ fps = 12.5
+ dim_pose = 251
+ opt.max_motion_len = 55
+ kinematic_chain = kit_kinematic_chain
+ dataset_opt_path = './checkpoints/kit/Comp_v6_KLD005/opt.txt'
+
+ else:
+ raise KeyError('Dataset Does Not Exist')
+
+ opt.text_dir = pjoin(opt.data_root, 'texts')
+
+ vq_model, vq_opt = load_vq_model()
+
+ clip_version = 'ViT-B/32'
+
+ opt.num_tokens = vq_opt.nb_code
+ opt.num_quantizers = vq_opt.num_quantizers
+
+ # if opt.is_v2:
+ res_transformer = ResidualTransformer(code_dim=vq_opt.code_dim,
+ cond_mode='text',
+ latent_dim=opt.latent_dim,
+ ff_size=opt.ff_size,
+ num_layers=opt.n_layers,
+ num_heads=opt.n_heads,
+ dropout=opt.dropout,
+ clip_dim=512,
+ shared_codebook=vq_opt.shared_codebook,
+ cond_drop_prob=opt.cond_drop_prob,
+ # codebook=vq_model.quantizer.codebooks[0] if opt.fix_token_emb else None,
+ share_weight=opt.share_weight,
+ clip_version=clip_version,
+ opt=opt)
+ # else:
+ # res_transformer = ResidualTransformer(code_dim=vq_opt.code_dim,
+ # cond_mode='text',
+ # latent_dim=opt.latent_dim,
+ # ff_size=opt.ff_size,
+ # num_layers=opt.n_layers,
+ # num_heads=opt.n_heads,
+ # dropout=opt.dropout,
+ # clip_dim=512,
+ # shared_codebook=vq_opt.shared_codebook,
+ # cond_drop_prob=opt.cond_drop_prob,
+ # # codebook=vq_model.quantizer.codebooks[0] if opt.fix_token_emb else None,
+ # clip_version=clip_version,
+ # opt=opt)
+
+
+ all_params = 0
+ pc_transformer = sum(param.numel() for param in res_transformer.parameters_wo_clip())
+
+ print(res_transformer)
+ # print("Total parameters of t2m_transformer net: {:.2f}M".format(pc_transformer / 1000_000))
+ all_params += pc_transformer
+
+ print('Total parameters of all models: {:.2f}M'.format(all_params / 1000_000))
+
+ mean = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, opt.vq_name, 'meta', 'mean.npy'))
+ std = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, opt.vq_name, 'meta', 'std.npy'))
+
+ train_split_file = pjoin(opt.data_root, 'train.txt')
+ val_split_file = pjoin(opt.data_root, 'val.txt')
+
+ train_dataset = Text2MotionDataset(opt, mean, std, train_split_file)
+ val_dataset = Text2MotionDataset(opt, mean, std, val_split_file)
+
+ train_loader = DataLoader(train_dataset, batch_size=opt.batch_size, num_workers=4, shuffle=True, drop_last=True)
+ val_loader = DataLoader(val_dataset, batch_size=opt.batch_size, num_workers=4, shuffle=True, drop_last=True)
+
+ eval_val_loader, _ = get_dataset_motion_loader(dataset_opt_path, 32, 'val', device=opt.device)
+
+ wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
+ eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
+
+ trainer = ResidualTransformerTrainer(opt, res_transformer, vq_model)
+
+ trainer.train(train_loader, val_loader, eval_val_loader, eval_wrapper=eval_wrapper, plot_eval=plot_t2m)
\ No newline at end of file
diff --git a/train_t2m_transformer.py b/train_t2m_transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..7b4089f148c38f77af5111ecc06ec9d592bb6fca
--- /dev/null
+++ b/train_t2m_transformer.py
@@ -0,0 +1,153 @@
+import os
+import torch
+import numpy as np
+
+from torch.utils.data import DataLoader
+from os.path import join as pjoin
+
+from models.mask_transformer.transformer import MaskTransformer
+from models.mask_transformer.transformer_trainer import MaskTransformerTrainer
+from models.vq.model import RVQVAE
+
+from options.train_option import TrainT2MOptions
+
+from utils.plot_script import plot_3d_motion
+from utils.motion_process import recover_from_ric
+from utils.get_opt import get_opt
+from utils.fixseed import fixseed
+from utils.paramUtil import t2m_kinematic_chain, kit_kinematic_chain
+
+from data.t2m_dataset import Text2MotionDataset
+from motion_loaders.dataset_motion_loader import get_dataset_motion_loader
+from models.t2m_eval_wrapper import EvaluatorModelWrapper
+
+
+def plot_t2m(data, save_dir, captions, m_lengths):
+ data = train_dataset.inv_transform(data)
+
+ # print(ep_curves.shape)
+ for i, (caption, joint_data) in enumerate(zip(captions, data)):
+ joint_data = joint_data[:m_lengths[i]]
+ joint = recover_from_ric(torch.from_numpy(joint_data).float(), opt.joints_num).numpy()
+ save_path = pjoin(save_dir, '%02d.mp4'%i)
+ # print(joint.shape)
+ plot_3d_motion(save_path, kinematic_chain, joint, title=caption, fps=20)
+
+def load_vq_model():
+ opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.vq_name, 'opt.txt')
+ vq_opt = get_opt(opt_path, opt.device)
+ vq_model = RVQVAE(vq_opt,
+ dim_pose,
+ vq_opt.nb_code,
+ vq_opt.code_dim,
+ vq_opt.output_emb_width,
+ vq_opt.down_t,
+ vq_opt.stride_t,
+ vq_opt.width,
+ vq_opt.depth,
+ vq_opt.dilation_growth_rate,
+ vq_opt.vq_act,
+ vq_opt.vq_norm)
+ ckpt = torch.load(pjoin(vq_opt.checkpoints_dir, vq_opt.dataset_name, vq_opt.name, 'model', 'net_best_fid.tar'),
+ map_location='cpu')
+ model_key = 'vq_model' if 'vq_model' in ckpt else 'net'
+ vq_model.load_state_dict(ckpt[model_key])
+ print(f'Loading VQ Model {opt.vq_name}')
+ return vq_model, vq_opt
+
+if __name__ == '__main__':
+ parser = TrainT2MOptions()
+ opt = parser.parse()
+ fixseed(opt.seed)
+
+ opt.device = torch.device("cpu" if opt.gpu_id == -1 else "cuda:" + str(opt.gpu_id))
+ torch.autograd.set_detect_anomaly(True)
+
+ opt.save_root = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
+ opt.model_dir = pjoin(opt.save_root, 'model')
+ # opt.meta_dir = pjoin(opt.save_root, 'meta')
+ opt.eval_dir = pjoin(opt.save_root, 'animation')
+ opt.log_dir = pjoin('./log/t2m/', opt.dataset_name, opt.name)
+
+ os.makedirs(opt.model_dir, exist_ok=True)
+ # os.makedirs(opt.meta_dir, exist_ok=True)
+ os.makedirs(opt.eval_dir, exist_ok=True)
+ os.makedirs(opt.log_dir, exist_ok=True)
+
+ if opt.dataset_name == 't2m':
+ opt.data_root = './dataset/HumanML3D'
+ opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
+ opt.joints_num = 22
+ opt.max_motion_len = 55
+ dim_pose = 263
+ radius = 4
+ fps = 20
+ kinematic_chain = t2m_kinematic_chain
+ dataset_opt_path = './checkpoints/t2m/Comp_v6_KLD005/opt.txt'
+
+ elif opt.dataset_name == 'kit': #TODO
+ opt.data_root = './dataset/KIT-ML'
+ opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
+ opt.joints_num = 21
+ radius = 240 * 8
+ fps = 12.5
+ dim_pose = 251
+ opt.max_motion_len = 55
+ kinematic_chain = kit_kinematic_chain
+ dataset_opt_path = './checkpoints/kit/Comp_v6_KLD005/opt.txt'
+
+ else:
+ raise KeyError('Dataset Does Not Exist')
+
+ opt.text_dir = pjoin(opt.data_root, 'texts')
+
+ vq_model, vq_opt = load_vq_model()
+
+ clip_version = 'ViT-B/32'
+
+ opt.num_tokens = vq_opt.nb_code
+
+ t2m_transformer = MaskTransformer(code_dim=vq_opt.code_dim,
+ cond_mode='text',
+ latent_dim=opt.latent_dim,
+ ff_size=opt.ff_size,
+ num_layers=opt.n_layers,
+ num_heads=opt.n_heads,
+ dropout=opt.dropout,
+ clip_dim=512,
+ cond_drop_prob=opt.cond_drop_prob,
+ clip_version=clip_version,
+ opt=opt)
+
+ # if opt.fix_token_emb:
+ # t2m_transformer.load_and_freeze_token_emb(vq_model.quantizer.codebooks[0])
+
+ all_params = 0
+ pc_transformer = sum(param.numel() for param in t2m_transformer.parameters_wo_clip())
+
+ # print(t2m_transformer)
+ # print("Total parameters of t2m_transformer net: {:.2f}M".format(pc_transformer / 1000_000))
+ all_params += pc_transformer
+
+ print('Total parameters of all models: {:.2f}M'.format(all_params / 1000_000))
+
+ mean = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, opt.vq_name, 'meta', 'mean.npy'))
+ std = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, opt.vq_name, 'meta', 'std.npy'))
+
+ train_split_file = pjoin(opt.data_root, 'train.txt')
+ val_split_file = pjoin(opt.data_root, 'val.txt')
+
+ train_dataset = Text2MotionDataset(opt, mean, std, train_split_file)
+ val_dataset = Text2MotionDataset(opt, mean, std, val_split_file)
+
+ train_loader = DataLoader(train_dataset, batch_size=opt.batch_size, num_workers=4, shuffle=True, drop_last=True)
+ val_loader = DataLoader(val_dataset, batch_size=opt.batch_size, num_workers=4, shuffle=True, drop_last=True)
+
+ eval_val_loader, _ = get_dataset_motion_loader(dataset_opt_path, 32, 'val', device=opt.device)
+
+ wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
+ eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
+
+ trainer = MaskTransformerTrainer(opt, t2m_transformer, vq_model)
+
+ trainer.train(train_loader, val_loader, eval_val_loader, eval_wrapper=eval_wrapper, plot_eval=plot_t2m)
\ No newline at end of file
diff --git a/train_vq.py b/train_vq.py
new file mode 100644
index 0000000000000000000000000000000000000000..a01fd117314914f1063620e36e26313188718d68
--- /dev/null
+++ b/train_vq.py
@@ -0,0 +1,120 @@
+import os
+from os.path import join as pjoin
+
+import torch
+from torch.utils.data import DataLoader
+
+from models.vq.model import RVQVAE
+from models.vq.vq_trainer import RVQTokenizerTrainer
+from options.vq_option import arg_parse
+from data.t2m_dataset import MotionDataset
+from utils import paramUtil
+import numpy as np
+
+from models.t2m_eval_wrapper import EvaluatorModelWrapper
+from utils.get_opt import get_opt
+from motion_loaders.dataset_motion_loader import get_dataset_motion_loader
+
+from utils.motion_process import recover_from_ric
+from utils.plot_script import plot_3d_motion
+
+os.environ["OMP_NUM_THREADS"] = "1"
+
+def plot_t2m(data, save_dir):
+ data = train_dataset.inv_transform(data)
+ for i in range(len(data)):
+ joint_data = data[i]
+ joint = recover_from_ric(torch.from_numpy(joint_data).float(), opt.joints_num).numpy()
+ save_path = pjoin(save_dir, '%02d.mp4' % (i))
+ plot_3d_motion(save_path, kinematic_chain, joint, title="None", fps=fps, radius=radius)
+
+
+if __name__ == "__main__":
+ # torch.autograd.set_detect_anomaly(True)
+ opt = arg_parse(True)
+
+ opt.device = torch.device("cpu" if opt.gpu_id == -1 else "cuda:" + str(opt.gpu_id))
+ print(f"Using Device: {opt.device}")
+
+ opt.save_root = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
+ opt.model_dir = pjoin(opt.save_root, 'model')
+ opt.meta_dir = pjoin(opt.save_root, 'meta')
+ opt.eval_dir = pjoin(opt.save_root, 'animation')
+ opt.log_dir = pjoin('./log/vq/', opt.dataset_name, opt.name)
+
+ os.makedirs(opt.model_dir, exist_ok=True)
+ os.makedirs(opt.meta_dir, exist_ok=True)
+ os.makedirs(opt.eval_dir, exist_ok=True)
+ os.makedirs(opt.log_dir, exist_ok=True)
+
+ if opt.dataset_name == "t2m":
+ opt.data_root = './dataset/HumanML3D/'
+ opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
+ opt.text_dir = pjoin(opt.data_root, 'texts')
+ opt.joints_num = 22
+ dim_pose = 263
+ fps = 20
+ radius = 4
+ kinematic_chain = paramUtil.t2m_kinematic_chain
+ dataset_opt_path = './checkpoints/t2m/Comp_v6_KLD005/opt.txt'
+
+ elif opt.dataset_name == "kit":
+ opt.data_root = './dataset/KIT-ML/'
+ opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
+ opt.text_dir = pjoin(opt.data_root, 'texts')
+ opt.joints_num = 21
+ radius = 240 * 8
+ fps = 12.5
+ dim_pose = 251
+ opt.max_motion_length = 196
+ kinematic_chain = paramUtil.kit_kinematic_chain
+ dataset_opt_path = './checkpoints/kit/Comp_v6_KLD005/opt.txt'
+ else:
+ raise KeyError('Dataset Does not Exists')
+
+ wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
+ eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
+
+ mean = np.load(pjoin(opt.data_root, 'Mean.npy'))
+ std = np.load(pjoin(opt.data_root, 'Std.npy'))
+
+ train_split_file = pjoin(opt.data_root, 'train.txt')
+ val_split_file = pjoin(opt.data_root, 'val.txt')
+
+
+ net = RVQVAE(opt,
+ dim_pose,
+ opt.nb_code,
+ opt.code_dim,
+ opt.code_dim,
+ opt.down_t,
+ opt.stride_t,
+ opt.width,
+ opt.depth,
+ opt.dilation_growth_rate,
+ opt.vq_act,
+ opt.vq_norm)
+
+ pc_vq = sum(param.numel() for param in net.parameters())
+ print(net)
+ # print("Total parameters of discriminator net: {}".format(pc_vq))
+ # all_params += pc_vq_dis
+
+ print('Total parameters of all models: {}M'.format(pc_vq/1000_000))
+
+ trainer = RVQTokenizerTrainer(opt, vq_model=net)
+
+ train_dataset = MotionDataset(opt, mean, std, train_split_file)
+ val_dataset = MotionDataset(opt, mean, std, val_split_file)
+
+ train_loader = DataLoader(train_dataset, batch_size=opt.batch_size, drop_last=True, num_workers=4,
+ shuffle=True, pin_memory=True)
+ val_loader = DataLoader(val_dataset, batch_size=opt.batch_size, drop_last=True, num_workers=4,
+ shuffle=True, pin_memory=True)
+ eval_val_loader, _ = get_dataset_motion_loader(dataset_opt_path, 32, 'test', device=opt.device)
+ trainer.train(train_loader, val_loader, eval_val_loader, eval_wrapper, plot_t2m)
+
+## train_vq.py --dataset_name kit --batch_size 512 --name VQVAE_dp2 --gpu_id 3
+## train_vq.py --dataset_name kit --batch_size 256 --name VQVAE_dp2_b256 --gpu_id 2
+## train_vq.py --dataset_name kit --batch_size 1024 --name VQVAE_dp2_b1024 --gpu_id 1
+## python train_vq.py --dataset_name kit --batch_size 256 --name VQVAE_dp1_b256 --gpu_id 2
\ No newline at end of file
diff --git a/utils/eval_t2m.py b/utils/eval_t2m.py
new file mode 100644
index 0000000000000000000000000000000000000000..02aa218b063af16a526ccfc8432c7ba9b8a5fb13
--- /dev/null
+++ b/utils/eval_t2m.py
@@ -0,0 +1,1017 @@
+import os
+
+import clip
+import numpy as np
+import torch
+# from scipy import linalg
+from utils.metrics import *
+import torch.nn.functional as F
+# import visualization.plot_3d_global as plot_3d
+from utils.motion_process import recover_from_ric
+#
+#
+# def tensorborad_add_video_xyz(writer, xyz, nb_iter, tag, nb_vis=4, title_batch=None, outname=None):
+# xyz = xyz[:1]
+# bs, seq = xyz.shape[:2]
+# xyz = xyz.reshape(bs, seq, -1, 3)
+# plot_xyz = plot_3d.draw_to_batch(xyz.cpu().numpy(), title_batch, outname)
+# plot_xyz = np.transpose(plot_xyz, (0, 1, 4, 2, 3))
+# writer.add_video(tag, plot_xyz, nb_iter, fps=20)
+
+
+@torch.no_grad()
+def evaluation_vqvae(out_dir, val_loader, net, writer, ep, best_fid, best_div, best_top1,
+ best_top2, best_top3, best_matching, eval_wrapper, save=True, draw=True):
+ net.eval()
+
+ motion_annotation_list = []
+ motion_pred_list = []
+
+ R_precision_real = 0
+ R_precision = 0
+
+ nb_sample = 0
+ matching_score_real = 0
+ matching_score_pred = 0
+ for batch in val_loader:
+ # print(len(batch))
+ word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, token = batch
+
+ motion = motion.cuda()
+ et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, motion, m_length)
+ bs, seq = motion.shape[0], motion.shape[1]
+
+ # num_joints = 21 if motion.shape[-1] == 251 else 22
+
+ # pred_pose_eval = torch.zeros((bs, seq, motion.shape[-1])).cuda()
+
+ pred_pose_eval, loss_commit, perplexity = net(motion)
+
+ et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval,
+ m_length)
+
+ motion_pred_list.append(em_pred)
+ motion_annotation_list.append(em)
+
+ temp_R = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
+ temp_match = euclidean_distance_matrix(et.cpu().numpy(), em.cpu().numpy()).trace()
+ R_precision_real += temp_R
+ matching_score_real += temp_match
+ temp_R = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
+ temp_match = euclidean_distance_matrix(et_pred.cpu().numpy(), em_pred.cpu().numpy()).trace()
+ R_precision += temp_R
+ matching_score_pred += temp_match
+
+ nb_sample += bs
+
+ motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
+ motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
+ gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
+ mu, cov = calculate_activation_statistics(motion_pred_np)
+
+ diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
+ diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
+
+ R_precision_real = R_precision_real / nb_sample
+ R_precision = R_precision / nb_sample
+
+ matching_score_real = matching_score_real / nb_sample
+ matching_score_pred = matching_score_pred / nb_sample
+
+ fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
+
+ msg = "--> \t Eva. Ep %d:, FID. %.4f, Diversity Real. %.4f, Diversity. %.4f, R_precision_real. (%.4f, %.4f, %.4f), R_precision. (%.4f, %.4f, %.4f), matching_score_real. %.4f, matching_score_pred. %.4f"%\
+ (ep, fid, diversity_real, diversity, R_precision_real[0],R_precision_real[1], R_precision_real[2],
+ R_precision[0],R_precision[1], R_precision[2], matching_score_real, matching_score_pred )
+ # logger.info(msg)
+ print(msg)
+
+ if draw:
+ writer.add_scalar('./Test/FID', fid, ep)
+ writer.add_scalar('./Test/Diversity', diversity, ep)
+ writer.add_scalar('./Test/top1', R_precision[0], ep)
+ writer.add_scalar('./Test/top2', R_precision[1], ep)
+ writer.add_scalar('./Test/top3', R_precision[2], ep)
+ writer.add_scalar('./Test/matching_score', matching_score_pred, ep)
+
+ if fid < best_fid:
+ msg = "--> --> \t FID Improved from %.5f to %.5f !!!" % (best_fid, fid)
+ if draw: print(msg)
+ best_fid = fid
+ if save:
+ torch.save({'vq_model': net.state_dict(), 'ep': ep}, os.path.join(out_dir, 'net_best_fid.tar'))
+
+ if abs(diversity_real - diversity) < abs(diversity_real - best_div):
+ msg = "--> --> \t Diversity Improved from %.5f to %.5f !!!"%(best_div, diversity)
+ if draw: print(msg)
+ best_div = diversity
+ # if save:
+ # torch.save({'net': net.state_dict()}, os.path.join(out_dir, 'net_best_div.pth'))
+
+ if R_precision[0] > best_top1:
+ msg = "--> --> \t Top1 Improved from %.5f to %.5f !!!" % (best_top1, R_precision[0])
+ if draw: print(msg)
+ best_top1 = R_precision[0]
+ # if save:
+ # torch.save({'vq_model': net.state_dict(), 'ep':ep}, os.path.join(out_dir, 'net_best_top1.tar'))
+
+ if R_precision[1] > best_top2:
+ msg = "--> --> \t Top2 Improved from %.5f to %.5f!!!" % (best_top2, R_precision[1])
+ if draw: print(msg)
+ best_top2 = R_precision[1]
+
+ if R_precision[2] > best_top3:
+ msg = "--> --> \t Top3 Improved from %.5f to %.5f !!!" % (best_top3, R_precision[2])
+ if draw: print(msg)
+ best_top3 = R_precision[2]
+
+ if matching_score_pred < best_matching:
+ msg = f"--> --> \t matching_score Improved from %.5f to %.5f !!!" % (best_matching, matching_score_pred)
+ if draw: print(msg)
+ best_matching = matching_score_pred
+ if save:
+ torch.save({'vq_model': net.state_dict(), 'ep': ep}, os.path.join(out_dir, 'net_best_mm.tar'))
+
+ # if save:
+ # torch.save({'net': net.state_dict()}, os.path.join(out_dir, 'net_last.pth'))
+
+ net.train()
+ return best_fid, best_div, best_top1, best_top2, best_top3, best_matching, writer
+
+@torch.no_grad()
+def evaluation_vqvae_plus_mpjpe(val_loader, net, repeat_id, eval_wrapper, num_joint):
+ net.eval()
+
+ motion_annotation_list = []
+ motion_pred_list = []
+
+ R_precision_real = 0
+ R_precision = 0
+
+ nb_sample = 0
+ matching_score_real = 0
+ matching_score_pred = 0
+ mpjpe = 0
+ num_poses = 0
+ for batch in val_loader:
+ # print(len(batch))
+ word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, token = batch
+
+ motion = motion.cuda()
+ et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, motion, m_length)
+ bs, seq = motion.shape[0], motion.shape[1]
+
+ # num_joints = 21 if motion.shape[-1] == 251 else 22
+
+ # pred_pose_eval = torch.zeros((bs, seq, motion.shape[-1])).cuda()
+
+ pred_pose_eval, loss_commit, perplexity = net(motion)
+ # all_indices,_ = net.encode(motion)
+ # pred_pose_eval = net.forward_decoder(all_indices[..., :1])
+
+ et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval,
+ m_length)
+
+ bgt = val_loader.dataset.inv_transform(motion.detach().cpu().numpy())
+ bpred = val_loader.dataset.inv_transform(pred_pose_eval.detach().cpu().numpy())
+ for i in range(bs):
+ gt = recover_from_ric(torch.from_numpy(bgt[i, :m_length[i]]).float(), num_joint)
+ pred = recover_from_ric(torch.from_numpy(bpred[i, :m_length[i]]).float(), num_joint)
+
+ mpjpe += torch.sum(calculate_mpjpe(gt, pred))
+ # print(calculate_mpjpe(gt, pred).shape, gt.shape, pred.shape)
+ num_poses += gt.shape[0]
+
+ # print(mpjpe, num_poses)
+ # exit()
+
+ motion_pred_list.append(em_pred)
+ motion_annotation_list.append(em)
+
+ temp_R = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
+ temp_match = euclidean_distance_matrix(et.cpu().numpy(), em.cpu().numpy()).trace()
+ R_precision_real += temp_R
+ matching_score_real += temp_match
+ temp_R = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
+ temp_match = euclidean_distance_matrix(et_pred.cpu().numpy(), em_pred.cpu().numpy()).trace()
+ R_precision += temp_R
+ matching_score_pred += temp_match
+
+ nb_sample += bs
+
+ motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
+ motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
+ gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
+ mu, cov = calculate_activation_statistics(motion_pred_np)
+
+ diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
+ diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
+
+ R_precision_real = R_precision_real / nb_sample
+ R_precision = R_precision / nb_sample
+
+ matching_score_real = matching_score_real / nb_sample
+ matching_score_pred = matching_score_pred / nb_sample
+ mpjpe = mpjpe / num_poses
+
+ fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
+
+ msg = "--> \t Eva. Re %d:, FID. %.4f, Diversity Real. %.4f, Diversity. %.4f, R_precision_real. (%.4f, %.4f, %.4f), R_precision. (%.4f, %.4f, %.4f), matching_real. %.4f, matching_pred. %.4f, MPJPE. %.4f" % \
+ (repeat_id, fid, diversity_real, diversity, R_precision_real[0], R_precision_real[1], R_precision_real[2],
+ R_precision[0], R_precision[1], R_precision[2], matching_score_real, matching_score_pred, mpjpe)
+ # logger.info(msg)
+ print(msg)
+ return fid, diversity, R_precision, matching_score_pred, mpjpe
+
+@torch.no_grad()
+def evaluation_vqvae_plus_l1(val_loader, net, repeat_id, eval_wrapper, num_joint):
+ net.eval()
+
+ motion_annotation_list = []
+ motion_pred_list = []
+
+ R_precision_real = 0
+ R_precision = 0
+
+ nb_sample = 0
+ matching_score_real = 0
+ matching_score_pred = 0
+ l1_dist = 0
+ num_poses = 1
+ for batch in val_loader:
+ # print(len(batch))
+ word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, token = batch
+
+ motion = motion.cuda()
+ et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, motion, m_length)
+ bs, seq = motion.shape[0], motion.shape[1]
+
+ # num_joints = 21 if motion.shape[-1] == 251 else 22
+
+ # pred_pose_eval = torch.zeros((bs, seq, motion.shape[-1])).cuda()
+
+ pred_pose_eval, loss_commit, perplexity = net(motion)
+ # all_indices,_ = net.encode(motion)
+ # pred_pose_eval = net.forward_decoder(all_indices[..., :1])
+
+ et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval,
+ m_length)
+
+ bgt = val_loader.dataset.inv_transform(motion.detach().cpu().numpy())
+ bpred = val_loader.dataset.inv_transform(pred_pose_eval.detach().cpu().numpy())
+ for i in range(bs):
+ gt = recover_from_ric(torch.from_numpy(bgt[i, :m_length[i]]).float(), num_joint)
+ pred = recover_from_ric(torch.from_numpy(bpred[i, :m_length[i]]).float(), num_joint)
+ # gt = motion[i, :m_length[i]]
+ # pred = pred_pose_eval[i, :m_length[i]]
+ num_pose = gt.shape[0]
+ l1_dist += F.l1_loss(gt, pred) * num_pose
+ num_poses += num_pose
+
+ motion_pred_list.append(em_pred)
+ motion_annotation_list.append(em)
+
+ temp_R = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
+ temp_match = euclidean_distance_matrix(et.cpu().numpy(), em.cpu().numpy()).trace()
+ R_precision_real += temp_R
+ matching_score_real += temp_match
+ temp_R = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
+ temp_match = euclidean_distance_matrix(et_pred.cpu().numpy(), em_pred.cpu().numpy()).trace()
+ R_precision += temp_R
+ matching_score_pred += temp_match
+
+ nb_sample += bs
+
+ motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
+ motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
+ gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
+ mu, cov = calculate_activation_statistics(motion_pred_np)
+
+ diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
+ diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
+
+ R_precision_real = R_precision_real / nb_sample
+ R_precision = R_precision / nb_sample
+
+ matching_score_real = matching_score_real / nb_sample
+ matching_score_pred = matching_score_pred / nb_sample
+ l1_dist = l1_dist / num_poses
+
+ fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
+
+ msg = "--> \t Eva. Re %d:, FID. %.4f, Diversity Real. %.4f, Diversity. %.4f, R_precision_real. (%.4f, %.4f, %.4f), R_precision. (%.4f, %.4f, %.4f), matching_real. %.4f, matching_pred. %.4f, mae. %.4f"%\
+ (repeat_id, fid, diversity_real, diversity, R_precision_real[0],R_precision_real[1], R_precision_real[2],
+ R_precision[0],R_precision[1], R_precision[2], matching_score_real, matching_score_pred, l1_dist)
+ # logger.info(msg)
+ print(msg)
+ return fid, diversity, R_precision, matching_score_pred, l1_dist
+
+
+@torch.no_grad()
+def evaluation_res_plus_l1(val_loader, vq_model, res_model, repeat_id, eval_wrapper, num_joint, do_vq_res=True):
+ vq_model.eval()
+ res_model.eval()
+
+ motion_annotation_list = []
+ motion_pred_list = []
+
+ R_precision_real = 0
+ R_precision = 0
+
+ nb_sample = 0
+ matching_score_real = 0
+ matching_score_pred = 0
+ l1_dist = 0
+ num_poses = 1
+ for batch in val_loader:
+ # print(len(batch))
+ word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, token = batch
+
+ motion = motion.cuda()
+ et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, motion, m_length)
+ bs, seq = motion.shape[0], motion.shape[1]
+
+ # num_joints = 21 if motion.shape[-1] == 251 else 22
+
+ # pred_pose_eval = torch.zeros((bs, seq, motion.shape[-1])).cuda()
+
+ if do_vq_res:
+ code_ids, all_codes = vq_model.encode(motion)
+ if len(code_ids.shape) == 3:
+ pred_vq_codes = res_model(code_ids[..., 0])
+ else:
+ pred_vq_codes = res_model(code_ids)
+ # pred_vq_codes = pred_vq_codes - pred_vq_res + all_codes[1:].sum(0)
+ pred_pose_eval = vq_model.decoder(pred_vq_codes)
+ else:
+ rec_motions, _, _ = vq_model(motion)
+ pred_pose_eval = res_model(rec_motions) # all_indices,_ = net.encode(motion)
+ # pred_pose_eval = net.forward_decoder(all_indices[..., :1])
+
+ et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_pose_eval,
+ m_length)
+
+ bgt = val_loader.dataset.inv_transform(motion.detach().cpu().numpy())
+ bpred = val_loader.dataset.inv_transform(pred_pose_eval.detach().cpu().numpy())
+ for i in range(bs):
+ gt = recover_from_ric(torch.from_numpy(bgt[i, :m_length[i]]).float(), num_joint)
+ pred = recover_from_ric(torch.from_numpy(bpred[i, :m_length[i]]).float(), num_joint)
+ # gt = motion[i, :m_length[i]]
+ # pred = pred_pose_eval[i, :m_length[i]]
+ num_pose = gt.shape[0]
+ l1_dist += F.l1_loss(gt, pred) * num_pose
+ num_poses += num_pose
+
+ motion_pred_list.append(em_pred)
+ motion_annotation_list.append(em)
+
+ temp_R = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
+ temp_match = euclidean_distance_matrix(et.cpu().numpy(), em.cpu().numpy()).trace()
+ R_precision_real += temp_R
+ matching_score_real += temp_match
+ temp_R = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
+ temp_match = euclidean_distance_matrix(et_pred.cpu().numpy(), em_pred.cpu().numpy()).trace()
+ R_precision += temp_R
+ matching_score_pred += temp_match
+
+ nb_sample += bs
+
+ motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
+ motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
+ gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
+ mu, cov = calculate_activation_statistics(motion_pred_np)
+
+ diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
+ diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
+
+ R_precision_real = R_precision_real / nb_sample
+ R_precision = R_precision / nb_sample
+
+ matching_score_real = matching_score_real / nb_sample
+ matching_score_pred = matching_score_pred / nb_sample
+ l1_dist = l1_dist / num_poses
+
+ fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
+
+ msg = "--> \t Eva. Re %d:, FID. %.4f, Diversity Real. %.4f, Diversity. %.4f, R_precision_real. (%.4f, %.4f, %.4f), R_precision. (%.4f, %.4f, %.4f), matching_real. %.4f, matching_pred. %.4f, mae. %.4f"%\
+ (repeat_id, fid, diversity_real, diversity, R_precision_real[0],R_precision_real[1], R_precision_real[2],
+ R_precision[0],R_precision[1], R_precision[2], matching_score_real, matching_score_pred, l1_dist)
+ # logger.info(msg)
+ print(msg)
+ return fid, diversity, R_precision, matching_score_pred, l1_dist
+
+@torch.no_grad()
+def evaluation_mask_transformer(out_dir, val_loader, trans, vq_model, writer, ep, best_fid, best_div,
+ best_top1, best_top2, best_top3, best_matching, eval_wrapper, plot_func,
+ save_ckpt=False, save_anim=False):
+
+ def save(file_name, ep):
+ t2m_trans_state_dict = trans.state_dict()
+ clip_weights = [e for e in t2m_trans_state_dict.keys() if e.startswith('clip_model.')]
+ for e in clip_weights:
+ del t2m_trans_state_dict[e]
+ state = {
+ 't2m_transformer': t2m_trans_state_dict,
+ # 'opt_t2m_transformer': self.opt_t2m_transformer.state_dict(),
+ # 'scheduler':self.scheduler.state_dict(),
+ 'ep': ep,
+ }
+ torch.save(state, file_name)
+
+ trans.eval()
+ vq_model.eval()
+
+ motion_annotation_list = []
+ motion_pred_list = []
+ R_precision_real = 0
+ R_precision = 0
+ matching_score_real = 0
+ matching_score_pred = 0
+ time_steps = 18
+ if "kit" in out_dir:
+ cond_scale = 2
+ else:
+ cond_scale = 4
+
+ # print(num_quantizer)
+
+ # assert num_quantizer >= len(time_steps) and num_quantizer >= len(cond_scales)
+
+ nb_sample = 0
+ # for i in range(1):
+ for batch in val_loader:
+ word_embeddings, pos_one_hots, clip_text, sent_len, pose, m_length, token = batch
+ m_length = m_length.cuda()
+
+ bs, seq = pose.shape[:2]
+ # num_joints = 21 if pose.shape[-1] == 251 else 22
+
+ # (b, seqlen)
+ mids = trans.generate(clip_text, m_length//4, time_steps, cond_scale, temperature=1)
+
+ # motion_codes = motion_codes.permute(0, 2, 1)
+ mids.unsqueeze_(-1)
+ pred_motions = vq_model.forward_decoder(mids)
+
+ et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_motions.clone(),
+ m_length)
+
+ pose = pose.cuda().float()
+
+ et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pose, m_length)
+ motion_annotation_list.append(em)
+ motion_pred_list.append(em_pred)
+
+ temp_R = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
+ temp_match = euclidean_distance_matrix(et.cpu().numpy(), em.cpu().numpy()).trace()
+ R_precision_real += temp_R
+ matching_score_real += temp_match
+ temp_R = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
+ temp_match = euclidean_distance_matrix(et_pred.cpu().numpy(), em_pred.cpu().numpy()).trace()
+ R_precision += temp_R
+ matching_score_pred += temp_match
+
+ nb_sample += bs
+
+ motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
+ motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
+ gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
+ mu, cov = calculate_activation_statistics(motion_pred_np)
+
+ diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
+ diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
+
+ R_precision_real = R_precision_real / nb_sample
+ R_precision = R_precision / nb_sample
+
+ matching_score_real = matching_score_real / nb_sample
+ matching_score_pred = matching_score_pred / nb_sample
+
+ fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
+
+ msg = f"--> \t Eva. Ep {ep} :, FID. {fid:.4f}, Diversity Real. {diversity_real:.4f}, Diversity. {diversity:.4f}, R_precision_real. {R_precision_real}, R_precision. {R_precision}, matching_score_real. {matching_score_real}, matching_score_pred. {matching_score_pred}"
+ print(msg)
+
+ # if draw:
+ writer.add_scalar('./Test/FID', fid, ep)
+ writer.add_scalar('./Test/Diversity', diversity, ep)
+ writer.add_scalar('./Test/top1', R_precision[0], ep)
+ writer.add_scalar('./Test/top2', R_precision[1], ep)
+ writer.add_scalar('./Test/top3', R_precision[2], ep)
+ writer.add_scalar('./Test/matching_score', matching_score_pred, ep)
+
+
+ if fid < best_fid:
+ msg = f"--> --> \t FID Improved from {best_fid:.5f} to {fid:.5f} !!!"
+ print(msg)
+ best_fid, best_ep = fid, ep
+ if save_ckpt:
+ save(os.path.join(out_dir, 'model', 'net_best_fid.tar'), ep)
+
+ if matching_score_pred < best_matching:
+ msg = f"--> --> \t matching_score Improved from {best_matching:.5f} to {matching_score_pred:.5f} !!!"
+ print(msg)
+ best_matching = matching_score_pred
+
+ if abs(diversity_real - diversity) < abs(diversity_real - best_div):
+ msg = f"--> --> \t Diversity Improved from {best_div:.5f} to {diversity:.5f} !!!"
+ print(msg)
+ best_div = diversity
+
+ if R_precision[0] > best_top1:
+ msg = f"--> --> \t Top1 Improved from {best_top1:.4f} to {R_precision[0]:.4f} !!!"
+ print(msg)
+ best_top1 = R_precision[0]
+
+ if R_precision[1] > best_top2:
+ msg = f"--> --> \t Top2 Improved from {best_top2:.4f} to {R_precision[1]:.4f} !!!"
+ print(msg)
+ best_top2 = R_precision[1]
+
+ if R_precision[2] > best_top3:
+ msg = f"--> --> \t Top3 Improved from {best_top3:.4f} to {R_precision[2]:.4f} !!!"
+ print(msg)
+ best_top3 = R_precision[2]
+
+ if save_anim:
+ rand_idx = torch.randint(bs, (3,))
+ data = pred_motions[rand_idx].detach().cpu().numpy()
+ captions = [clip_text[k] for k in rand_idx]
+ lengths = m_length[rand_idx].cpu().numpy()
+ save_dir = os.path.join(out_dir, 'animation', 'E%04d' % ep)
+ os.makedirs(save_dir, exist_ok=True)
+ # print(lengths)
+ plot_func(data, save_dir, captions, lengths)
+
+
+ return best_fid, best_div, best_top1, best_top2, best_top3, best_matching, writer
+
+@torch.no_grad()
+def evaluation_res_transformer(out_dir, val_loader, trans, vq_model, writer, ep, best_fid, best_div,
+ best_top1, best_top2, best_top3, best_matching, eval_wrapper, plot_func,
+ save_ckpt=False, save_anim=False, cond_scale=2, temperature=1):
+
+ def save(file_name, ep):
+ res_trans_state_dict = trans.state_dict()
+ clip_weights = [e for e in res_trans_state_dict.keys() if e.startswith('clip_model.')]
+ for e in clip_weights:
+ del res_trans_state_dict[e]
+ state = {
+ 'res_transformer': res_trans_state_dict,
+ # 'opt_t2m_transformer': self.opt_t2m_transformer.state_dict(),
+ # 'scheduler':self.scheduler.state_dict(),
+ 'ep': ep,
+ }
+ torch.save(state, file_name)
+
+ trans.eval()
+ vq_model.eval()
+
+ motion_annotation_list = []
+ motion_pred_list = []
+ R_precision_real = 0
+ R_precision = 0
+ matching_score_real = 0
+ matching_score_pred = 0
+
+ # print(num_quantizer)
+
+ # assert num_quantizer >= len(time_steps) and num_quantizer >= len(cond_scales)
+
+ nb_sample = 0
+ # for i in range(1):
+ for batch in val_loader:
+ word_embeddings, pos_one_hots, clip_text, sent_len, pose, m_length, token = batch
+ m_length = m_length.cuda().long()
+ pose = pose.cuda().float()
+
+ bs, seq = pose.shape[:2]
+ # num_joints = 21 if pose.shape[-1] == 251 else 22
+
+ code_indices, all_codes = vq_model.encode(pose)
+ # (b, seqlen)
+ if ep == 0:
+ pred_ids = code_indices[..., 0:1]
+ else:
+ pred_ids = trans.generate(code_indices[..., 0], clip_text, m_length//4,
+ temperature=temperature, cond_scale=cond_scale)
+ # pred_codes = trans(code_indices[..., 0], clip_text, m_length//4, force_mask=force_mask)
+
+ pred_motions = vq_model.forward_decoder(pred_ids)
+
+ et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_motions.clone(),
+ m_length)
+
+ pose = pose.cuda().float()
+
+ et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pose, m_length)
+ motion_annotation_list.append(em)
+ motion_pred_list.append(em_pred)
+
+ temp_R = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
+ temp_match = euclidean_distance_matrix(et.cpu().numpy(), em.cpu().numpy()).trace()
+ R_precision_real += temp_R
+ matching_score_real += temp_match
+ temp_R = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
+ temp_match = euclidean_distance_matrix(et_pred.cpu().numpy(), em_pred.cpu().numpy()).trace()
+ R_precision += temp_R
+ matching_score_pred += temp_match
+
+ nb_sample += bs
+
+ motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
+ motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
+ gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
+ mu, cov = calculate_activation_statistics(motion_pred_np)
+
+ diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
+ diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
+
+ R_precision_real = R_precision_real / nb_sample
+ R_precision = R_precision / nb_sample
+
+ matching_score_real = matching_score_real / nb_sample
+ matching_score_pred = matching_score_pred / nb_sample
+
+ fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
+
+ msg = f"--> \t Eva. Ep {ep} :, FID. {fid:.4f}, Diversity Real. {diversity_real:.4f}, Diversity. {diversity:.4f}, R_precision_real. {R_precision_real}, R_precision. {R_precision}, matching_score_real. {matching_score_real}, matching_score_pred. {matching_score_pred}"
+ print(msg)
+
+ # if draw:
+ writer.add_scalar('./Test/FID', fid, ep)
+ writer.add_scalar('./Test/Diversity', diversity, ep)
+ writer.add_scalar('./Test/top1', R_precision[0], ep)
+ writer.add_scalar('./Test/top2', R_precision[1], ep)
+ writer.add_scalar('./Test/top3', R_precision[2], ep)
+ writer.add_scalar('./Test/matching_score', matching_score_pred, ep)
+
+
+ if fid < best_fid:
+ msg = f"--> --> \t FID Improved from {best_fid:.5f} to {fid:.5f} !!!"
+ print(msg)
+ best_fid, best_ep = fid, ep
+ if save_ckpt:
+ save(os.path.join(out_dir, 'model', 'net_best_fid.tar'), ep)
+
+ if matching_score_pred < best_matching:
+ msg = f"--> --> \t matching_score Improved from {best_matching:.5f} to {matching_score_pred:.5f} !!!"
+ print(msg)
+ best_matching = matching_score_pred
+
+ if abs(diversity_real - diversity) < abs(diversity_real - best_div):
+ msg = f"--> --> \t Diversity Improved from {best_div:.5f} to {diversity:.5f} !!!"
+ print(msg)
+ best_div = diversity
+
+ if R_precision[0] > best_top1:
+ msg = f"--> --> \t Top1 Improved from {best_top1:.4f} to {R_precision[0]:.4f} !!!"
+ print(msg)
+ best_top1 = R_precision[0]
+
+ if R_precision[1] > best_top2:
+ msg = f"--> --> \t Top2 Improved from {best_top2:.4f} to {R_precision[1]:.4f} !!!"
+ print(msg)
+ best_top2 = R_precision[1]
+
+ if R_precision[2] > best_top3:
+ msg = f"--> --> \t Top3 Improved from {best_top3:.4f} to {R_precision[2]:.4f} !!!"
+ print(msg)
+ best_top3 = R_precision[2]
+
+ if save_anim:
+ rand_idx = torch.randint(bs, (3,))
+ data = pred_motions[rand_idx].detach().cpu().numpy()
+ captions = [clip_text[k] for k in rand_idx]
+ lengths = m_length[rand_idx].cpu().numpy()
+ save_dir = os.path.join(out_dir, 'animation', 'E%04d' % ep)
+ os.makedirs(save_dir, exist_ok=True)
+ # print(lengths)
+ plot_func(data, save_dir, captions, lengths)
+
+
+ return best_fid, best_div, best_top1, best_top2, best_top3, best_matching, writer
+
+
+@torch.no_grad()
+def evaluation_res_transformer_plus_l1(val_loader, vq_model, trans, repeat_id, eval_wrapper, num_joint,
+ cond_scale=2, temperature=1, topkr=0.9, cal_l1=True):
+
+
+ trans.eval()
+ vq_model.eval()
+
+ motion_annotation_list = []
+ motion_pred_list = []
+ R_precision_real = 0
+ R_precision = 0
+ matching_score_real = 0
+ matching_score_pred = 0
+
+ # print(num_quantizer)
+
+ # assert num_quantizer >= len(time_steps) and num_quantizer >= len(cond_scales)
+
+ nb_sample = 0
+ l1_dist = 0
+ num_poses = 1
+ # for i in range(1):
+ for batch in val_loader:
+ word_embeddings, pos_one_hots, clip_text, sent_len, pose, m_length, token = batch
+ m_length = m_length.cuda().long()
+ pose = pose.cuda().float()
+
+ bs, seq = pose.shape[:2]
+ # num_joints = 21 if pose.shape[-1] == 251 else 22
+
+ code_indices, all_codes = vq_model.encode(pose)
+ # print(code_indices[0:2, :, 1])
+
+ pred_ids = trans.generate(code_indices[..., 0], clip_text, m_length//4, topk_filter_thres=topkr,
+ temperature=temperature, cond_scale=cond_scale)
+ # pred_codes = trans(code_indices[..., 0], clip_text, m_length//4, force_mask=force_mask)
+
+ pred_motions = vq_model.forward_decoder(pred_ids)
+
+ if cal_l1:
+ bgt = val_loader.dataset.inv_transform(pose.detach().cpu().numpy())
+ bpred = val_loader.dataset.inv_transform(pred_motions.detach().cpu().numpy())
+ for i in range(bs):
+ gt = recover_from_ric(torch.from_numpy(bgt[i, :m_length[i]]).float(), num_joint)
+ pred = recover_from_ric(torch.from_numpy(bpred[i, :m_length[i]]).float(), num_joint)
+ # gt = motion[i, :m_length[i]]
+ # pred = pred_pose_eval[i, :m_length[i]]
+ num_pose = gt.shape[0]
+ l1_dist += F.l1_loss(gt, pred) * num_pose
+ num_poses += num_pose
+
+ et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_motions.clone(),
+ m_length)
+
+ pose = pose.cuda().float()
+
+ et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pose, m_length)
+ motion_annotation_list.append(em)
+ motion_pred_list.append(em_pred)
+
+ temp_R = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
+ temp_match = euclidean_distance_matrix(et.cpu().numpy(), em.cpu().numpy()).trace()
+ R_precision_real += temp_R
+ matching_score_real += temp_match
+ temp_R = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
+ temp_match = euclidean_distance_matrix(et_pred.cpu().numpy(), em_pred.cpu().numpy()).trace()
+ R_precision += temp_R
+ matching_score_pred += temp_match
+
+ nb_sample += bs
+
+ motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
+ motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
+ gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
+ mu, cov = calculate_activation_statistics(motion_pred_np)
+
+ diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
+ diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
+
+ R_precision_real = R_precision_real / nb_sample
+ R_precision = R_precision / nb_sample
+
+ matching_score_real = matching_score_real / nb_sample
+ matching_score_pred = matching_score_pred / nb_sample
+ l1_dist = l1_dist / num_poses
+
+ fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
+
+ msg = "--> \t Eva. Re %d:, FID. %.4f, Diversity Real. %.4f, Diversity. %.4f, R_precision_real. (%.4f, %.4f, %.4f), R_precision. (%.4f, %.4f, %.4f), matching_real. %.4f, matching_pred. %.4f, mae. %.4f" % \
+ (repeat_id, fid, diversity_real, diversity, R_precision_real[0], R_precision_real[1], R_precision_real[2],
+ R_precision[0], R_precision[1], R_precision[2], matching_score_real, matching_score_pred, l1_dist)
+ # logger.info(msg)
+ print(msg)
+ return fid, diversity, R_precision, matching_score_pred, l1_dist
+
+
+@torch.no_grad()
+def evaluation_mask_transformer_test(val_loader, vq_model, trans, repeat_id, eval_wrapper,
+ time_steps, cond_scale, temperature, topkr, gsample=True, force_mask=False, cal_mm=True):
+ trans.eval()
+ vq_model.eval()
+
+ motion_annotation_list = []
+ motion_pred_list = []
+ motion_multimodality = []
+ R_precision_real = 0
+ R_precision = 0
+ matching_score_real = 0
+ matching_score_pred = 0
+ multimodality = 0
+
+ nb_sample = 0
+ if cal_mm:
+ num_mm_batch = 3
+ else:
+ num_mm_batch = 0
+
+ for i, batch in enumerate(val_loader):
+ # print(i)
+ word_embeddings, pos_one_hots, clip_text, sent_len, pose, m_length, token = batch
+ m_length = m_length.cuda()
+
+ bs, seq = pose.shape[:2]
+ # num_joints = 21 if pose.shape[-1] == 251 else 22
+
+ # for i in range(mm_batch)
+ if i < num_mm_batch:
+ # (b, seqlen, c)
+ motion_multimodality_batch = []
+ for _ in range(30):
+ mids = trans.generate(clip_text, m_length // 4, time_steps, cond_scale,
+ temperature=temperature, topk_filter_thres=topkr,
+ gsample=gsample, force_mask=force_mask)
+
+ # motion_codes = motion_codes.permute(0, 2, 1)
+ mids.unsqueeze_(-1)
+ pred_motions = vq_model.forward_decoder(mids)
+
+ et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_motions.clone(),
+ m_length)
+ # em_pred = em_pred.unsqueeze(1) #(bs, 1, d)
+ motion_multimodality_batch.append(em_pred.unsqueeze(1))
+ motion_multimodality_batch = torch.cat(motion_multimodality_batch, dim=1) #(bs, 30, d)
+ motion_multimodality.append(motion_multimodality_batch)
+ else:
+ mids = trans.generate(clip_text, m_length // 4, time_steps, cond_scale,
+ temperature=temperature, topk_filter_thres=topkr,
+ force_mask=force_mask)
+
+ # motion_codes = motion_codes.permute(0, 2, 1)
+ mids.unsqueeze_(-1)
+ pred_motions = vq_model.forward_decoder(mids)
+
+ et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len,
+ pred_motions.clone(),
+ m_length)
+
+ pose = pose.cuda().float()
+
+ et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pose, m_length)
+ motion_annotation_list.append(em)
+ motion_pred_list.append(em_pred)
+
+ temp_R = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
+ temp_match = euclidean_distance_matrix(et.cpu().numpy(), em.cpu().numpy()).trace()
+ R_precision_real += temp_R
+ matching_score_real += temp_match
+ # print(et_pred.shape, em_pred.shape)
+ temp_R = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
+ temp_match = euclidean_distance_matrix(et_pred.cpu().numpy(), em_pred.cpu().numpy()).trace()
+ R_precision += temp_R
+ matching_score_pred += temp_match
+
+ nb_sample += bs
+
+ motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
+ motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
+ if not force_mask and cal_mm:
+ motion_multimodality = torch.cat(motion_multimodality, dim=0).cpu().numpy()
+ multimodality = calculate_multimodality(motion_multimodality, 10)
+ gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
+ mu, cov = calculate_activation_statistics(motion_pred_np)
+
+ diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
+ diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
+
+ R_precision_real = R_precision_real / nb_sample
+ R_precision = R_precision / nb_sample
+
+ matching_score_real = matching_score_real / nb_sample
+ matching_score_pred = matching_score_pred / nb_sample
+
+ fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
+
+ msg = f"--> \t Eva. Repeat {repeat_id} :, FID. {fid:.4f}, " \
+ f"Diversity Real. {diversity_real:.4f}, Diversity. {diversity:.4f}, " \
+ f"R_precision_real. {R_precision_real}, R_precision. {R_precision}, " \
+ f"matching_score_real. {matching_score_real:.4f}, matching_score_pred. {matching_score_pred:.4f}," \
+ f"multimodality. {multimodality:.4f}"
+ print(msg)
+ return fid, diversity, R_precision, matching_score_pred, multimodality
+
+
+@torch.no_grad()
+def evaluation_mask_transformer_test_plus_res(val_loader, vq_model, res_model, trans, repeat_id, eval_wrapper,
+ time_steps, cond_scale, temperature, topkr, gsample=True, force_mask=False,
+ cal_mm=True, res_cond_scale=5):
+ trans.eval()
+ vq_model.eval()
+ res_model.eval()
+
+ motion_annotation_list = []
+ motion_pred_list = []
+ motion_multimodality = []
+ R_precision_real = 0
+ R_precision = 0
+ matching_score_real = 0
+ matching_score_pred = 0
+ multimodality = 0
+
+ nb_sample = 0
+ if force_mask or (not cal_mm):
+ num_mm_batch = 0
+ else:
+ num_mm_batch = 3
+
+ for i, batch in enumerate(val_loader):
+ word_embeddings, pos_one_hots, clip_text, sent_len, pose, m_length, token = batch
+ m_length = m_length.cuda()
+
+ bs, seq = pose.shape[:2]
+ # num_joints = 21 if pose.shape[-1] == 251 else 22
+
+ # for i in range(mm_batch)
+ if i < num_mm_batch:
+ # (b, seqlen, c)
+ motion_multimodality_batch = []
+ for _ in range(30):
+ mids = trans.generate(clip_text, m_length // 4, time_steps, cond_scale,
+ temperature=temperature, topk_filter_thres=topkr,
+ gsample=gsample, force_mask=force_mask)
+
+ # motion_codes = motion_codes.permute(0, 2, 1)
+ # mids.unsqueeze_(-1)
+ pred_ids = res_model.generate(mids, clip_text, m_length // 4, temperature=1, cond_scale=res_cond_scale)
+ # pred_codes = trans(code_indices[..., 0], clip_text, m_length//4, force_mask=force_mask)
+ # pred_ids = torch.where(pred_ids==-1, 0, pred_ids)
+
+ pred_motions = vq_model.forward_decoder(pred_ids)
+
+ # pred_motions = vq_model.decoder(codes)
+ # pred_motions = vq_model.forward_decoder(mids)
+
+ et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pred_motions.clone(),
+ m_length)
+ # em_pred = em_pred.unsqueeze(1) #(bs, 1, d)
+ motion_multimodality_batch.append(em_pred.unsqueeze(1))
+ motion_multimodality_batch = torch.cat(motion_multimodality_batch, dim=1) #(bs, 30, d)
+ motion_multimodality.append(motion_multimodality_batch)
+ else:
+ mids = trans.generate(clip_text, m_length // 4, time_steps, cond_scale,
+ temperature=temperature, topk_filter_thres=topkr,
+ force_mask=force_mask)
+
+ # motion_codes = motion_codes.permute(0, 2, 1)
+ # mids.unsqueeze_(-1)
+ pred_ids = res_model.generate(mids, clip_text, m_length // 4, temperature=1, cond_scale=res_cond_scale)
+ # pred_codes = trans(code_indices[..., 0], clip_text, m_length//4, force_mask=force_mask)
+ # pred_ids = torch.where(pred_ids == -1, 0, pred_ids)
+
+ pred_motions = vq_model.forward_decoder(pred_ids)
+ # pred_motions = vq_model.forward_decoder(mids)
+
+ et_pred, em_pred = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len,
+ pred_motions.clone(),
+ m_length)
+
+ pose = pose.cuda().float()
+
+ et, em = eval_wrapper.get_co_embeddings(word_embeddings, pos_one_hots, sent_len, pose, m_length)
+ motion_annotation_list.append(em)
+ motion_pred_list.append(em_pred)
+
+ temp_R = calculate_R_precision(et.cpu().numpy(), em.cpu().numpy(), top_k=3, sum_all=True)
+ temp_match = euclidean_distance_matrix(et.cpu().numpy(), em.cpu().numpy()).trace()
+ R_precision_real += temp_R
+ matching_score_real += temp_match
+ # print(et_pred.shape, em_pred.shape)
+ temp_R = calculate_R_precision(et_pred.cpu().numpy(), em_pred.cpu().numpy(), top_k=3, sum_all=True)
+ temp_match = euclidean_distance_matrix(et_pred.cpu().numpy(), em_pred.cpu().numpy()).trace()
+ R_precision += temp_R
+ matching_score_pred += temp_match
+
+ nb_sample += bs
+
+ motion_annotation_np = torch.cat(motion_annotation_list, dim=0).cpu().numpy()
+ motion_pred_np = torch.cat(motion_pred_list, dim=0).cpu().numpy()
+ if not force_mask and cal_mm:
+ motion_multimodality = torch.cat(motion_multimodality, dim=0).cpu().numpy()
+ multimodality = calculate_multimodality(motion_multimodality, 10)
+ gt_mu, gt_cov = calculate_activation_statistics(motion_annotation_np)
+ mu, cov = calculate_activation_statistics(motion_pred_np)
+
+ diversity_real = calculate_diversity(motion_annotation_np, 300 if nb_sample > 300 else 100)
+ diversity = calculate_diversity(motion_pred_np, 300 if nb_sample > 300 else 100)
+
+ R_precision_real = R_precision_real / nb_sample
+ R_precision = R_precision / nb_sample
+
+ matching_score_real = matching_score_real / nb_sample
+ matching_score_pred = matching_score_pred / nb_sample
+
+ fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
+
+ msg = f"--> \t Eva. Repeat {repeat_id} :, FID. {fid:.4f}, " \
+ f"Diversity Real. {diversity_real:.4f}, Diversity. {diversity:.4f}, " \
+ f"R_precision_real. {R_precision_real}, R_precision. {R_precision}, " \
+ f"matching_score_real. {matching_score_real:.4f}, matching_score_pred. {matching_score_pred:.4f}," \
+ f"multimodality. {multimodality:.4f}"
+ print(msg)
+ return fid, diversity, R_precision, matching_score_pred, multimodality
\ No newline at end of file
diff --git a/utils/fixseed.py b/utils/fixseed.py
new file mode 100644
index 0000000000000000000000000000000000000000..6f44f6ca263dcc410102a50970ce1b78405ba1f1
--- /dev/null
+++ b/utils/fixseed.py
@@ -0,0 +1,18 @@
+import numpy as np
+import torch
+import random
+
+
+def fixseed(seed):
+ torch.backends.cudnn.benchmark = False
+ random.seed(seed)
+ np.random.seed(seed)
+ torch.manual_seed(seed)
+
+
+# SEED = 10
+# EVALSEED = 0
+# # Provoc warning: not fully functionnal yet
+# # torch.set_deterministic(True)
+# torch.backends.cudnn.benchmark = False
+# fixseed(SEED)
diff --git a/utils/get_opt.py b/utils/get_opt.py
new file mode 100644
index 0000000000000000000000000000000000000000..43eb9d4fe5d690f40b7fc088ae6d15886d6456c3
--- /dev/null
+++ b/utils/get_opt.py
@@ -0,0 +1,89 @@
+import os
+from argparse import Namespace
+import re
+from os.path import join as pjoin
+from utils.word_vectorizer import POS_enumerator
+
+
+def is_float(numStr):
+ flag = False
+ numStr = str(numStr).strip().lstrip('-').lstrip('+') # 去除正数(+)、负数(-)符号
+ try:
+ reg = re.compile(r'^[-+]?[0-9]+\.[0-9]+$')
+ res = reg.match(str(numStr))
+ if res:
+ flag = True
+ except Exception as ex:
+ print("is_float() - error: " + str(ex))
+ return flag
+
+
+def is_number(numStr):
+ flag = False
+ numStr = str(numStr).strip().lstrip('-').lstrip('+') # 去除正数(+)、负数(-)符号
+ if str(numStr).isdigit():
+ flag = True
+ return flag
+
+
+def get_opt(opt_path, device, **kwargs):
+ opt = Namespace()
+ opt_dict = vars(opt)
+
+ skip = ('-------------- End ----------------',
+ '------------ Options -------------',
+ '\n')
+ print('Reading', opt_path)
+ with open(opt_path, 'r') as f:
+ for line in f:
+ if line.strip() not in skip:
+ # print(line.strip())
+ key, value = line.strip('\n').split(': ')
+ if value in ('True', 'False'):
+ opt_dict[key] = (value == 'True')
+ # print(key, value)
+ elif is_float(value):
+ opt_dict[key] = float(value)
+ elif is_number(value):
+ opt_dict[key] = int(value)
+ else:
+ opt_dict[key] = str(value)
+
+ # print(opt)
+ opt_dict['which_epoch'] = 'finest'
+ opt.save_root = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
+ opt.model_dir = pjoin(opt.save_root, 'model')
+ opt.meta_dir = pjoin(opt.save_root, 'meta')
+
+ if opt.dataset_name == 't2m':
+ opt.data_root = './dataset/HumanML3D/'
+ opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
+ opt.text_dir = pjoin(opt.data_root, 'texts')
+ opt.joints_num = 22
+ opt.dim_pose = 263
+ opt.max_motion_length = 196
+ opt.max_motion_frame = 196
+ opt.max_motion_token = 55
+ elif opt.dataset_name == 'kit':
+ opt.data_root = './dataset/KIT-ML/'
+ opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
+ opt.text_dir = pjoin(opt.data_root, 'texts')
+ opt.joints_num = 21
+ opt.dim_pose = 251
+ opt.max_motion_length = 196
+ opt.max_motion_frame = 196
+ opt.max_motion_token = 55
+ else:
+ raise KeyError('Dataset not recognized')
+ if not hasattr(opt, 'unit_length'):
+ opt.unit_length = 4
+ opt.dim_word = 300
+ opt.num_classes = 200 // opt.unit_length
+ opt.dim_pos_ohot = len(POS_enumerator)
+ opt.is_train = False
+ opt.is_continue = False
+ opt.device = device
+
+ opt_dict.update(kwargs) # Overwrite with kwargs params
+
+ return opt
\ No newline at end of file
diff --git a/utils/metrics.py b/utils/metrics.py
new file mode 100644
index 0000000000000000000000000000000000000000..6975b3c5953918e690d1a72d9741bf05a77e29f1
--- /dev/null
+++ b/utils/metrics.py
@@ -0,0 +1,170 @@
+import numpy as np
+from scipy import linalg
+import torch
+
+
+def calculate_mpjpe(gt_joints, pred_joints):
+ """
+ gt_joints: num_poses x num_joints(22) x 3
+ pred_joints: num_poses x num_joints(22) x 3
+ (obtained from recover_from_ric())
+ """
+ assert gt_joints.shape == pred_joints.shape, f"GT shape: {gt_joints.shape}, pred shape: {pred_joints.shape}"
+
+ # Align by root (pelvis)
+ pelvis = gt_joints[:, [0]].mean(1)
+ gt_joints = gt_joints - torch.unsqueeze(pelvis, dim=1)
+ pelvis = pred_joints[:, [0]].mean(1)
+ pred_joints = pred_joints - torch.unsqueeze(pelvis, dim=1)
+
+ # Compute MPJPE
+ mpjpe = torch.linalg.norm(pred_joints - gt_joints, dim=-1) # num_poses x num_joints=22
+ mpjpe_seq = mpjpe.mean(-1) # num_poses
+
+ return mpjpe_seq
+
+# (X - X_train)*(X - X_train) = -2X*X_train + X*X + X_train*X_train
+def euclidean_distance_matrix(matrix1, matrix2):
+ """
+ Params:
+ -- matrix1: N1 x D
+ -- matrix2: N2 x D
+ Returns:
+ -- dist: N1 x N2
+ dist[i, j] == distance(matrix1[i], matrix2[j])
+ """
+ assert matrix1.shape[1] == matrix2.shape[1]
+ d1 = -2 * np.dot(matrix1, matrix2.T) # shape (num_test, num_train)
+ d2 = np.sum(np.square(matrix1), axis=1, keepdims=True) # shape (num_test, 1)
+ d3 = np.sum(np.square(matrix2), axis=1) # shape (num_train, )
+ dists = np.sqrt(d1 + d2 + d3) # broadcasting
+ return dists
+
+def calculate_top_k(mat, top_k):
+ size = mat.shape[0]
+ gt_mat = np.expand_dims(np.arange(size), 1).repeat(size, 1)
+ bool_mat = (mat == gt_mat)
+ correct_vec = False
+ top_k_list = []
+ for i in range(top_k):
+# print(correct_vec, bool_mat[:, i])
+ correct_vec = (correct_vec | bool_mat[:, i])
+ # print(correct_vec)
+ top_k_list.append(correct_vec[:, None])
+ top_k_mat = np.concatenate(top_k_list, axis=1)
+ return top_k_mat
+
+
+def calculate_R_precision(embedding1, embedding2, top_k, sum_all=False):
+ dist_mat = euclidean_distance_matrix(embedding1, embedding2)
+ argmax = np.argsort(dist_mat, axis=1)
+ top_k_mat = calculate_top_k(argmax, top_k)
+ if sum_all:
+ return top_k_mat.sum(axis=0)
+ else:
+ return top_k_mat
+
+
+def calculate_matching_score(embedding1, embedding2, sum_all=False):
+ assert len(embedding1.shape) == 2
+ assert embedding1.shape[0] == embedding2.shape[0]
+ assert embedding1.shape[1] == embedding2.shape[1]
+
+ dist = linalg.norm(embedding1 - embedding2, axis=1)
+ if sum_all:
+ return dist.sum(axis=0)
+ else:
+ return dist
+
+
+
+def calculate_activation_statistics(activations):
+ """
+ Params:
+ -- activation: num_samples x dim_feat
+ Returns:
+ -- mu: dim_feat
+ -- sigma: dim_feat x dim_feat
+ """
+ mu = np.mean(activations, axis=0)
+ cov = np.cov(activations, rowvar=False)
+ return mu, cov
+
+
+def calculate_diversity(activation, diversity_times):
+ assert len(activation.shape) == 2
+ assert activation.shape[0] > diversity_times
+ num_samples = activation.shape[0]
+
+ first_indices = np.random.choice(num_samples, diversity_times, replace=False)
+ second_indices = np.random.choice(num_samples, diversity_times, replace=False)
+ dist = linalg.norm(activation[first_indices] - activation[second_indices], axis=1)
+ return dist.mean()
+
+
+def calculate_multimodality(activation, multimodality_times):
+ assert len(activation.shape) == 3
+ assert activation.shape[1] > multimodality_times
+ num_per_sent = activation.shape[1]
+
+ first_dices = np.random.choice(num_per_sent, multimodality_times, replace=False)
+ second_dices = np.random.choice(num_per_sent, multimodality_times, replace=False)
+ dist = linalg.norm(activation[:, first_dices] - activation[:, second_dices], axis=2)
+ return dist.mean()
+
+
+def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
+ """Numpy implementation of the Frechet Distance.
+ The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
+ and X_2 ~ N(mu_2, C_2) is
+ d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
+ Stable version by Dougal J. Sutherland.
+ Params:
+ -- mu1 : Numpy array containing the activations of a layer of the
+ inception net (like returned by the function 'get_predictions')
+ for generated samples.
+ -- mu2 : The sample mean over activations, precalculated on an
+ representative data set.
+ -- sigma1: The covariance matrix over activations for generated samples.
+ -- sigma2: The covariance matrix over activations, precalculated on an
+ representative data set.
+ Returns:
+ -- : The Frechet Distance.
+ """
+
+ mu1 = np.atleast_1d(mu1)
+ mu2 = np.atleast_1d(mu2)
+
+ sigma1 = np.atleast_2d(sigma1)
+ sigma2 = np.atleast_2d(sigma2)
+
+ assert mu1.shape == mu2.shape, \
+ 'Training and test mean vectors have different lengths'
+ assert sigma1.shape == sigma2.shape, \
+ 'Training and test covariances have different dimensions'
+
+ diff = mu1 - mu2
+
+ # Product might be almost singular
+ covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
+ if not np.isfinite(covmean).all():
+ msg = ('fid calculation produces singular product; '
+ 'adding %s to diagonal of cov estimates') % eps
+ print(msg)
+ offset = np.eye(sigma1.shape[0]) * eps
+ covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
+
+ # Numerical error might give slight imaginary component
+ if np.iscomplexobj(covmean):
+ if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
+ m = np.max(np.abs(covmean.imag))
+ raise ValueError('Imaginary component {}'.format(m))
+ covmean = covmean.real
+
+ tr_covmean = np.trace(covmean)
+
+ return (diff.dot(diff) + np.trace(sigma1) +
+ np.trace(sigma2) - 2 * tr_covmean)
+
+
+
diff --git a/utils/motion_process.py b/utils/motion_process.py
new file mode 100644
index 0000000000000000000000000000000000000000..de330f89ba5da0503e5854909023adca53d80bf9
--- /dev/null
+++ b/utils/motion_process.py
@@ -0,0 +1,514 @@
+from os.path import join as pjoin
+
+from common.skeleton import Skeleton
+import numpy as np
+import os
+from common.quaternion import *
+from utils.paramUtil import *
+
+import torch
+
+# positions (batch, joint_num, 3)
+def uniform_skeleton(positions, target_offset):
+ src_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu')
+ src_offset = src_skel.get_offsets_joints(torch.from_numpy(positions[0]))
+ src_offset = src_offset.numpy()
+ tgt_offset = target_offset.numpy()
+ # print(src_offset)
+ # print(tgt_offset)
+ '''Calculate Scale Ratio as the ratio of legs'''
+ src_leg_len = np.abs(src_offset[l_idx1]).max() + np.abs(src_offset[l_idx2]).max()
+ tgt_leg_len = np.abs(tgt_offset[l_idx1]).max() + np.abs(tgt_offset[l_idx2]).max()
+
+ scale_rt = tgt_leg_len / src_leg_len
+ # print(scale_rt)
+ src_root_pos = positions[:, 0]
+ tgt_root_pos = src_root_pos * scale_rt
+
+ '''Inverse Kinematics'''
+ quat_params = src_skel.inverse_kinematics_np(positions, face_joint_indx)
+ # print(quat_params.shape)
+
+ '''Forward Kinematics'''
+ src_skel.set_offset(target_offset)
+ new_joints = src_skel.forward_kinematics_np(quat_params, tgt_root_pos)
+ return new_joints
+
+
+def extract_features(positions, feet_thre, n_raw_offsets, kinematic_chain, face_joint_indx, fid_r, fid_l):
+ global_positions = positions.copy()
+ """ Get Foot Contacts """
+
+ def foot_detect(positions, thres):
+ velfactor, heightfactor = np.array([thres, thres]), np.array([3.0, 2.0])
+
+ feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2
+ feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2
+ feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2
+ # feet_l_h = positions[:-1,fid_l,1]
+ # feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float)
+ feet_l = ((feet_l_x + feet_l_y + feet_l_z) < velfactor).astype(np.float)
+
+ feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2
+ feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2
+ feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2
+ # feet_r_h = positions[:-1,fid_r,1]
+ # feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float)
+ feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor)).astype(np.float)
+ return feet_l, feet_r
+
+ #
+ feet_l, feet_r = foot_detect(positions, feet_thre)
+ # feet_l, feet_r = foot_detect(positions, 0.002)
+
+ '''Quaternion and Cartesian representation'''
+ r_rot = None
+
+ def get_rifke(positions):
+ '''Local pose'''
+ positions[..., 0] -= positions[:, 0:1, 0]
+ positions[..., 2] -= positions[:, 0:1, 2]
+ '''All pose face Z+'''
+ positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions)
+ return positions
+
+ def get_quaternion(positions):
+ skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
+ # (seq_len, joints_num, 4)
+ quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False)
+
+ '''Fix Quaternion Discontinuity'''
+ quat_params = qfix(quat_params)
+ # (seq_len, 4)
+ r_rot = quat_params[:, 0].copy()
+ # print(r_rot[0])
+ '''Root Linear Velocity'''
+ # (seq_len - 1, 3)
+ velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
+ # print(r_rot.shape, velocity.shape)
+ velocity = qrot_np(r_rot[1:], velocity)
+ '''Root Angular Velocity'''
+ # (seq_len - 1, 4)
+ r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
+ quat_params[1:, 0] = r_velocity
+ # (seq_len, joints_num, 4)
+ return quat_params, r_velocity, velocity, r_rot
+
+ def get_cont6d_params(positions):
+ skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
+ # (seq_len, joints_num, 4)
+ quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True)
+
+ '''Quaternion to continuous 6D'''
+ cont_6d_params = quaternion_to_cont6d_np(quat_params)
+ # (seq_len, 4)
+ r_rot = quat_params[:, 0].copy()
+ # print(r_rot[0])
+ '''Root Linear Velocity'''
+ # (seq_len - 1, 3)
+ velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
+ # print(r_rot.shape, velocity.shape)
+ velocity = qrot_np(r_rot[1:], velocity)
+ '''Root Angular Velocity'''
+ # (seq_len - 1, 4)
+ r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
+ # (seq_len, joints_num, 4)
+ return cont_6d_params, r_velocity, velocity, r_rot
+
+ cont_6d_params, r_velocity, velocity, r_rot = get_cont6d_params(positions)
+ positions = get_rifke(positions)
+
+ # trejec = np.cumsum(np.concatenate([np.array([[0, 0, 0]]), velocity], axis=0), axis=0)
+ # r_rotations, r_pos = recover_ric_glo_np(r_velocity, velocity[:, [0, 2]])
+
+ # plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*')
+ # plt.plot(ground_positions[:, 0, 0], ground_positions[:, 0, 2], marker='o', color='r')
+ # plt.plot(trejec[:, 0], trejec[:, 2], marker='^', color='g')
+ # plt.plot(r_pos[:, 0], r_pos[:, 2], marker='s', color='y')
+ # plt.xlabel('x')
+ # plt.ylabel('z')
+ # plt.axis('equal')
+ # plt.show()
+
+ '''Root height'''
+ root_y = positions[:, 0, 1:2]
+
+ '''Root rotation and linear velocity'''
+ # (seq_len-1, 1) rotation velocity along y-axis
+ # (seq_len-1, 2) linear velovity on xz plane
+ r_velocity = np.arcsin(r_velocity[:, 2:3])
+ l_velocity = velocity[:, [0, 2]]
+ # print(r_velocity.shape, l_velocity.shape, root_y.shape)
+ root_data = np.concatenate([r_velocity, l_velocity, root_y[:-1]], axis=-1)
+
+ '''Get Joint Rotation Representation'''
+ # (seq_len, (joints_num-1) *6) quaternion for skeleton joints
+ rot_data = cont_6d_params[:, 1:].reshape(len(cont_6d_params), -1)
+
+ '''Get Joint Rotation Invariant Position Represention'''
+ # (seq_len, (joints_num-1)*3) local joint position
+ ric_data = positions[:, 1:].reshape(len(positions), -1)
+
+ '''Get Joint Velocity Representation'''
+ # (seq_len-1, joints_num*3)
+ local_vel = qrot_np(np.repeat(r_rot[:-1, None], global_positions.shape[1], axis=1),
+ global_positions[1:] - global_positions[:-1])
+ local_vel = local_vel.reshape(len(local_vel), -1)
+
+ data = root_data
+ data = np.concatenate([data, ric_data[:-1]], axis=-1)
+ data = np.concatenate([data, rot_data[:-1]], axis=-1)
+ # print(data.shape, local_vel.shape)
+ data = np.concatenate([data, local_vel], axis=-1)
+ data = np.concatenate([data, feet_l, feet_r], axis=-1)
+
+ return data
+
+
+def process_file(positions, feet_thre):
+ # (seq_len, joints_num, 3)
+ # '''Down Sample'''
+ # positions = positions[::ds_num]
+
+ '''Uniform Skeleton'''
+ positions = uniform_skeleton(positions, tgt_offsets)
+
+ '''Put on Floor'''
+ floor_height = positions.min(axis=0).min(axis=0)[1]
+ positions[:, :, 1] -= floor_height
+ # print(floor_height)
+
+ # plot_3d_motion("./positions_1.mp4", kinematic_chain, positions, 'title', fps=20)
+
+ '''XZ at origin'''
+ root_pos_init = positions[0]
+ root_pose_init_xz = root_pos_init[0] * np.array([1, 0, 1])
+ positions = positions - root_pose_init_xz
+
+ # '''Move the first pose to origin '''
+ # root_pos_init = positions[0]
+ # positions = positions - root_pos_init[0]
+
+ '''All initially face Z+'''
+ r_hip, l_hip, sdr_r, sdr_l = face_joint_indx
+ across1 = root_pos_init[r_hip] - root_pos_init[l_hip]
+ across2 = root_pos_init[sdr_r] - root_pos_init[sdr_l]
+ across = across1 + across2
+ across = across / np.sqrt((across ** 2).sum(axis=-1))[..., np.newaxis]
+
+ # forward (3,), rotate around y-axis
+ forward_init = np.cross(np.array([[0, 1, 0]]), across, axis=-1)
+ # forward (3,)
+ forward_init = forward_init / np.sqrt((forward_init ** 2).sum(axis=-1))[..., np.newaxis]
+
+ # print(forward_init)
+
+ target = np.array([[0, 0, 1]])
+ root_quat_init = qbetween_np(forward_init, target)
+ root_quat_init = np.ones(positions.shape[:-1] + (4,)) * root_quat_init
+
+ positions_b = positions.copy()
+
+ positions = qrot_np(root_quat_init, positions)
+
+ # plot_3d_motion("./positions_2.mp4", kinematic_chain, positions, 'title', fps=20)
+
+ '''New ground truth positions'''
+ global_positions = positions.copy()
+
+ # plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*')
+ # plt.plot(positions[:, 0, 0], positions[:, 0, 2], marker='o', color='r')
+ # plt.xlabel('x')
+ # plt.ylabel('z')
+ # plt.axis('equal')
+ # plt.show()
+
+ """ Get Foot Contacts """
+
+ def foot_detect(positions, thres):
+ velfactor, heightfactor = np.array([thres, thres]), np.array([3.0, 2.0])
+
+ feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2
+ feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2
+ feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2
+ # feet_l_h = positions[:-1,fid_l,1]
+ # feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float)
+ feet_l = ((feet_l_x + feet_l_y + feet_l_z) < velfactor).astype(np.float)
+
+ feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2
+ feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2
+ feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2
+ # feet_r_h = positions[:-1,fid_r,1]
+ # feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float)
+ feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor)).astype(np.float)
+ return feet_l, feet_r
+ #
+ feet_l, feet_r = foot_detect(positions, feet_thre)
+ # feet_l, feet_r = foot_detect(positions, 0.002)
+
+ '''Quaternion and Cartesian representation'''
+ r_rot = None
+
+ def get_rifke(positions):
+ '''Local pose'''
+ positions[..., 0] -= positions[:, 0:1, 0]
+ positions[..., 2] -= positions[:, 0:1, 2]
+ '''All pose face Z+'''
+ positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions)
+ return positions
+
+ def get_quaternion(positions):
+ skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
+ # (seq_len, joints_num, 4)
+ quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False)
+
+ '''Fix Quaternion Discontinuity'''
+ quat_params = qfix(quat_params)
+ # (seq_len, 4)
+ r_rot = quat_params[:, 0].copy()
+ # print(r_rot[0])
+ '''Root Linear Velocity'''
+ # (seq_len - 1, 3)
+ velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
+ # print(r_rot.shape, velocity.shape)
+ velocity = qrot_np(r_rot[1:], velocity)
+ '''Root Angular Velocity'''
+ # (seq_len - 1, 4)
+ r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
+ quat_params[1:, 0] = r_velocity
+ # (seq_len, joints_num, 4)
+ return quat_params, r_velocity, velocity, r_rot
+
+ def get_cont6d_params(positions):
+ skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
+ # (seq_len, joints_num, 4)
+ quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True)
+
+ '''Quaternion to continuous 6D'''
+ cont_6d_params = quaternion_to_cont6d_np(quat_params)
+ # (seq_len, 4)
+ r_rot = quat_params[:, 0].copy()
+ # print(r_rot[0])
+ '''Root Linear Velocity'''
+ # (seq_len - 1, 3)
+ velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
+ # print(r_rot.shape, velocity.shape)
+ velocity = qrot_np(r_rot[1:], velocity)
+ '''Root Angular Velocity'''
+ # (seq_len - 1, 4)
+ r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
+ # (seq_len, joints_num, 4)
+ return cont_6d_params, r_velocity, velocity, r_rot
+
+ cont_6d_params, r_velocity, velocity, r_rot = get_cont6d_params(positions)
+ positions = get_rifke(positions)
+
+ # trejec = np.cumsum(np.concatenate([np.array([[0, 0, 0]]), velocity], axis=0), axis=0)
+ # r_rotations, r_pos = recover_ric_glo_np(r_velocity, velocity[:, [0, 2]])
+
+ # plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*')
+ # plt.plot(ground_positions[:, 0, 0], ground_positions[:, 0, 2], marker='o', color='r')
+ # plt.plot(trejec[:, 0], trejec[:, 2], marker='^', color='g')
+ # plt.plot(r_pos[:, 0], r_pos[:, 2], marker='s', color='y')
+ # plt.xlabel('x')
+ # plt.ylabel('z')
+ # plt.axis('equal')
+ # plt.show()
+
+ '''Root height'''
+ root_y = positions[:, 0, 1:2]
+
+ '''Root rotation and linear velocity'''
+ # (seq_len-1, 1) rotation velocity along y-axis
+ # (seq_len-1, 2) linear velovity on xz plane
+ r_velocity = np.arcsin(r_velocity[:, 2:3])
+ l_velocity = velocity[:, [0, 2]]
+ # print(r_velocity.shape, l_velocity.shape, root_y.shape)
+ root_data = np.concatenate([r_velocity, l_velocity, root_y[:-1]], axis=-1)
+
+ '''Get Joint Rotation Representation'''
+ # (seq_len, (joints_num-1) *6) quaternion for skeleton joints
+ rot_data = cont_6d_params[:, 1:].reshape(len(cont_6d_params), -1)
+
+ '''Get Joint Rotation Invariant Position Represention'''
+ # (seq_len, (joints_num-1)*3) local joint position
+ ric_data = positions[:, 1:].reshape(len(positions), -1)
+
+ '''Get Joint Velocity Representation'''
+ # (seq_len-1, joints_num*3)
+ local_vel = qrot_np(np.repeat(r_rot[:-1, None], global_positions.shape[1], axis=1),
+ global_positions[1:] - global_positions[:-1])
+ local_vel = local_vel.reshape(len(local_vel), -1)
+
+ data = root_data
+ data = np.concatenate([data, ric_data[:-1]], axis=-1)
+ data = np.concatenate([data, rot_data[:-1]], axis=-1)
+ # print(data.shape, local_vel.shape)
+ data = np.concatenate([data, local_vel], axis=-1)
+ data = np.concatenate([data, feet_l, feet_r], axis=-1)
+
+ return data, global_positions, positions, l_velocity
+
+
+# Recover global angle and positions for rotation data
+# root_rot_velocity (B, seq_len, 1)
+# root_linear_velocity (B, seq_len, 2)
+# root_y (B, seq_len, 1)
+# ric_data (B, seq_len, (joint_num - 1)*3)
+# rot_data (B, seq_len, (joint_num - 1)*6)
+# local_velocity (B, seq_len, joint_num*3)
+# foot contact (B, seq_len, 4)
+def recover_root_rot_pos(data):
+ rot_vel = data[..., 0]
+ r_rot_ang = torch.zeros_like(rot_vel).to(data.device)
+ '''Get Y-axis rotation from rotation velocity'''
+ r_rot_ang[..., 1:] = rot_vel[..., :-1]
+ r_rot_ang = torch.cumsum(r_rot_ang, dim=-1)
+
+ r_rot_quat = torch.zeros(data.shape[:-1] + (4,)).to(data.device)
+ r_rot_quat[..., 0] = torch.cos(r_rot_ang)
+ r_rot_quat[..., 2] = torch.sin(r_rot_ang)
+
+ r_pos = torch.zeros(data.shape[:-1] + (3,)).to(data.device)
+ r_pos[..., 1:, [0, 2]] = data[..., :-1, 1:3]
+ '''Add Y-axis rotation to root position'''
+ r_pos = qrot(qinv(r_rot_quat), r_pos)
+
+ r_pos = torch.cumsum(r_pos, dim=-2)
+
+ r_pos[..., 1] = data[..., 3]
+ return r_rot_quat, r_pos
+
+
+def recover_from_rot(data, joints_num, skeleton):
+ r_rot_quat, r_pos = recover_root_rot_pos(data)
+
+ r_rot_cont6d = quaternion_to_cont6d(r_rot_quat)
+
+ start_indx = 1 + 2 + 1 + (joints_num - 1) * 3
+ end_indx = start_indx + (joints_num - 1) * 6
+ cont6d_params = data[..., start_indx:end_indx]
+ # print(r_rot_cont6d.shape, cont6d_params.shape, r_pos.shape)
+ cont6d_params = torch.cat([r_rot_cont6d, cont6d_params], dim=-1)
+ cont6d_params = cont6d_params.view(-1, joints_num, 6)
+
+ positions = skeleton.forward_kinematics_cont6d(cont6d_params, r_pos)
+
+ return positions
+
+
+def recover_from_ric(data, joints_num):
+ r_rot_quat, r_pos = recover_root_rot_pos(data)
+ positions = data[..., 4:(joints_num - 1) * 3 + 4]
+ positions = positions.view(positions.shape[:-1] + (-1, 3))
+
+ '''Add Y-axis rotation to local joints'''
+ positions = qrot(qinv(r_rot_quat[..., None, :]).expand(positions.shape[:-1] + (4,)), positions)
+
+ '''Add root XZ to joints'''
+ positions[..., 0] += r_pos[..., 0:1]
+ positions[..., 2] += r_pos[..., 2:3]
+
+ '''Concate root and joints'''
+ positions = torch.cat([r_pos.unsqueeze(-2), positions], dim=-2)
+
+ return positions
+'''
+For Text2Motion Dataset
+'''
+'''
+if __name__ == "__main__":
+ example_id = "000021"
+ # Lower legs
+ l_idx1, l_idx2 = 5, 8
+ # Right/Left foot
+ fid_r, fid_l = [8, 11], [7, 10]
+ # Face direction, r_hip, l_hip, sdr_r, sdr_l
+ face_joint_indx = [2, 1, 17, 16]
+ # l_hip, r_hip
+ r_hip, l_hip = 2, 1
+ joints_num = 22
+ # ds_num = 8
+ data_dir = '../dataset/pose_data_raw/joints/'
+ save_dir1 = '../dataset/pose_data_raw/new_joints/'
+ save_dir2 = '../dataset/pose_data_raw/new_joint_vecs/'
+
+ n_raw_offsets = torch.from_numpy(t2m_raw_offsets)
+ kinematic_chain = t2m_kinematic_chain
+
+ # Get offsets of target skeleton
+ example_data = np.load(os.path.join(data_dir, example_id + '.npy'))
+ example_data = example_data.reshape(len(example_data), -1, 3)
+ example_data = torch.from_numpy(example_data)
+ tgt_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu')
+ # (joints_num, 3)
+ tgt_offsets = tgt_skel.get_offsets_joints(example_data[0])
+ # print(tgt_offsets)
+
+ source_list = os.listdir(data_dir)
+ frame_num = 0
+ for source_file in tqdm(source_list):
+ source_data = np.load(os.path.join(data_dir, source_file))[:, :joints_num]
+ try:
+ data, ground_positions, positions, l_velocity = process_file(source_data, 0.002)
+ rec_ric_data = recover_from_ric(torch.from_numpy(data).unsqueeze(0).float(), joints_num)
+ np.save(pjoin(save_dir1, source_file), rec_ric_data.squeeze().numpy())
+ np.save(pjoin(save_dir2, source_file), data)
+ frame_num += data.shape[0]
+ except Exception as e:
+ print(source_file)
+ print(e)
+
+ print('Total clips: %d, Frames: %d, Duration: %fm' %
+ (len(source_list), frame_num, frame_num / 20 / 60))
+'''
+
+if __name__ == "__main__":
+ example_id = "03950_gt"
+ # Lower legs
+ l_idx1, l_idx2 = 17, 18
+ # Right/Left foot
+ fid_r, fid_l = [14, 15], [19, 20]
+ # Face direction, r_hip, l_hip, sdr_r, sdr_l
+ face_joint_indx = [11, 16, 5, 8]
+ # l_hip, r_hip
+ r_hip, l_hip = 11, 16
+ joints_num = 21
+ # ds_num = 8
+ data_dir = '../dataset/kit_mocap_dataset/joints/'
+ save_dir1 = '../dataset/kit_mocap_dataset/new_joints/'
+ save_dir2 = '../dataset/kit_mocap_dataset/new_joint_vecs/'
+
+ n_raw_offsets = torch.from_numpy(kit_raw_offsets)
+ kinematic_chain = kit_kinematic_chain
+
+ '''Get offsets of target skeleton'''
+ example_data = np.load(os.path.join(data_dir, example_id + '.npy'))
+ example_data = example_data.reshape(len(example_data), -1, 3)
+ example_data = torch.from_numpy(example_data)
+ tgt_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu')
+ # (joints_num, 3)
+ tgt_offsets = tgt_skel.get_offsets_joints(example_data[0])
+ # print(tgt_offsets)
+
+ source_list = os.listdir(data_dir)
+ frame_num = 0
+ '''Read source data'''
+ for source_file in tqdm(source_list):
+ source_data = np.load(os.path.join(data_dir, source_file))[:, :joints_num]
+ try:
+ name = ''.join(source_file[:-7].split('_')) + '.npy'
+ data, ground_positions, positions, l_velocity = process_file(source_data, 0.05)
+ rec_ric_data = recover_from_ric(torch.from_numpy(data).unsqueeze(0).float(), joints_num)
+ if np.isnan(rec_ric_data.numpy()).any():
+ print(source_file)
+ continue
+ np.save(pjoin(save_dir1, name), rec_ric_data.squeeze().numpy())
+ np.save(pjoin(save_dir2, name), data)
+ frame_num += data.shape[0]
+ except Exception as e:
+ print(source_file)
+ print(e)
+
+ print('Total clips: %d, Frames: %d, Duration: %fm' %
+ (len(source_list), frame_num, frame_num / 12.5 / 60))
\ No newline at end of file
diff --git a/utils/paramUtil.py b/utils/paramUtil.py
new file mode 100644
index 0000000000000000000000000000000000000000..6e820ca930f919efa2855f4200d1af3659622922
--- /dev/null
+++ b/utils/paramUtil.py
@@ -0,0 +1,63 @@
+import numpy as np
+
+# Define a kinematic tree for the skeletal struture
+kit_kinematic_chain = [[0, 11, 12, 13, 14, 15], [0, 16, 17, 18, 19, 20], [0, 1, 2, 3, 4], [3, 5, 6, 7], [3, 8, 9, 10]]
+
+kit_raw_offsets = np.array(
+ [
+ [0, 0, 0],
+ [0, 1, 0],
+ [0, 1, 0],
+ [0, 1, 0],
+ [0, 1, 0],
+ [1, 0, 0],
+ [0, -1, 0],
+ [0, -1, 0],
+ [-1, 0, 0],
+ [0, -1, 0],
+ [0, -1, 0],
+ [1, 0, 0],
+ [0, -1, 0],
+ [0, -1, 0],
+ [0, 0, 1],
+ [0, 0, 1],
+ [-1, 0, 0],
+ [0, -1, 0],
+ [0, -1, 0],
+ [0, 0, 1],
+ [0, 0, 1]
+ ]
+)
+
+t2m_raw_offsets = np.array([[0,0,0],
+ [1,0,0],
+ [-1,0,0],
+ [0,1,0],
+ [0,-1,0],
+ [0,-1,0],
+ [0,1,0],
+ [0,-1,0],
+ [0,-1,0],
+ [0,1,0],
+ [0,0,1],
+ [0,0,1],
+ [0,1,0],
+ [1,0,0],
+ [-1,0,0],
+ [0,0,1],
+ [0,-1,0],
+ [0,-1,0],
+ [0,-1,0],
+ [0,-1,0],
+ [0,-1,0],
+ [0,-1,0]])
+
+t2m_kinematic_chain = [[0, 2, 5, 8, 11], [0, 1, 4, 7, 10], [0, 3, 6, 9, 12, 15], [9, 14, 17, 19, 21], [9, 13, 16, 18, 20]]
+t2m_left_hand_chain = [[20, 22, 23, 24], [20, 34, 35, 36], [20, 25, 26, 27], [20, 31, 32, 33], [20, 28, 29, 30]]
+t2m_right_hand_chain = [[21, 43, 44, 45], [21, 46, 47, 48], [21, 40, 41, 42], [21, 37, 38, 39], [21, 49, 50, 51]]
+
+
+kit_tgt_skel_id = '03950'
+
+t2m_tgt_skel_id = '000021'
+
diff --git a/utils/plot_script.py b/utils/plot_script.py
new file mode 100644
index 0000000000000000000000000000000000000000..91b09d900740421b8db4332b3e0f029b39c115d5
--- /dev/null
+++ b/utils/plot_script.py
@@ -0,0 +1,548 @@
+import math
+import numpy as np
+import matplotlib
+import matplotlib.pyplot as plt
+from mpl_toolkits.mplot3d import Axes3D
+from matplotlib.animation import FuncAnimation, FFMpegFileWriter
+from mpl_toolkits.mplot3d.art3d import Poly3DCollection
+import mpl_toolkits.mplot3d.axes3d as p3
+
+
+COLORS = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0],
+ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
+ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
+
+
+def plot_2d_pose(pose, pose_tree, class_type, save_path=None, excluded_joints=None):
+ def init():
+ plt.xlabel('x')
+ plt.ylabel('y')
+ plt.title(class_type)
+
+ fig = plt.figure()
+ init()
+ data = np.array(pose, dtype=float)
+
+ if excluded_joints is None:
+ plt.scatter(data[:, 0], data[:, 1], color='b', marker='h', s=15)
+ else:
+ plot_joints = [i for i in range(data.shape[1]) if i not in excluded_joints]
+ plt.scatter(data[plot_joints, 0], data[plot_joints, 1], color='b', marker='h', s=15)
+
+ for idx1, idx2 in pose_tree:
+ plt.plot([data[idx1, 0], data[idx2, 0]],
+ [data[idx1, 1], data[idx2, 1]], color='r', linewidth=2.0)
+
+ # update(1)
+ # plt.show()
+ # Writer = writers['ffmpeg']
+ # writer = Writer(fps=15, metadata={})
+ if save_path is not None:
+ plt.savefig(save_path)
+ plt.show()
+ plt.close()
+
+
+def list_cut_average(ll, intervals):
+ if intervals == 1:
+ return ll
+
+ bins = math.ceil(len(ll) * 1.0 / intervals)
+ ll_new = []
+ for i in range(bins):
+ l_low = intervals * i
+ l_high = l_low + intervals
+ l_high = l_high if l_high < len(ll) else len(ll)
+ ll_new.append(np.mean(ll[l_low:l_high]))
+ return ll_new
+
+
+# def draw_pose_from_cords(img_mat_size, pose_2d, kinematic_tree, radius=2):
+# img = np.zeros(shape=img_mat_size + (3,), dtype=np.uint8)
+# lw = 2
+# pose = pose_2d.astype(np.int32)
+# for i, (idx1, idx2) in enumerate(kinematic_tree):
+# cv2.line(img, (pose[idx1, 0], pose[idx1, 1]), (pose[idx2, 0], pose[idx2, 1]), (255, 255, 255), lw)
+#
+# for i, uv in enumerate(pose_2d):
+# point = tuple(uv.astype(np.int32))
+# cv2.circle(img, point, radius, COLORS[i % len(COLORS)], -1)
+# return img
+
+def plot_3d_pose_v2(savePath, kinematic_tree, joints, title=None):
+ figure = plt.figure()
+ # ax = plt.axes(xlim=(-1, 1), ylim=(-1, 1), zlim=(-1, 1), projection='3d')
+ ax = Axes3D(figure)
+# ax.set_ylim(-1, 1)
+# ax.set_xlim(-1, 1)
+# ax.set_zlim(-1, 1)
+ if title is not None:
+ ax.set_title(title)
+ ax.set_xlabel('x')
+ ax.set_ylabel('y')
+ ax.set_zlabel('z')
+ ax.view_init(elev=110, azim=90)
+ ax.scatter(joints[:, 0], joints[:, 1], joints[:, 2], color='black')
+ colors = ['red', 'magenta', 'black', 'magenta', 'black', 'green', 'blue']
+ for chain, color in zip(kinematic_tree, colors):
+ ax.plot3D(joints[chain, 0], joints[chain, 1], joints[chain, 2], linewidth=2.0, color=color)
+# ax.set_aspect(1)
+# # plt.axis('off')
+# ax.set_xticklabels([])
+# ax.set_yticklabels([])
+# ax.set_zticklabels([])
+# plt.savefig(savePath)
+ plt.show()
+
+def plot_3d_motion_v2(motion, kinematic_tree, save_path, interval=50, dataset=None, title=None):
+# matplotlib.use('Agg')
+
+ def init():
+ ax.set_xlabel('x')
+ ax.set_ylabel('y')
+ ax.set_zlabel('z')
+ ax.set_ylim(0, 800)
+ ax.set_xlim(0, 800)
+ ax.set_zlim(0, 5000)
+ # ax.set_ylim(-0.75, 0.75)
+ # ax.set_xlim(-0.75, 0.75)
+ # ax.set_zlim(-0.75, 0.75)
+ if title is not None:
+ ax.set_title(title)
+
+ motion = motion.reshape(motion.shape[0], -1, 3)
+ fig = plt.figure()
+ # ax = fig.add_subplot(111, projection='3d')
+ ax = p3.Axes3D(fig)
+ init()
+
+ data = np.array(motion, dtype=float)
+ colors = ['red', 'magenta', 'black', 'green', 'blue','red', 'magenta', 'black', 'green', 'blue']
+ frame_number = data.shape[0]
+ # dim (frame, joints, xyz)
+ print(data.shape)
+
+ def update(index):
+ ax.lines = []
+ ax.collections = []
+ ax.view_init(elev=110, azim=-90)
+ ax.scatter(motion[index, :, 0], motion[index, :, 1], motion[index, :, 2], color='black')
+ for chain, color in zip(kinematic_tree, colors):
+ ax.plot3D(motion[index, chain, 0], motion[index, chain, 1], motion[index, chain, 2], linewidth=2.0, color=color)
+# ax.set_aspect('equal')
+# plt.axis('off')
+# ax.set_xticklabels([])
+# ax.set_yticklabels([])
+# ax.set_zticklabels([])
+
+ ani = FuncAnimation(fig, update, frames=frame_number, interval=interval, repeat=True, repeat_delay=50)
+ # update(1)
+ # plt.show()
+ # Writer = writers['ffmpeg']
+ # writer = Writer(fps=15, metadata={})
+ ani.save(save_path, writer='pillow')
+ plt.close()
+
+
+# radius = 10*offsets
+def plot_3d_motion_kit(save_path, kinematic_tree, joints, title, figsize=(5, 5), interval=100, radius=246 * 12):
+ matplotlib.use('Agg')
+
+ title_sp = title.split(' ')
+ if len(title_sp) > 10:
+ title = '\n'.join([' '.join(title_sp[:10]), ' '.join(title_sp[10:])])
+ def init():
+ ax.set_xlim3d([-radius / 2, radius / 2])
+ ax.set_ylim3d([-radius / 2, radius / 2])
+ ax.set_zlim3d([0, radius])
+ # print(title)
+ fig.suptitle(title)
+ ax.grid(b=False)
+
+ def plot_xzPlane(minx, maxx, miny, minz, maxz):
+ ## Plot a plane XZ
+ verts = [
+ [minx, miny, minz],
+ [minx, miny, maxz],
+ [maxx, miny, maxz],
+ [maxx, miny, minz]
+ ]
+ xz_plane = Poly3DCollection([verts])
+ xz_plane.set_facecolor((0.5, 0.5, 0.5, 0.5))
+ ax.add_collection3d(xz_plane)
+
+ # return ax
+
+ # (seq_len, joints_num, 3)
+ data = joints.reshape(len(joints), -1, 3)
+ fig = plt.figure(figsize=figsize)
+ ax = p3.Axes3D(fig)
+ init()
+ MINS = data.min(axis=0).min(axis=0)
+ MAXS = data.max(axis=0).max(axis=0)
+ colors = ['red', 'magenta', 'black', 'green', 'blue', 'red', 'magenta', 'black', 'green', 'blue']
+ frame_number = data.shape[0]
+ # print(data.shape)
+
+ height_offset = MINS[1]
+ data[:, :, 1] -= height_offset
+ trajec = data[:, 0, [0, 2]]
+
+ # print(trajec.shape)
+
+ def update(index):
+ # print(index)
+ ax.lines = []
+ ax.collections = []
+ ax.view_init(elev=110, azim=-90)
+ ax.dist = 7.5
+ # ax =
+ plot_xzPlane(MINS[0], MAXS[0], 0, MINS[2], MAXS[2])
+ ax.scatter(data[index, :, 0], data[index, :, 1], data[index, :, 2], color='black')
+ for chain, color in zip(kinematic_tree, colors):
+ ax.plot3D(data[index, chain, 0], data[index, chain, 1], data[index, chain, 2], linewidth=2.0, color=color)
+ # print(trajec[:index, 0].shape)
+ if index > 1:
+ ax.plot3D(trajec[:index, 0], np.zeros_like(trajec[:index, 0]), trajec[:index, 1], linewidth=1.0,
+ color='blue')
+ # ax = plot_xzPlane(ax, MINS[0], MAXS[0], 0, MINS[2], MAXS[2])
+
+ plt.axis('off')
+ ax.set_xticklabels([])
+ ax.set_yticklabels([])
+ ax.set_zticklabels([])
+
+ ani = FuncAnimation(fig, update, frames=frame_number, interval=interval, repeat=True, repeat_delay=50)
+
+ ani.save(save_path, writer='pillow')
+ plt.close()
+
+def plot_3d_motion_gt_pred(save_path, kinematic_tree, gt_joints, pred_joints, title, figsize=(10, 10), fps=120, radius=4):
+ matplotlib.use('Agg')
+
+ title_sp = title.split(' ')
+ if len(title_sp) > 20:
+ title = '\n'.join([' '.join(title_sp[:10]), ' '.join(title_sp[10:20]), ' '.join(title_sp[20:])])
+ elif len(title_sp) > 10:
+ title = '\n'.join([' '.join(title_sp[:10]), ' '.join(title_sp[10:])])
+
+ def init():
+ for ax in axs:
+ ax.set_xlim3d([-radius / 2, radius / 2])
+ ax.set_ylim3d([0, radius])
+ ax.set_zlim3d([0, radius])
+ fig.suptitle(title, fontsize=20)
+ ax.grid(b=False)
+
+ def plot_xzPlane(minx, maxx, miny, minz, maxz, ax):
+ ## Plot a plane XZ
+ verts = [
+ [minx, miny, minz],
+ [minx, miny, maxz],
+ [maxx, miny, maxz],
+ [maxx, miny, minz]
+ ]
+ xz_plane = Poly3DCollection([verts])
+ xz_plane.set_facecolor((0.5, 0.5, 0.5, 0.5))
+ ax.add_collection3d(xz_plane)
+
+ # return ax
+
+ def update(index):
+ for i, ax in enumerate(axs):
+ ax.lines = []
+ ax.collections = []
+ ax.view_init(elev=120, azim=-90)
+ ax.dist = 7.5
+
+ MINS = motions_min[i]
+ MAXS = motions_max[i]
+ trajec = motions_traj[i]
+ data = motions_data[i]
+
+ plot_xzPlane(MINS[0] - trajec[index, 0], MAXS[0] - trajec[index, 0], 0, MINS[2] - trajec[index, 1],
+ MAXS[2] - trajec[index, 1], ax)
+
+ if index > 1:
+ ax.plot3D(trajec[:index, 0] - trajec[index, 0], np.zeros_like(trajec[:index, 0]),
+ trajec[:index, 1] - trajec[index, 1], linewidth=1.0,
+ color='blue')
+
+ for i, (chain, color) in enumerate(zip(kinematic_tree, colors)):
+ if i < 5:
+ linewidth = 4.0
+ else:
+ linewidth = 2.0
+ ax.plot3D(data[index, chain, 0], data[index, chain, 1], data[index, chain, 2], linewidth=linewidth,
+ color=color)
+
+ plt.axis('off')
+ ax.set_xticklabels([])
+ ax.set_yticklabels([])
+ ax.set_zticklabels([])
+
+ # (seq_len, joints_num, 3)
+
+ motions_data = []
+ motions_traj = []
+ motions_min = []
+ motions_max = []
+ colors = ['red', 'blue', 'black', 'red', 'blue',
+ 'darkblue', 'darkblue', 'darkblue', 'darkblue', 'darkblue',
+ 'darkred', 'darkred', 'darkred', 'darkred', 'darkred']
+ for i, joints in enumerate((gt_joints, pred_joints)):
+ data = joints.copy().reshape(len(joints), -1, 3)
+ frame_number = data.shape[0]
+
+ MINS = data.min(axis=0).min(axis=0)
+ motions_min.append(MINS)
+ MAXS = data.max(axis=0).max(axis=0)
+ motions_max.append(MAXS)
+ height_offset = MINS[1]
+
+ data[:, :, 1] -= height_offset
+ trajec = data[:, 0, [0, 2]]
+ motions_traj.append(trajec)
+
+ data[..., 0] -= data[:, 0:1, 0]
+ data[..., 2] -= data[:, 0:1, 2]
+ motions_data.append(data)
+
+ axs = []
+ fig = plt.figure(figsize=(20,10))
+ axs.append(fig.add_subplot(1, 2, 1, projection='3d'))
+ axs.append(fig.add_subplot(1, 2, 2, projection='3d'))
+ init()
+
+ ani = FuncAnimation(fig, update, frames=frame_number, interval=1000 / fps, repeat=False)
+
+ # writer = FFMpegFileWriter(fps=fps)
+ ani.save(save_path, fps=fps)
+ plt.close()
+
+def plot_3d_motion(save_path, kinematic_tree, joints, title, figsize=(10, 10), fps=120, radius=4):
+ matplotlib.use('Agg')
+
+ title_sp = title.split(' ')
+ if len(title_sp) > 20:
+ title = '\n'.join([' '.join(title_sp[:10]), ' '.join(title_sp[10:20]), ' '.join(title_sp[20:])])
+ elif len(title_sp) > 10:
+ title = '\n'.join([' '.join(title_sp[:10]), ' '.join(title_sp[10:])])
+
+ def init():
+ ax.set_xlim3d([-radius / 2, radius / 2])
+ ax.set_ylim3d([0, radius])
+ ax.set_zlim3d([0, radius])
+ # print(title)
+ fig.suptitle(title, fontsize=20)
+ ax.grid(b=False)
+
+ def plot_xzPlane(minx, maxx, miny, minz, maxz):
+ ## Plot a plane XZ
+ verts = [
+ [minx, miny, minz],
+ [minx, miny, maxz],
+ [maxx, miny, maxz],
+ [maxx, miny, minz]
+ ]
+ xz_plane = Poly3DCollection([verts])
+ xz_plane.set_facecolor((0.5, 0.5, 0.5, 0.5))
+ ax.add_collection3d(xz_plane)
+
+ # return ax
+
+ # (seq_len, joints_num, 3)
+ data = joints.copy().reshape(len(joints), -1, 3)
+ fig = plt.figure(figsize=figsize)
+ ax = p3.Axes3D(fig)
+ init()
+ MINS = data.min(axis=0).min(axis=0)
+ MAXS = data.max(axis=0).max(axis=0)
+ colors = ['red', 'blue', 'black', 'red', 'blue',
+ 'darkblue', 'darkblue', 'darkblue', 'darkblue', 'darkblue',
+ 'darkred', 'darkred', 'darkred', 'darkred', 'darkred']
+ frame_number = data.shape[0]
+ # print(data.shape)
+
+ height_offset = MINS[1]
+ data[:, :, 1] -= height_offset
+ trajec = data[:, 0, [0, 2]]
+
+ data[..., 0] -= data[:, 0:1, 0]
+ data[..., 2] -= data[:, 0:1, 2]
+
+ # print(trajec.shape)
+
+ def update(index):
+ # print(index)
+ ax.lines = []
+ ax.collections = []
+ ax.view_init(elev=120, azim=-90)
+ ax.dist = 7.5
+ # ax =
+ plot_xzPlane(MINS[0] - trajec[index, 0], MAXS[0] - trajec[index, 0], 0, MINS[2] - trajec[index, 1],
+ MAXS[2] - trajec[index, 1])
+ # ax.scatter(data[index, :22, 0], data[index, :22, 1], data[index, :22, 2], color='black', s=3)
+
+ if index > 1:
+ ax.plot3D(trajec[:index, 0] - trajec[index, 0], np.zeros_like(trajec[:index, 0]),
+ trajec[:index, 1] - trajec[index, 1], linewidth=1.0,
+ color='blue')
+ # ax = plot_xzPlane(ax, MINS[0], MAXS[0], 0, MINS[2], MAXS[2])
+
+ for i, (chain, color) in enumerate(zip(kinematic_tree, colors)):
+ # print(color)
+ if i < 5:
+ linewidth = 4.0
+ else:
+ linewidth = 2.0
+ ax.plot3D(data[index, chain, 0], data[index, chain, 1], data[index, chain, 2], linewidth=linewidth,
+ color=color)
+ # print(trajec[:index, 0].shape)
+
+ plt.axis('off')
+ ax.set_xticklabels([])
+ ax.set_yticklabels([])
+ ax.set_zticklabels([])
+
+ ani = FuncAnimation(fig, update, frames=frame_number, interval=1000 / fps, repeat=False)
+
+ # writer = FFMpegFileWriter(fps=fps)
+ ani.save(save_path, fps=fps)
+ plt.close()
+
+
+def plot_3d_motion_old(motion, pose_tree, class_type, save_path, interval=300, excluded_joints=None):
+ matplotlib.use('Agg')
+
+ def init():
+ ax.set_xlabel('x')
+ ax.set_ylabel('y')
+ ax.set_zlabel('z')
+ ax.set_ylim(-0.75, 0.75)
+ ax.set_xlim(-0.75, 0.75)
+ ax.set_zlim(-0.75, 0.75)
+ # ax.set_ylim(-1.0, 0.2)
+ # ax.set_xlim(-0.2, 1.0)
+ # ax.set_zlim(-1.0, 0.4)
+ ax.set_title(class_type)
+
+ fig = plt.figure()
+ # ax = fig.add_subplot(111, projection='3d')
+ ax = p3.Axes3D(fig)
+ init()
+
+ data = np.array(motion, dtype=float)
+ frame_number = data.shape[0]
+ # dim (frame, joints, xyz)
+ print(data.shape)
+
+ def update(index):
+ ax.lines = []
+ ax.collections = []
+ if excluded_joints is None:
+ ax.scatter(data[index, :, 0], data[index, :, 1], data[index, :, 2], color='b', marker='h', s=15)
+ else:
+ plot_joints = [i for i in range(data.shape[1]) if i not in excluded_joints]
+ ax.scatter(data[index, plot_joints, 0], data[index, plot_joints, 1], data[index, plot_joints, 2], color='b', marker='h', s=15)
+
+ for idx1, idx2 in pose_tree:
+ ax.plot([data[index, idx1, 0], data[index, idx2, 0]],
+ [data[index, idx1, 1], data[index, idx2, 1]], [data[index, idx1, 2], data[index, idx2, 2]], color='r', linewidth=2.0)
+
+ ani = FuncAnimation(fig, update, frames=frame_number, interval=interval, repeat=False, repeat_delay=200)
+ # update(1)
+ # plt.show()
+ # Writer = writers['ffmpeg']
+ # writer = Writer(fps=15, metadata={})
+ ani.save(save_path, writer='pillow')
+ plt.close()
+
+
+def plot_2d_motion(motion, pose_tree, axis_0, axis_1, class_type, save_path, interval=300):
+ matplotlib.use('Agg')
+
+ fig = plt.figure()
+ plt.title(class_type)
+ # ax = fig.add_subplot(111, projection='3d')
+ data = np.array(motion, dtype=float)
+ frame_number = data.shape[0]
+ # dim (frame, joints, xyz)
+ print(data.shape)
+
+ def update(index):
+ plt.clf()
+ plt.xlim(-0.7, 0.7)
+ plt.ylim(-0.7, 0.7)
+ plt.scatter(data[index, :, axis_0], data[index, :, axis_1], color='b', marker='h', s=15)
+ for idx1, idx2 in pose_tree:
+ plt.plot([data[index, idx1, axis_0], data[index, idx2, axis_0]],
+ [data[index, idx1, axis_1], data[index, idx2, axis_1]], color='r', linewidth=2.0)
+
+ ani = FuncAnimation(fig, update, frames=frame_number, interval=interval, repeat=False, repeat_delay=200)
+ # update(1)
+ # plt.show()
+ # Writer = writers['ffmpeg']
+ # writer = Writer(fps=15, metadata={})
+ ani.save(save_path, writer='pillow')
+ plt.close()
+
+def plot_3d_multi_motion(motion_list, kinematic_tree, save_path, interval=50, dataset=None):
+ matplotlib.use('Agg')
+
+ def init():
+ ax.set_xlabel('x')
+ ax.set_ylabel('y')
+ ax.set_zlabel('z')
+ if dataset == "mocap":
+ ax.set_ylim(-1.5, 1.5)
+ ax.set_xlim(0, 3)
+ ax.set_zlim(-1.5, 1.5)
+ else:
+ ax.set_ylim(-1, 1)
+ ax.set_xlim(-1, 1)
+ ax.set_zlim(-1, 1)
+ # ax.set_ylim(-1.0, 0.2)
+ # ax.set_xlim(-0.2, 1.0)
+ # ax.set_zlim(-1.0, 0.4)
+
+ fig = plt.figure()
+ # ax = fig.add_subplot(111, projection='3d')
+ ax = p3.Axes3D(fig)
+ init()
+
+ colors = ['red', 'magenta', 'black', 'magenta', 'black', 'green', 'blue']
+ frame_number = motion_list[0].shape[0]
+ # dim (frame, joints, xyz)
+ # print(data.shape)
+ print("Number of motions %d" % (len(motion_list)))
+ def update(index):
+ ax.lines = []
+ ax.collections = []
+ if dataset == "mocap":
+ ax.view_init(elev=110, azim=-90)
+ else:
+ ax.view_init(elev=110, azim=90)
+ for motion in motion_list:
+ for chain, color in zip(kinematic_tree, colors):
+ ax.plot3D(motion[index, chain, 0], motion[index, chain, 1], motion[index, chain, 2],
+ linewidth=4.0, color=color)
+ plt.axis('off')
+
+# ax.set_xticks([])
+# ax.set_yticks([])
+
+ ax.set_xticklabels([])
+ ax.set_yticklabels([])
+ ax.set_zticklabels([])
+
+ ani = FuncAnimation(fig, update, frames=frame_number, interval=interval, repeat=False, repeat_delay=200)
+ # update(1)
+ # plt.show()
+ # Writer = writers['ffmpeg']
+ # writer = Writer(fps=15, metadata={})
+ ani.save(save_path, writer='pillow')
+ plt.close()
+
+
+
diff --git a/utils/utils.py b/utils/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..96a37f3d9990eb3ae99626b45924e149114a6c55
--- /dev/null
+++ b/utils/utils.py
@@ -0,0 +1,168 @@
+import os
+import numpy as np
+# import cv2
+from PIL import Image
+from utils import paramUtil
+import math
+import time
+import matplotlib.pyplot as plt
+# from scipy.ndimage import gaussian_filter
+
+
+def mkdir(path):
+ if not os.path.exists(path):
+ os.makedirs(path)
+
+COLORS = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0],
+ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
+ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
+
+MISSING_VALUE = -1
+
+def save_image(image_numpy, image_path):
+ img_pil = Image.fromarray(image_numpy)
+ img_pil.save(image_path)
+
+
+def save_logfile(log_loss, save_path):
+ with open(save_path, 'wt') as f:
+ for k, v in log_loss.items():
+ w_line = k
+ for digit in v:
+ w_line += ' %.3f' % digit
+ f.write(w_line + '\n')
+
+
+def print_current_loss(start_time, niter_state, total_niters, losses, epoch=None, sub_epoch=None,
+ inner_iter=None, tf_ratio=None, sl_steps=None):
+
+ def as_minutes(s):
+ m = math.floor(s / 60)
+ s -= m * 60
+ return '%dm %ds' % (m, s)
+
+ def time_since(since, percent):
+ now = time.time()
+ s = now - since
+ es = s / percent
+ rs = es - s
+ return '%s (- %s)' % (as_minutes(s), as_minutes(rs))
+
+ if epoch is not None:
+ print('ep/it:%2d-%4d niter:%6d' % (epoch, inner_iter, niter_state), end=" ")
+
+ message = ' %s completed:%3d%%)' % (time_since(start_time, niter_state / total_niters), niter_state / total_niters * 100)
+ # now = time.time()
+ # message += '%s'%(as_minutes(now - start_time))
+
+
+ for k, v in losses.items():
+ message += ' %s: %.4f ' % (k, v)
+ # message += ' sl_length:%2d tf_ratio:%.2f'%(sl_steps, tf_ratio)
+ print(message)
+
+def print_current_loss_decomp(start_time, niter_state, total_niters, losses, epoch=None, inner_iter=None):
+
+ def as_minutes(s):
+ m = math.floor(s / 60)
+ s -= m * 60
+ return '%dm %ds' % (m, s)
+
+ def time_since(since, percent):
+ now = time.time()
+ s = now - since
+ es = s / percent
+ rs = es - s
+ return '%s (- %s)' % (as_minutes(s), as_minutes(rs))
+
+ print('epoch: %03d inner_iter: %5d' % (epoch, inner_iter), end=" ")
+ # now = time.time()
+ message = '%s niter: %07d completed: %3d%%)'%(time_since(start_time, niter_state / total_niters), niter_state, niter_state / total_niters * 100)
+ for k, v in losses.items():
+ message += ' %s: %.4f ' % (k, v)
+ print(message)
+
+
+def compose_gif_img_list(img_list, fp_out, duration):
+ img, *imgs = [Image.fromarray(np.array(image)) for image in img_list]
+ img.save(fp=fp_out, format='GIF', append_images=imgs, optimize=False,
+ save_all=True, loop=0, duration=duration)
+
+
+def save_images(visuals, image_path):
+ if not os.path.exists(image_path):
+ os.makedirs(image_path)
+
+ for i, (label, img_numpy) in enumerate(visuals.items()):
+ img_name = '%d_%s.jpg' % (i, label)
+ save_path = os.path.join(image_path, img_name)
+ save_image(img_numpy, save_path)
+
+
+def save_images_test(visuals, image_path, from_name, to_name):
+ if not os.path.exists(image_path):
+ os.makedirs(image_path)
+
+ for i, (label, img_numpy) in enumerate(visuals.items()):
+ img_name = "%s_%s_%s" % (from_name, to_name, label)
+ save_path = os.path.join(image_path, img_name)
+ save_image(img_numpy, save_path)
+
+
+def compose_and_save_img(img_list, save_dir, img_name, col=4, row=1, img_size=(256, 200)):
+ # print(col, row)
+ compose_img = compose_image(img_list, col, row, img_size)
+ if not os.path.exists(save_dir):
+ os.makedirs(save_dir)
+ img_path = os.path.join(save_dir, img_name)
+ # print(img_path)
+ compose_img.save(img_path)
+
+
+def compose_image(img_list, col, row, img_size):
+ to_image = Image.new('RGB', (col * img_size[0], row * img_size[1]))
+ for y in range(0, row):
+ for x in range(0, col):
+ from_img = Image.fromarray(img_list[y * col + x])
+ # print((x * img_size[0], y*img_size[1],
+ # (x + 1) * img_size[0], (y + 1) * img_size[1]))
+ paste_area = (x * img_size[0], y*img_size[1],
+ (x + 1) * img_size[0], (y + 1) * img_size[1])
+ to_image.paste(from_img, paste_area)
+ # to_image[y*img_size[1]:(y + 1) * img_size[1], x * img_size[0] :(x + 1) * img_size[0]] = from_img
+ return to_image
+
+
+def plot_loss_curve(losses, save_path, intervals=500):
+ plt.figure(figsize=(10, 5))
+ plt.title("Loss During Training")
+ for key in losses.keys():
+ plt.plot(list_cut_average(losses[key], intervals), label=key)
+ plt.xlabel("Iterations/" + str(intervals))
+ plt.ylabel("Loss")
+ plt.legend()
+ plt.savefig(save_path)
+ plt.show()
+
+
+def list_cut_average(ll, intervals):
+ if intervals == 1:
+ return ll
+
+ bins = math.ceil(len(ll) * 1.0 / intervals)
+ ll_new = []
+ for i in range(bins):
+ l_low = intervals * i
+ l_high = l_low + intervals
+ l_high = l_high if l_high < len(ll) else len(ll)
+ ll_new.append(np.mean(ll[l_low:l_high]))
+ return ll_new
+
+
+# def motion_temporal_filter(motion, sigma=1):
+# motion = motion.reshape(motion.shape[0], -1)
+# # print(motion.shape)
+# for i in range(motion.shape[1]):
+# motion[:, i] = gaussian_filter(motion[:, i], sigma=sigma, mode="nearest")
+# return motion.reshape(motion.shape[0], -1, 3)
+
diff --git a/utils/word_vectorizer.py b/utils/word_vectorizer.py
new file mode 100644
index 0000000000000000000000000000000000000000..557ff97a9539c084167f3eca51fb50f53f33c8ea
--- /dev/null
+++ b/utils/word_vectorizer.py
@@ -0,0 +1,99 @@
+import numpy as np
+import pickle
+from os.path import join as pjoin
+
+POS_enumerator = {
+ 'VERB': 0,
+ 'NOUN': 1,
+ 'DET': 2,
+ 'ADP': 3,
+ 'NUM': 4,
+ 'AUX': 5,
+ 'PRON': 6,
+ 'ADJ': 7,
+ 'ADV': 8,
+ 'Loc_VIP': 9,
+ 'Body_VIP': 10,
+ 'Obj_VIP': 11,
+ 'Act_VIP': 12,
+ 'Desc_VIP': 13,
+ 'OTHER': 14,
+}
+
+Loc_list = ('left', 'right', 'clockwise', 'counterclockwise', 'anticlockwise', 'forward', 'back', 'backward',
+ 'up', 'down', 'straight', 'curve')
+
+Body_list = ('arm', 'chin', 'foot', 'feet', 'face', 'hand', 'mouth', 'leg', 'waist', 'eye', 'knee', 'shoulder', 'thigh')
+
+Obj_List = ('stair', 'dumbbell', 'chair', 'window', 'floor', 'car', 'ball', 'handrail', 'baseball', 'basketball')
+
+Act_list = ('walk', 'run', 'swing', 'pick', 'bring', 'kick', 'put', 'squat', 'throw', 'hop', 'dance', 'jump', 'turn',
+ 'stumble', 'dance', 'stop', 'sit', 'lift', 'lower', 'raise', 'wash', 'stand', 'kneel', 'stroll',
+ 'rub', 'bend', 'balance', 'flap', 'jog', 'shuffle', 'lean', 'rotate', 'spin', 'spread', 'climb')
+
+Desc_list = ('slowly', 'carefully', 'fast', 'careful', 'slow', 'quickly', 'happy', 'angry', 'sad', 'happily',
+ 'angrily', 'sadly')
+
+VIP_dict = {
+ 'Loc_VIP': Loc_list,
+ 'Body_VIP': Body_list,
+ 'Obj_VIP': Obj_List,
+ 'Act_VIP': Act_list,
+ 'Desc_VIP': Desc_list,
+}
+
+
+class WordVectorizer(object):
+ def __init__(self, meta_root, prefix):
+ vectors = np.load(pjoin(meta_root, '%s_data.npy'%prefix))
+ words = pickle.load(open(pjoin(meta_root, '%s_words.pkl'%prefix), 'rb'))
+ self.word2idx = pickle.load(open(pjoin(meta_root, '%s_idx.pkl'%prefix), 'rb'))
+ self.word2vec = {w: vectors[self.word2idx[w]] for w in words}
+
+ def _get_pos_ohot(self, pos):
+ pos_vec = np.zeros(len(POS_enumerator))
+ if pos in POS_enumerator:
+ pos_vec[POS_enumerator[pos]] = 1
+ else:
+ pos_vec[POS_enumerator['OTHER']] = 1
+ return pos_vec
+
+ def __len__(self):
+ return len(self.word2vec)
+
+ def __getitem__(self, item):
+ word, pos = item.split('/')
+ if word in self.word2vec:
+ word_vec = self.word2vec[word]
+ vip_pos = None
+ for key, values in VIP_dict.items():
+ if word in values:
+ vip_pos = key
+ break
+ if vip_pos is not None:
+ pos_vec = self._get_pos_ohot(vip_pos)
+ else:
+ pos_vec = self._get_pos_ohot(pos)
+ else:
+ word_vec = self.word2vec['unk']
+ pos_vec = self._get_pos_ohot('OTHER')
+ return word_vec, pos_vec
+
+
+class WordVectorizerV2(WordVectorizer):
+ def __init__(self, meta_root, prefix):
+ super(WordVectorizerV2, self).__init__(meta_root, prefix)
+ self.idx2word = {self.word2idx[w]: w for w in self.word2idx}
+
+ def __getitem__(self, item):
+ word_vec, pose_vec = super(WordVectorizerV2, self).__getitem__(item)
+ word, pos = item.split('/')
+ if word in self.word2vec:
+ return word_vec, pose_vec, self.word2idx[word]
+ else:
+ return word_vec, pose_vec, self.word2idx['unk']
+
+ def itos(self, idx):
+ if idx == len(self.idx2word):
+ return "pad"
+ return self.idx2word[idx]
\ No newline at end of file
diff --git a/visualization/.DS_Store b/visualization/.DS_Store
new file mode 100644
index 0000000000000000000000000000000000000000..104c0682bd62734a070b60d56d308b92af7f2df6
Binary files /dev/null and b/visualization/.DS_Store differ
diff --git a/visualization/.bvh b/visualization/.bvh
new file mode 100644
index 0000000000000000000000000000000000000000..b4d4a27110baa7a9a2c45d7b6f7eedbfffa9f6ec
--- /dev/null
+++ b/visualization/.bvh
@@ -0,0 +1,864 @@
+HIERARCHY
+ROOT Pelvis
+{
+ OFFSET -0.179506 -22.333345 2.821913
+ CHANNELS 6 Xposition Yposition Zposition Zrotation Yrotation Xrotation
+ JOINT Left_hip
+ {
+ OFFSET 6.951974 -9.140623 -0.681533
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Left_knee
+ {
+ OFFSET 3.427654 -37.519855 -0.449580
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Left_ankle
+ {
+ OFFSET -1.359570 -39.796059 -4.369333
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Left_foot
+ {
+ OFFSET 2.635814 -5.579078 11.928840
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ End Site
+ {
+ OFFSET 0.000000 0.000000 0.000000
+ }
+ }
+ }
+ }
+ }
+ JOINT Right_hip
+ {
+ OFFSET -6.767048 -9.052170 -0.431982
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Right_knee
+ {
+ OFFSET -3.829005 -38.256897 -0.885003
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Right_ankle
+ {
+ OFFSET 1.577377 -39.841461 -4.231180
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Right_foot
+ {
+ OFFSET -2.537174 -4.814398 12.334795
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ End Site
+ {
+ OFFSET 0.000000 0.000000 0.000000
+ }
+ }
+ }
+ }
+ }
+ JOINT Spine1
+ {
+ OFFSET -0.253288 10.896323 -2.669631
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Spine2
+ {
+ OFFSET 0.548704 13.518043 0.109247
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Spine3
+ {
+ OFFSET 0.145701 5.292222 2.542457
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Neck
+ {
+ OFFSET -0.277840 21.387037 -4.285703
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Head
+ {
+ OFFSET 0.515184 6.496960 5.134897
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ End Site
+ {
+ OFFSET 0.000000 0.000000 0.000000
+ }
+ }
+ }
+ JOINT Left_collar
+ {
+ OFFSET 7.884473 12.174932 -3.408961
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Left_shoulder
+ {
+ OFFSET 9.097692 3.046888 -0.886815
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Left_elbow
+ {
+ OFFSET 25.961220 -1.277207 -2.745643
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Left_wrist
+ {
+ OFFSET 24.923361 0.898606 -0.117091
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Left_palm
+ {
+ OFFSET 8.404213 -0.816156 -1.494537
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ End Site
+ {
+ OFFSET 0.000000 0.000000 0.000000
+ }
+ }
+ }
+ }
+ }
+ }
+ JOINT Right_collar
+ {
+ OFFSET -8.175920 11.883285 -3.861528
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Right_shoulder
+ {
+ OFFSET -9.601238 3.255117 -0.914307
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Right_elbow
+ {
+ OFFSET -25.374195 -1.332924 -2.140099
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Right_wrist
+ {
+ OFFSET -25.529810 0.777228 -0.555919
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Right_palm
+ {
+ OFFSET -8.462191 -0.611722 -1.031508
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ End Site
+ {
+ OFFSET 0.000000 0.000000 0.000000
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+MOTION
+Frames: 720
+Frame Time: 0.016667
+-15.953562 158.261215 3.012963 -6.548568 2.583855 -18.484306 2.567626 -0.642801 -12.453255 -17.111603 3.336555 16.983561 -0.646515 0.385496 -0.056215 0.325094 -0.032605 0.189901 11.448563 8.871870 6.436031 21.109348 -6.065577 45.020580 -0.174829 0.026075 0.116341 0.072238 0.260225 0.053027 4.465475 2.398752 11.553416 -5.916316 5.109896 9.693657 -10.230002 5.977373 8.161955 -4.592945 0.456784 10.607079 11.999027 -6.871897 -9.583961 0.986580 11.602270 -6.802592 -10.811317 -2.869949 -1.570219 43.446667 -20.007170 -7.731044 0.092445 -0.321820 0.690197 -0.099926 -0.000055 0.179611 0.794326 -2.761873 -4.701620 6.150688 4.680287 -2.319729 -7.082062 6.923985 -0.347780 -0.400098 0.244321 -0.323698 0.385978 0.072713 -0.159744
+-16.108706 158.342819 3.003159 -6.436900 2.553235 -18.466497 2.628736 -0.640951 -12.167108 -17.277838 3.260565 16.452961 -0.623134 0.361270 -0.052679 0.329175 -0.021943 0.188075 11.625759 8.663714 6.621767 20.507597 -5.825788 44.947929 -0.176207 0.037369 0.118593 0.068431 0.250536 0.048086 4.242087 2.434052 12.115721 -6.077591 5.185571 9.527125 -10.338363 5.937043 7.690588 -4.605536 0.197104 10.837864 12.726488 -7.272390 -9.544734 1.642845 11.950652 -6.932811 -11.680576 -4.277152 -1.549070 43.571354 -20.612377 -8.049021 0.109730 -0.311815 0.682838 -0.110624 0.006377 0.183225 0.926398 -3.272447 -4.630198 7.445030 3.782560 -2.564028 -8.259988 8.206085 -0.503641 -0.385034 0.241649 -0.309882 0.376944 0.060723 -0.150942
+-16.289064 158.460114 2.898096 -6.337712 2.417876 -18.367199 2.387673 -0.769141 -11.783619 -16.808804 2.974704 15.581153 -0.597874 0.341984 -0.045163 0.336606 -0.010386 0.182390 11.895297 8.444583 6.677911 19.618019 -5.451431 44.845573 -0.181456 0.041560 0.120532 0.063814 0.249287 0.050308 4.130446 2.249803 12.813165 -6.341510 5.110845 9.366212 -10.591797 5.717437 7.166194 -4.550250 0.315001 10.694882 13.649382 -7.465281 -9.502808 2.140804 12.233712 -6.924524 -12.244494 -5.059723 -1.525820 43.379272 -21.237177 -8.295979 0.124976 -0.288952 0.674843 -0.118383 0.010494 0.193642 1.297063 -3.571788 -4.703934 8.010023 3.486611 -2.652901 -8.476348 8.605403 -0.545584 -0.372898 0.231243 -0.293915 0.365742 0.049422 -0.138878
+-16.564602 158.731995 2.726458 -6.002626 2.455181 -17.973370 1.834383 -0.983811 -11.526038 -15.971136 2.528754 14.111326 -0.602751 0.340437 -0.036803 0.336285 -0.008456 0.180600 11.654990 8.101241 6.587115 18.879175 -5.168495 44.240204 -0.184101 0.051312 0.135291 0.064663 0.260571 0.042015 3.051892 2.191581 13.253531 -6.533848 4.771447 9.180534 -10.291628 5.312028 6.718891 -4.273476 0.849475 10.492126 14.207470 -6.976998 -9.746916 2.845061 11.944734 -6.652175 -13.332726 -5.224829 -1.703026 43.879097 -20.990297 -8.364495 0.124505 -0.311719 0.688117 -0.116233 0.012790 0.202472 1.603163 -3.485494 -4.864434 8.750508 3.673903 -2.785898 -8.287816 8.146102 -0.511701 -0.381603 0.246283 -0.306233 0.384884 0.045592 -0.141288
+-16.712265 159.061188 2.544503 -6.138146 2.120839 -17.193476 1.495634 -1.153967 -11.531704 -14.562866 2.010199 12.596170 -0.564200 0.317475 -0.030186 0.355434 0.019825 0.183202 11.821760 7.832906 6.029297 17.854931 -4.734118 43.749580 -0.192897 0.046537 0.137743 0.063975 0.252156 0.061209 2.591154 2.105130 12.956139 -6.259222 4.452549 8.945457 -9.745981 4.985147 6.536089 -4.571469 1.506478 10.368932 14.273899 -6.712031 -9.471840 3.448703 11.540046 -6.184101 -15.225222 -5.342481 -1.930704 43.757050 -21.041569 -8.442200 0.134142 -0.275313 0.666342 -0.116295 0.025142 0.214703 1.627102 -3.484644 -5.032462 9.050708 4.006345 -2.802380 -8.178758 7.832633 -0.502845 -0.366619 0.222956 -0.270694 0.358248 0.025778 -0.124002
+-16.738913 159.395050 2.409832 -6.371427 1.715281 -16.212042 1.344112 -1.182214 -11.552453 -13.644547 1.596031 10.760131 -0.553557 0.301520 -0.029561 0.378947 0.055993 0.190589 11.912018 7.518050 5.477684 17.113008 -4.432878 43.021950 -0.200891 0.036620 0.141589 0.080178 0.245286 0.068790 2.655632 1.979555 12.242448 -6.059598 4.245433 8.709062 -9.529772 4.797668 6.568608 -4.468900 1.918368 10.300252 13.968842 -6.223287 -9.409180 3.466537 11.571606 -6.341009 -16.185760 -6.324979 -1.868305 43.140266 -21.341555 -8.512464 0.137919 -0.253948 0.652056 -0.111901 0.031955 0.226485 1.538267 -4.164848 -5.698076 9.921809 4.595060 -2.894332 -8.263926 7.278342 -0.511822 -0.369502 0.201231 -0.253245 0.348287 0.008170 -0.117610
+-16.776548 159.748032 2.157786 -6.428220 0.974121 -15.499296 0.936812 -1.201844 -11.313258 -12.177716 1.160200 8.771048 -0.541815 0.290366 -0.027408 0.385098 0.072718 0.195796 11.659352 7.261486 5.164932 16.596523 -4.206794 42.218369 -0.209730 0.039482 0.143880 0.082221 0.241970 0.075982 2.573596 1.944514 12.080869 -5.894100 4.092123 8.473337 -9.288622 4.620084 6.356588 -4.217100 2.342363 10.327727 13.891860 -5.639298 -9.494050 3.559528 11.211238 -6.158870 -16.793213 -6.551462 -1.894842 42.277451 -21.691759 -8.545035 0.136256 -0.254222 0.648655 -0.109668 0.045148 0.229905 1.508747 -4.268039 -5.966607 10.860933 4.783715 -3.082765 -8.835072 6.579336 -0.500989 -0.366672 0.202077 -0.242371 0.346106 -0.000085 -0.113156
+-16.773758 159.985733 1.840756 -6.892040 -0.265036 -14.707372 1.328187 -0.964429 -11.259574 -11.177370 0.888995 6.940612 -0.568827 0.312146 -0.017006 0.384319 0.065389 0.219003 11.855839 7.198880 4.539358 16.104712 -3.967600 41.788979 -0.207010 0.039457 0.152789 0.090576 0.252497 0.064945 2.552962 2.114229 11.497072 -5.267292 4.029208 8.392828 -8.548087 4.680492 6.497765 -3.776544 2.099114 10.020322 12.838959 -5.162495 -9.682754 2.628662 11.070118 -6.654572 -17.138351 -7.377963 -1.785861 42.147392 -22.057623 -8.732569 0.117987 -0.294817 0.657766 -0.096000 0.038727 0.228189 1.382665 -4.553769 -6.347175 11.398166 5.195314 -3.140609 -8.480102 5.291673 -0.409761 -0.384078 0.213121 -0.268936 0.375780 -0.002055 -0.129671
+-16.773798 160.242065 1.385337 -7.016428 -1.505329 -14.080323 1.266081 -0.892498 -11.216756 -9.875610 0.647913 5.458475 -0.596244 0.324718 -0.036018 0.380901 0.056116 0.246956 11.449362 7.158514 3.991309 15.985287 -3.963041 41.578953 -0.208718 0.038813 0.142284 0.092089 0.233258 0.069335 2.184994 2.446226 11.041884 -4.768640 4.030961 8.394737 -7.787795 4.783552 6.747200 -2.993406 1.860639 10.339728 11.743679 -4.358018 -9.782350 2.318040 10.238366 -6.903628 -17.624683 -8.450515 -1.814095 41.897972 -21.614748 -8.678004 0.099946 -0.314608 0.672528 -0.091236 0.046330 0.203243 0.738849 -4.534195 -6.355844 13.447996 5.103255 -3.444934 -9.040357 4.058734 -0.338981 -0.394386 0.223943 -0.279044 0.371005 0.006839 -0.155564
+-16.809313 160.425140 0.933804 -7.032182 -2.290404 -13.168996 0.963916 -0.950240 -11.661660 -8.774489 0.446624 4.215530 -0.591520 0.324756 -0.038110 0.405520 0.077245 0.283295 11.117752 6.917726 3.290086 15.538538 -3.851339 41.050232 -0.220738 0.015278 0.131980 0.102497 0.209776 0.094493 1.436988 2.649358 10.414960 -4.232882 3.861250 8.380134 -6.796241 4.627924 7.040365 -2.038058 1.271019 9.802289 10.280865 -3.758888 -9.653845 1.583092 9.638629 -7.427457 -17.063530 -9.797557 -1.697351 40.920959 -21.239902 -8.413903 0.092666 -0.282492 0.658618 -0.081128 0.057634 0.202768 0.736511 -4.848399 -6.580435 14.807322 5.148545 -3.579633 -9.770852 4.246374 -0.421145 -0.396556 0.186414 -0.259444 0.338819 -0.013721 -0.165114
+-16.789700 160.592651 0.367741 -7.171580 -3.178783 -12.647384 0.967041 -0.922395 -11.908892 -7.793193 0.286271 3.119777 -0.577536 0.297129 -0.039632 0.452639 0.135876 0.330994 10.758710 6.621087 2.877956 15.536983 -3.949389 40.555130 -0.244916 0.003562 0.132633 0.125324 0.175011 0.115623 1.386160 2.668587 9.904191 -3.783525 3.787306 8.664775 -6.183028 4.540397 7.717748 -1.120352 1.032352 9.925644 8.940594 -2.772691 -9.750923 0.745054 8.419509 -7.993518 -16.237057 -11.405189 -1.721316 39.923317 -20.612867 -8.124463 0.100576 -0.256890 0.647661 -0.077922 0.087036 0.213942 0.813248 -4.988221 -6.677959 16.553080 5.027795 -3.795870 -11.128160 5.261421 -0.631432 -0.398122 0.151377 -0.228331 0.311798 -0.055161 -0.170009
+-16.741749 160.729294 -0.316900 -7.558708 -4.539864 -12.112906 1.386975 -0.769382 -12.272948 -6.737583 0.165605 2.225166 -0.576300 0.265689 -0.056850 0.509184 0.216077 0.371496 11.096457 6.453204 2.496656 14.883972 -3.657289 40.090054 -0.270425 -0.000597 0.123822 0.166345 0.140374 0.129843 1.571359 2.641582 9.193312 -3.330585 3.747882 9.214892 -5.608980 4.529363 8.885200 -0.731368 1.462196 9.633437 8.470182 -1.802790 -10.920446 0.051031 7.202787 -8.527828 -15.546686 -12.708365 -1.861073 39.913399 -20.185949 -8.141868 0.112741 -0.227957 0.639310 -0.085768 0.116664 0.220135 2.036472 -4.811833 -7.356366 16.969507 5.912110 -3.819465 -11.867729 5.299818 -0.755479 -0.403036 0.124151 -0.197492 0.296620 -0.087526 -0.170286
+-16.553652 160.764511 -1.042054 -7.925178 -5.998769 -11.598991 1.845736 -0.696072 -12.929962 -5.726211 0.092250 2.030888 -0.569470 0.269086 -0.064483 0.529535 0.244756 0.386711 11.167949 6.396535 1.932726 14.707852 -3.614619 39.896099 -0.281741 -0.023981 0.115069 0.179399 0.131774 0.161120 1.726923 2.839438 8.667390 -2.650086 3.818988 9.649557 -4.748201 4.631983 9.787368 -0.131880 1.360343 9.359412 7.636412 -1.246999 -11.012045 -1.206931 5.552031 -9.087198 -14.850809 -14.288842 -1.986183 40.316353 -20.254745 -8.431984 0.094950 -0.196905 0.620114 -0.070309 0.128415 0.221138 3.140409 -4.329516 -7.363596 16.994743 6.043010 -3.810810 -12.448504 6.366045 -0.970701 -0.409567 0.097504 -0.171583 0.272599 -0.095192 -0.167232
+-16.352150 160.888748 -1.785974 -8.061885 -7.845345 -11.192497 2.414356 -0.553609 -13.384150 -4.966199 0.047758 1.862995 -0.564971 0.259399 -0.069010 0.559372 0.295034 0.402097 10.879979 6.500432 1.349209 14.677989 -3.608514 39.977642 -0.297743 -0.033641 0.114398 0.203599 0.126196 0.178321 2.030623 3.112092 8.190439 -2.180508 4.059436 10.116151 -4.206339 4.850182 10.759787 0.209076 1.335603 9.352204 7.140994 -0.794189 -11.571316 -2.253699 3.974662 -9.873274 -14.183203 -16.453354 -2.139265 40.883957 -20.160650 -8.718738 0.085774 -0.183659 0.604347 -0.061338 0.144865 0.229600 4.736768 -3.786916 -7.713704 17.506262 6.563680 -3.926220 -13.609794 7.310733 -1.246494 -0.419190 0.083070 -0.148184 0.271298 -0.108919 -0.158972
+-16.086176 160.952591 -2.683252 -8.046998 -9.908904 -10.881722 3.178403 -0.502334 -14.330916 -4.741286 0.060714 2.819452 -0.555648 0.238704 -0.085571 0.582981 0.340153 0.427670 10.591507 6.828996 0.462272 14.245204 -3.450773 40.673283 -0.309660 -0.039848 0.105944 0.222041 0.096309 0.195670 2.300500 3.250377 8.068968 -1.867627 4.212889 10.539503 -3.831827 4.921741 11.586883 0.605016 1.225105 9.274499 5.971914 -0.082918 -12.144478 -3.228095 2.257882 -10.338022 -12.876457 -17.771721 -2.434823 41.225170 -19.998362 -8.844715 0.078872 -0.166713 0.585088 -0.057407 0.167470 0.220838 5.875173 -2.771969 -7.843284 18.682720 7.382069 -4.064976 -14.685915 9.481850 -1.764936 -0.417760 0.068578 -0.117976 0.250361 -0.122834 -0.158966
+-15.819700 160.804840 -3.482929 -7.975517 -12.322988 -10.388718 4.410126 -0.496662 -16.022293 -5.157393 0.167969 5.244440 -0.579617 0.243325 -0.095244 0.608477 0.373700 0.450725 10.490107 7.335312 -0.667436 13.604923 -3.189647 41.799717 -0.313874 -0.043234 0.106417 0.251317 0.093546 0.192373 2.630287 3.390921 7.611517 -1.650590 4.381994 10.853812 -3.557493 5.043419 12.445291 0.630615 1.692654 9.087181 5.536309 0.514806 -12.791163 -3.279937 1.171122 -10.690102 -12.859802 -19.157557 -2.569380 41.454315 -19.932009 -9.059175 0.069723 -0.175345 0.584963 -0.051675 0.169156 0.220703 6.833838 -1.895792 -8.632036 19.644712 9.359219 -4.074486 -15.135581 9.993315 -2.034602 -0.435857 0.065232 -0.122267 0.265944 -0.129340 -0.167343
+-15.525534 160.693253 -4.243557 -7.904150 -14.910521 -9.976284 6.132611 -0.396099 -17.974174 -6.482966 0.442776 8.747579 -0.607337 0.263478 -0.093182 0.624604 0.389966 0.463768 10.625152 7.725592 -1.360209 12.235993 -2.568690 42.515491 -0.318295 -0.057561 0.101954 0.279279 0.105677 0.188364 3.059854 3.420854 7.726108 -1.554179 4.566720 10.980680 -3.558352 5.161422 12.777025 0.538786 2.560840 8.562731 5.153638 1.251932 -13.002645 -3.437396 0.448450 -11.197196 -12.642103 -20.749588 -2.599976 41.375114 -19.952688 -9.183331 0.061028 -0.179509 0.588692 -0.042495 0.163473 0.231345 8.093701 -1.192280 -9.645938 20.499111 11.572705 -4.045588 -15.529764 10.370626 -2.277901 -0.452976 0.052024 -0.142714 0.285838 -0.135389 -0.174425
+-15.208327 160.648315 -5.178411 -7.567080 -17.146141 -10.049934 8.152706 -0.344608 -20.190386 -8.707283 1.042604 13.983326 -0.615083 0.277083 -0.103284 0.639628 0.414488 0.466801 10.462480 7.969729 -1.951233 11.097867 -2.149283 43.216347 -0.323782 -0.070184 0.094681 0.297566 0.114381 0.205735 3.036006 3.326841 8.200000 -1.485536 4.555881 11.291413 -3.447955 5.101433 13.248490 0.252534 3.551512 8.317461 5.070338 1.925607 -13.335642 -3.601868 -0.670601 -11.612844 -12.342030 -22.204805 -2.806740 42.235493 -19.971783 -9.538338 0.040605 -0.167086 0.578094 -0.030262 0.165803 0.231062 9.817141 -0.125658 -10.633718 20.723526 13.895201 -3.950775 -15.358629 10.303440 -2.375078 -0.464874 0.044683 -0.132438 0.287497 -0.129146 -0.169719
+-14.876552 160.664368 -6.072125 -7.386243 -19.553471 -10.331503 10.622969 -0.118184 -22.140608 -11.675226 2.077783 19.915577 -0.634292 0.271717 -0.123380 0.676542 0.458746 0.491102 10.640180 8.157366 -2.223415 9.724277 -1.597904 43.703949 -0.343389 -0.068934 0.086461 0.325110 0.094941 0.217119 3.201195 3.166709 9.122756 -1.395641 4.617937 11.632595 -3.419672 5.162120 13.598430 -0.601054 4.760435 8.004275 4.673171 2.721645 -14.529936 -3.788130 -1.876887 -11.856270 -12.363192 -23.442291 -2.995182 43.647419 -21.224220 -10.523670 0.046908 -0.158676 0.591816 -0.040620 0.186445 0.232800 11.626849 0.905302 -11.395967 20.860348 15.695547 -3.925965 -15.010798 10.483617 -2.454436 -0.477184 0.041214 -0.122190 0.288444 -0.137025 -0.175816
+-14.380869 160.812134 -6.984997 -6.752759 -21.915737 -10.967949 12.350435 -0.150520 -23.741671 -14.259523 3.365441 25.961500 -0.678074 0.287212 -0.137323 0.690565 0.467266 0.517168 10.132088 8.252432 -2.336057 8.676771 -1.232475 44.009972 -0.347024 -0.061635 0.087100 0.345248 0.089695 0.206591 2.914943 3.179664 10.192928 -1.256652 4.672759 12.059586 -3.178120 5.233828 13.956268 -0.853625 5.446908 7.955490 4.222835 3.458758 -15.352881 -4.715968 -3.841550 -12.430705 -11.510841 -25.186232 -3.382696 44.712788 -21.933510 -11.247051 0.039736 -0.191908 0.619013 -0.042147 0.189061 0.224734 13.512440 2.369993 -11.666486 20.429726 17.129457 -3.930598 -14.336025 11.806147 -2.659317 -0.500018 0.058389 -0.146900 0.313396 -0.133684 -0.199465
+-13.789561 160.985413 -7.765205 -5.823012 -24.055769 -11.668018 13.779216 -0.294715 -25.182566 -16.967180 4.977308 31.880217 -0.714081 0.310344 -0.143757 0.693127 0.461524 0.529300 9.403065 8.282658 -2.397833 7.210505 -0.694751 44.228523 -0.354469 -0.063269 0.080190 0.356486 0.095099 0.204466 2.438852 3.261651 10.994482 -1.147426 4.692928 12.445843 -2.880855 5.274017 14.316557 -0.927538 6.005843 8.148997 3.969277 4.118996 -15.678823 -5.316980 -5.580879 -12.721301 -11.133784 -26.776617 -3.605953 45.565617 -24.253584 -12.633064 0.031767 -0.214452 0.645872 -0.041343 0.191638 0.222985 14.898627 3.831013 -11.785723 20.248457 18.586010 -3.900503 -13.525084 13.505468 -2.873523 -0.516495 0.068957 -0.173095 0.332979 -0.126529 -0.215806
+-13.086726 161.216568 -8.485121 -4.875965 -25.981440 -12.199566 15.083968 -0.514531 -26.784744 -19.957155 6.923659 37.548882 -0.696912 0.291710 -0.163743 0.726395 0.490140 0.574809 8.477742 8.146724 -2.492680 5.551526 -0.122520 43.949738 -0.380759 -0.072170 0.057762 0.357321 0.044334 0.242526 2.158102 3.111463 11.672981 -1.094743 4.592554 12.783085 -2.704907 5.140908 14.687515 -0.885196 6.413784 8.514328 2.674360 5.196745 -15.926392 -5.635658 -7.048832 -12.588388 -11.202438 -27.804913 -3.808431 46.915981 -27.456287 -14.557017 0.040479 -0.164475 0.645094 -0.051680 0.226000 0.213113 15.019759 5.338651 -11.741925 21.237589 20.218506 -3.618650 -12.086660 15.796215 -3.075075 -0.504326 0.037830 -0.132508 0.277114 -0.146613 -0.227494
+-12.456934 161.513885 -9.119720 -3.793108 -27.912590 -12.866165 16.083836 -0.745651 -27.852245 -22.382816 8.920979 42.601986 -0.718903 0.294819 -0.176465 0.746321 0.501490 0.619812 7.491395 7.949832 -2.409604 3.972824 0.429350 43.304806 -0.394515 -0.062772 0.052734 0.364812 0.020979 0.248542 1.629811 3.106494 12.275188 -1.131571 4.522753 13.153068 -2.561482 5.073355 15.087170 -0.799961 6.805485 8.702858 1.749366 6.156599 -16.791067 -5.698677 -8.449005 -12.665860 -11.313059 -29.085314 -3.926397 47.764103 -31.461718 -16.861189 0.037331 -0.182031 0.668726 -0.057050 0.244585 0.200352 15.449378 7.066398 -11.848394 22.377285 22.042166 -3.412206 -10.939917 17.745220 -3.241103 -0.512922 0.047209 -0.136056 0.277517 -0.154058 -0.251574
+-11.800477 161.971481 -9.755994 -2.591225 -29.314501 -13.581259 16.482523 -1.302634 -28.535030 -24.110374 10.683502 47.065063 -0.736296 0.261939 -0.213807 0.795541 0.563422 0.675948 6.338984 7.540351 -2.273709 2.772543 0.743658 42.251862 -0.422817 -0.045223 0.036012 0.396663 -0.039910 0.254975 0.778419 3.097676 12.655063 -1.149864 4.316111 13.703722 -2.193244 4.838350 15.886477 -0.761904 7.446394 9.015975 0.933794 7.305212 -18.504755 -5.104967 -10.050616 -12.855439 -12.143413 -30.883242 -4.121560 49.404926 -34.883862 -19.457796 0.056960 -0.174758 0.689441 -0.083203 0.286455 0.185384 15.945306 8.780711 -12.205355 23.646778 24.080421 -3.216335 -10.003852 20.238850 -3.506859 -0.516217 0.046552 -0.115759 0.261439 -0.175445 -0.273750
+-11.098733 162.471466 -10.325916 -1.339180 -31.126358 -13.841406 16.718086 -1.643628 -28.929125 -25.513557 12.321860 50.518543 -0.757916 0.253705 -0.245401 0.835283 0.611165 0.711364 5.128810 7.305420 -2.759619 1.290884 1.174620 41.272972 -0.452961 -0.043838 0.024794 0.418304 -0.071846 0.282597 0.033580 3.332775 12.349244 -1.225869 4.260793 14.080084 -1.894949 4.776854 16.723743 -0.553547 7.925304 9.409863 0.367788 8.212152 -20.010220 -3.718606 -11.724162 -12.963178 -13.988247 -33.032402 -3.971232 50.071518 -38.298206 -21.960804 0.056370 -0.167856 0.713036 -0.092219 0.323943 0.179229 15.872032 10.391656 -12.292434 25.809473 25.670246 -2.896585 -9.064837 22.811100 -3.769757 -0.532793 0.050022 -0.095163 0.250130 -0.181549 -0.286184
+-10.435786 162.991608 -10.710837 -0.340732 -33.205326 -13.578669 17.083504 -1.833149 -29.206976 -26.589983 13.897703 53.715229 -0.750196 0.241307 -0.253408 0.863857 0.651652 0.735837 4.311136 7.021362 -3.433456 -0.456643 1.696122 39.838036 -0.473439 -0.051012 0.014963 0.434047 -0.087968 0.303216 -0.223134 3.382552 11.446911 -1.400740 4.257839 14.186185 -1.932330 4.763020 17.431128 -0.462293 8.599119 10.001927 -0.113684 9.099281 -20.279131 -2.714864 -13.559663 -13.001805 -16.253441 -35.308578 -3.677524 50.599213 -40.458481 -23.806383 0.056001 -0.147974 0.707228 -0.091238 0.347422 0.183218 16.279284 11.652099 -12.259357 28.209742 26.976212 -2.448616 -7.462887 26.771383 -4.023708 -0.531461 0.033484 -0.071842 0.235322 -0.198041 -0.283387
+-9.826798 163.554047 -10.991090 0.095756 -34.932892 -12.928908 17.427895 -2.150764 -29.353802 -26.683149 14.960142 56.886841 -0.775600 0.247563 -0.266523 0.883510 0.678218 0.748740 3.784520 6.614614 -4.137233 -1.790574 1.957662 37.979965 -0.477766 -0.066562 0.013452 0.461028 -0.090299 0.304044 -0.407725 3.278637 10.209656 -1.420716 4.060065 14.271961 -1.720481 4.602381 18.262276 -0.373787 9.429996 10.366678 -0.548301 10.009103 -20.323969 -1.789331 -15.031480 -12.958756 -19.087252 -37.659576 -2.932446 52.041370 -43.372192 -26.582546 0.045365 -0.143714 0.707814 -0.080395 0.347199 0.186579 16.690390 12.616516 -12.644693 30.147425 28.905918 -1.605877 -4.369041 29.553823 -3.560164 -0.552401 0.020006 -0.078770 0.239218 -0.202314 -0.293935
+-9.188797 164.157013 -11.226430 0.575041 -36.718918 -12.161089 17.424295 -2.511493 -29.285671 -26.184809 15.767151 60.096672 -0.797658 0.267854 -0.271517 0.892794 0.684860 0.776970 3.201453 6.249115 -5.004308 -2.994241 2.138109 36.112057 -0.481794 -0.083401 0.002949 0.477859 -0.092093 0.310422 -0.648649 3.246926 8.861405 -1.392490 3.866477 14.333423 -1.413709 4.428638 19.104046 -0.103472 9.798611 10.709154 -1.598368 10.882658 -20.192261 -1.001857 -16.252991 -13.005049 -21.506372 -40.416660 -1.777879 51.999561 -46.621296 -28.735558 0.023997 -0.147788 0.705759 -0.064154 0.347950 0.181424 16.538864 13.521867 -13.129786 32.457268 31.055237 -0.443250 -1.188440 31.425295 -2.842073 -0.564919 0.006470 -0.089682 0.240732 -0.206360 -0.309598
+-8.547242 164.780991 -11.443678 1.149869 -38.550419 -11.313907 16.880774 -2.879326 -28.938185 -25.122160 16.001858 62.530167 -0.800713 0.277662 -0.269268 0.916811 0.714510 0.797108 2.501112 5.940675 -6.077391 -4.076771 2.259006 34.245506 -0.493576 -0.108549 0.004034 0.497184 -0.087258 0.332298 -0.720109 3.121574 7.480189 -1.547512 3.663750 14.362247 -1.480661 4.174148 19.906746 0.302679 10.420553 10.867702 -2.370678 11.809701 -20.080130 0.080329 -17.179731 -12.855272 -23.805977 -42.529972 -0.519510 52.495544 -50.011547 -31.235239 0.005652 -0.132177 0.693393 -0.041967 0.356078 0.195625 16.178818 14.208493 -13.697104 35.824646 33.236565 1.004251 1.353943 33.600208 -2.300271 -0.579396 -0.019572 -0.080469 0.234431 -0.222485 -0.309392
+-7.848021 165.301025 -11.619472 1.207361 -40.712685 -9.825318 16.680843 -2.806930 -28.324362 -24.440128 16.056738 63.384495 -0.809462 0.299104 -0.257650 0.937312 0.742363 0.820825 2.239747 5.904922 -7.614280 -4.972218 2.391983 32.895176 -0.493000 -0.150027 0.012597 0.524501 -0.069347 0.347535 -0.265043 2.983308 5.719175 -1.626428 3.519567 14.301897 -1.620521 3.922987 20.849640 0.737091 11.077666 10.400050 -3.793144 12.827089 -19.545074 1.880812 -17.590981 -12.729789 -26.810213 -44.778999 1.364611 51.941055 -52.983013 -32.928169 -0.031328 -0.121367 0.661322 0.001801 0.346610 0.211794 15.189126 14.529465 -14.530971 39.804871 35.688026 3.097610 3.818692 35.366108 -1.687046 -0.603707 -0.059245 -0.080730 0.234790 -0.242066 -0.312148
+-7.218434 165.737732 -11.819319 1.385782 -42.416286 -8.287569 16.030611 -2.871326 -27.688341 -23.520807 15.715948 63.505116 -0.816973 0.334522 -0.244307 0.918547 0.731033 0.812317 1.770311 5.845553 -9.166382 -5.213834 2.293669 31.509369 -0.465045 -0.197759 0.024919 0.536055 -0.029868 0.349608 -0.226790 2.996415 3.967878 -1.667355 3.354706 14.080020 -1.546612 3.628032 21.509533 1.374760 11.638236 9.989178 -4.807969 13.829537 -18.186932 3.542742 -17.832680 -12.688412 -30.009165 -47.536533 4.054867 49.613194 -55.754639 -33.152542 -0.088418 -0.114964 0.612616 0.060944 0.308567 0.215652 14.385589 14.381516 -15.278356 44.007767 37.964916 5.674764 6.515521 37.070274 -0.834909 -0.626331 -0.091569 -0.096701 0.237112 -0.237776 -0.313776
+-6.489751 166.176529 -12.054281 1.130265 -44.115372 -6.712142 15.345182 -2.838210 -26.461418 -22.331165 14.909662 62.758747 -0.841119 0.368879 -0.252606 0.925117 0.741987 0.825588 1.790442 5.890166 -10.511384 -5.616301 2.297547 30.119736 -0.455930 -0.249934 0.017280 0.560090 -0.013790 0.371284 0.169494 2.961426 2.498317 -1.640429 3.221840 14.007882 -1.540515 3.396683 22.322811 2.146389 12.141342 9.480089 -5.753473 14.751775 -17.673609 4.438820 -18.124252 -12.933593 -33.573544 -50.742359 7.278052 46.982243 -57.752182 -32.590134 -0.139609 -0.092477 0.581458 0.107911 0.289127 0.209973 13.425660 14.140767 -16.370064 47.970409 40.470715 8.781833 9.949854 38.282684 0.500140 -0.655403 -0.131579 -0.099691 0.222140 -0.234597 -0.324209
+-5.869152 166.619370 -12.287939 0.943071 -45.379837 -5.602497 14.113273 -2.820513 -24.223135 -20.786242 13.536302 60.696419 -0.859730 0.397450 -0.247367 0.932780 0.759700 0.837800 2.014765 5.937261 -11.284970 -6.085701 2.381442 28.709223 -0.454839 -0.281371 0.015891 0.588520 0.009324 0.379726 0.527073 2.901817 1.245380 -1.638134 3.063291 14.126240 -1.628127 3.101448 23.195272 2.950866 12.442166 9.319098 -6.279268 15.430611 -17.397217 5.542769 -18.514566 -13.119287 -36.356892 -53.352074 10.368772 44.535427 -59.931213 -32.017178 -0.176244 -0.095668 0.560239 0.143774 0.281906 0.220318 11.997142 14.337797 -17.430725 51.889919 42.790203 12.079476 13.062656 39.001709 1.774395 -0.677188 -0.153680 -0.112580 0.235886 -0.241941 -0.325845
+-5.330501 167.043243 -12.490552 0.990812 -45.974033 -4.750149 12.411217 -2.871249 -21.573986 -18.896820 11.765480 57.618347 -0.887348 0.422795 -0.257062 0.940096 0.778581 0.861149 1.785346 5.759792 -11.596251 -5.834585 2.168309 26.426180 -0.446658 -0.318423 0.009561 0.618595 0.014775 0.388418 0.441593 2.873629 -0.103128 -1.561562 2.784042 14.372162 -1.410620 2.633698 24.328606 3.489204 12.555588 8.856671 -7.603151 16.014280 -17.478388 7.586046 -18.413704 -13.385505 -40.309376 -55.989292 14.399580 42.882065 -62.046642 -31.940090 -0.222067 -0.095247 0.531140 0.183188 0.270392 0.210737 10.866857 14.158597 -18.542252 56.235340 44.844139 15.544897 15.105147 40.132389 2.681415 -0.703506 -0.179786 -0.119619 0.235530 -0.243374 -0.338900
+-4.806040 167.217438 -12.524003 1.067987 -46.165146 -3.752481 10.301759 -2.922394 -19.107533 -16.376680 9.702046 54.235184 -0.921379 0.473185 -0.256851 0.918703 0.760504 0.852552 1.150216 5.573877 -11.928140 -4.950298 1.803252 24.475002 -0.424977 -0.365920 0.012501 0.632206 0.051694 0.397874 0.642000 2.780384 -1.415163 -1.532778 2.485471 14.412150 -1.429190 2.160666 25.085745 3.981361 12.783957 8.131550 -8.602957 16.508448 -17.115501 9.339681 -18.554905 -13.560049 -44.180595 -58.379166 18.957266 40.880371 -64.374359 -31.448904 -0.286232 -0.103685 0.503654 0.238155 0.237844 0.203281 10.254326 13.675895 -19.172379 60.629196 46.249130 18.838848 15.949635 41.748264 3.152300 -0.739694 -0.196867 -0.143546 0.244974 -0.222852 -0.349205
+-4.390038 167.089661 -12.528413 1.001006 -45.875393 -2.444858 8.380536 -2.904169 -16.533070 -13.964335 7.628642 49.627232 -0.939751 0.546710 -0.238290 0.874880 0.705128 0.829222 0.590914 5.385997 -12.298265 -3.988642 1.445380 22.669090 -0.396043 -0.415146 0.015164 0.622019 0.114329 0.417053 0.537711 2.648932 -2.827901 -1.372797 2.059048 14.222775 -1.103769 1.555918 25.482716 4.664692 12.824980 7.398415 -9.081342 16.854027 -16.197807 11.205435 -18.278149 -13.618406 -49.798798 -60.747002 25.021957 39.232407 -65.726738 -30.701593 -0.363890 -0.110333 0.471449 0.301735 0.192670 0.195906 9.617601 12.529979 -19.236971 64.963943 47.001232 22.184855 17.124798 45.165901 4.042819 -0.767472 -0.210164 -0.170605 0.254291 -0.189595 -0.352268
+-3.883516 166.887329 -12.402857 -0.051792 -45.021545 -0.811618 6.972673 -2.898533 -13.583907 -11.232874 5.433945 44.436188 -0.947751 0.593338 -0.225656 0.858661 0.677015 0.822131 0.704947 5.046429 -11.901040 -3.123290 1.088188 20.078775 -0.379908 -0.453130 0.015702 0.619103 0.149058 0.435917 1.769720 2.184735 -4.041565 -1.098175 1.514576 14.195010 -1.159758 0.891981 26.017015 5.077238 12.591658 6.953607 -9.457038 16.804754 -15.542446 12.277021 -18.676941 -13.749967 -55.035603 -62.946720 31.018974 36.727680 -66.060059 -28.745161 -0.408735 -0.099008 0.446163 0.341721 0.164727 0.196604 8.671971 11.541602 -18.997971 68.022797 47.576248 24.943020 17.899282 49.754269 5.004252 -0.784801 -0.233018 -0.180115 0.250543 -0.176821 -0.352987
+-3.377771 166.582535 -12.285482 -1.644150 -45.003338 1.184331 6.261551 -2.294415 -9.887939 -8.866342 3.690083 37.367271 -0.964685 0.627722 -0.227996 0.859038 0.670105 0.837439 1.428151 4.887099 -11.612030 -2.767780 0.915274 17.491590 -0.377034 -0.487039 0.002939 0.627601 0.157720 0.458584 3.198275 1.851826 -5.349900 -0.718613 1.082784 14.195268 -1.134445 0.412229 26.654737 5.591552 12.342720 6.582157 -10.255214 16.826820 -15.509573 13.337549 -19.134537 -14.107331 -61.931351 -64.535240 37.758808 32.681770 -65.366150 -25.521833 -0.444237 -0.087423 0.430981 0.369992 0.155414 0.188677 6.535807 10.997141 -18.706129 70.987419 48.440365 28.019770 17.424387 54.716484 5.401154 -0.800673 -0.257395 -0.182369 0.238485 -0.171886 -0.361781
+-2.840847 166.107208 -12.187520 -3.386826 -44.952564 3.472615 5.986441 -1.822455 -6.303314 -6.960638 2.314524 29.584284 -1.021682 0.705801 -0.240431 0.824908 0.614910 0.856751 2.116085 4.837297 -11.882384 -2.382343 0.715351 15.446751 -0.354885 -0.537739 -0.014611 0.628387 0.178956 0.479975 4.597176 1.368080 -6.635199 -0.448872 0.443305 14.086830 -1.067970 -0.256211 27.268509 6.369960 12.367743 5.941165 -12.047565 17.573902 -15.524791 13.117796 -18.458702 -14.757030 -69.187172 -66.160110 45.245892 28.394566 -62.623966 -21.438742 -0.525574 -0.105639 0.423171 0.426595 0.124809 0.152334 5.044918 9.783927 -18.814711 75.794197 49.609234 32.938976 16.483166 57.893078 5.489139 -0.838915 -0.269500 -0.219826 0.231970 -0.137788 -0.400477
+-2.159992 165.633835 -12.135101 -5.287672 -44.062309 5.598478 5.934884 -1.503548 -3.159291 -4.732643 1.173690 22.743078 -1.046881 0.743444 -0.243968 0.817461 0.603384 0.873714 2.503117 4.763614 -12.120962 -1.031927 0.409366 13.689591 -0.344708 -0.573331 -0.031582 0.643150 0.189425 0.490796 5.780529 0.611710 -7.560449 0.075164 -0.464842 14.042303 -0.558760 -1.223659 27.760399 6.800697 12.390827 5.251103 -12.960823 17.841030 -15.378655 12.954215 -18.894741 -15.182395 -75.067116 -67.311241 51.108837 26.665586 -59.707905 -19.447872 -0.566331 -0.102286 0.404490 0.458931 0.108439 0.138467 3.816491 9.591886 -18.812263 76.916672 51.492241 36.605915 14.393044 61.566483 5.152966 -0.854445 -0.294575 -0.235665 0.225663 -0.131867 -0.414920
+-1.562871 165.351776 -12.183123 -6.413427 -43.556396 6.810956 5.758468 -1.113977 -0.148297 -2.971282 0.508582 16.795404 -1.093626 0.785855 -0.248032 0.819832 0.594512 0.902399 2.577854 4.773362 -12.325134 0.070174 0.216528 12.493884 -0.339645 -0.594409 -0.032351 0.662205 0.202237 0.492637 5.809247 -0.016117 -8.234126 0.608593 -1.360903 14.243618 0.220945 -2.177500 28.592331 7.149487 12.864558 4.956171 -13.939013 18.381048 -15.768514 13.005028 -19.239588 -15.432404 -79.147278 -68.317902 55.433243 27.881001 -57.690834 -19.729433 -0.602868 -0.130434 0.413066 0.487138 0.098011 0.132223 3.223720 9.842345 -18.926743 77.674423 54.088097 40.439648 8.925491 64.015701 2.446074 -0.885967 -0.297864 -0.267894 0.243982 -0.128780 -0.440763
+-0.951122 165.236237 -12.295166 -6.929716 -43.515507 7.495130 5.519564 -0.751940 2.094325 -2.186687 0.225381 12.160829 -1.099132 0.797103 -0.248010 0.833374 0.600344 0.919265 2.269024 4.885890 -12.946620 0.674467 0.160533 12.058118 -0.338613 -0.611228 -0.037628 0.672390 0.200799 0.500881 4.820080 -0.626984 -8.584022 1.205361 -2.215324 14.415998 1.435496 -3.089177 29.269243 7.063026 13.389710 5.056177 -14.251827 18.610365 -15.521502 12.593791 -19.622505 -15.151218 -81.647087 -68.300377 57.171257 29.932955 -57.071125 -21.068310 -0.609943 -0.114523 0.404766 0.496720 0.092287 0.133535 3.399432 10.797357 -18.948591 77.225815 57.010139 43.767872 3.393359 65.383881 -0.394404 -0.891226 -0.321322 -0.266715 0.232539 -0.137575 -0.446539
+-0.394605 165.331757 -12.381517 -6.885468 -44.663975 7.695644 5.187340 -0.291453 3.890344 -2.541987 0.223339 8.532451 -1.117140 0.801245 -0.267242 0.834591 0.594175 0.939182 1.802652 5.030499 -13.570665 0.711658 0.187010 11.936299 -0.346661 -0.600188 -0.049527 0.668507 0.178776 0.506545 3.192840 -0.801445 -8.758616 1.720175 -2.692236 14.665085 2.629276 -3.557991 29.969830 7.070270 13.811339 5.552103 -14.908219 18.893860 -16.259546 11.855654 -20.295658 -14.865569 -83.178001 -67.945152 57.457966 31.336916 -56.571087 -22.084843 -0.612736 -0.128142 0.425917 0.486676 0.106070 0.112974 3.816317 12.269733 -18.680784 76.948586 59.026657 45.520245 -1.865840 65.493958 -3.497915 -0.894533 -0.304211 -0.267270 0.228243 -0.126757 -0.464269
+0.176090 165.523270 -12.434559 -6.579142 -46.234596 8.046661 4.656163 0.081303 4.554468 -3.113094 0.278055 6.232237 -1.127210 0.823834 -0.263681 0.814377 0.578803 0.926491 1.274173 5.147223 -14.523710 0.477030 0.218763 11.626559 -0.341266 -0.602457 -0.036708 0.660191 0.204042 0.512253 1.746988 -0.730604 -8.866467 2.042861 -2.838937 14.719042 3.544269 -3.740258 30.349012 7.169073 13.989533 5.682276 -15.478142 19.064768 -16.509010 10.911860 -20.253353 -14.677760 -86.460815 -67.311989 59.288643 31.654510 -56.379906 -22.451283 -0.646311 -0.160174 0.423832 0.509498 0.101289 0.109684 4.626831 13.185744 -18.693058 78.480377 60.003563 47.908428 -2.020316 64.956230 -3.200493 -0.911410 -0.279415 -0.275454 0.251395 -0.106448 -0.463168
+0.933267 165.762054 -12.433804 -6.472995 -47.341961 8.576585 4.205546 0.213702 4.044258 -3.587841 0.330169 5.425428 -1.126349 0.809526 -0.264870 0.823958 0.597954 0.940228 0.849821 5.131092 -15.312308 0.103994 0.243861 11.041361 -0.350120 -0.585546 -0.033320 0.666741 0.193453 0.505179 1.429579 -0.797612 -8.716608 2.139693 -2.915079 14.693138 3.740379 -3.784433 30.401634 7.043937 14.150191 5.797968 -15.883853 19.073729 -17.120924 10.346807 -20.345032 -14.659486 -89.258263 -66.284660 60.292755 31.098484 -57.209187 -22.589682 -0.637520 -0.180510 0.429691 0.500505 0.117670 0.111454 4.761446 13.555538 -18.738310 80.210358 60.019650 49.298573 -1.498041 65.180580 -2.789700 -0.907889 -0.264516 -0.272584 0.265839 -0.115691 -0.462101
+1.755774 166.043671 -12.402987 -6.268582 -47.881737 8.854125 3.464362 0.107938 3.181649 -3.432943 0.272249 5.332133 -1.106604 0.773785 -0.273964 0.839897 0.616288 0.956771 0.406110 4.787937 -15.489355 -0.344432 0.191002 9.758792 -0.364568 -0.562914 -0.036360 0.660200 0.154695 0.506582 1.649841 -0.911833 -8.468642 2.077375 -2.954264 14.714210 3.544783 -3.753711 30.269840 6.802404 14.052200 6.278881 -16.291964 18.974131 -17.704203 10.014317 -20.816105 -14.630104 -90.282364 -65.453041 59.759747 30.129396 -57.729111 -22.358538 -0.604684 -0.171517 0.439503 0.471866 0.144679 0.108995 4.535153 13.596904 -18.583553 80.765663 59.084404 48.395939 -0.569358 66.139709 -2.427980 -0.887886 -0.259113 -0.248803 0.247672 -0.130804 -0.461382
+2.493180 166.174667 -12.366567 -5.774625 -48.506908 9.085707 2.614579 -0.050837 2.036926 -3.463555 0.237043 5.522469 -1.063135 0.737336 -0.262337 0.850471 0.632353 0.959339 -0.112639 4.358645 -15.707052 -0.908793 0.130067 8.416176 -0.378207 -0.551583 -0.034225 0.647481 0.134903 0.513983 1.871063 -1.086206 -8.289625 1.702105 -2.926984 14.552122 2.979524 -3.672489 29.695045 6.647815 14.124891 6.812924 -16.372850 19.085279 -17.664579 10.502190 -20.661245 -15.201012 -90.221375 -64.278061 58.313332 25.227022 -58.710171 -19.633062 -0.572811 -0.147708 0.432977 0.453417 0.166347 0.122767 4.751923 12.818569 -18.327557 82.402374 57.111286 47.400349 2.960052 67.184059 -0.406084 -0.858947 -0.269306 -0.219772 0.225386 -0.154835 -0.444730
+3.104337 166.138580 -12.361123 -5.377493 -49.274864 9.322409 2.131159 -0.111259 1.092507 -3.976084 0.309012 5.863755 -1.025827 0.721481 -0.249544 0.836927 0.618318 0.944057 -0.604539 4.050637 -15.948699 -1.127587 0.053991 7.163304 -0.375311 -0.548874 -0.028757 0.622785 0.134066 0.520451 1.838435 -0.905329 -8.154225 1.573599 -2.645225 14.307020 2.816289 -3.331951 29.011986 6.591502 13.913296 7.036322 -16.348001 19.110130 -17.179478 10.881913 -21.098469 -15.744227 -90.360291 -63.713367 57.684105 20.660542 -58.324493 -16.694958 -0.562860 -0.128252 0.419226 0.450257 0.167456 0.127348 5.057077 12.476528 -17.941404 80.768524 55.652431 44.213364 4.705201 67.917755 0.458741 -0.837151 -0.274073 -0.201588 0.205340 -0.158432 -0.430704
+3.644735 165.965012 -12.278456 -5.281791 -49.636047 9.618383 1.888535 -0.184299 0.406428 -4.302277 0.337856 6.122027 -0.965617 0.679858 -0.243522 0.837380 0.631183 0.925393 -1.007041 3.752043 -15.998919 -0.935912 -0.043269 5.980521 -0.379512 -0.550163 -0.028129 0.601935 0.117710 0.537046 2.434662 -0.888802 -8.131194 1.270829 -2.427172 14.036299 2.224445 -3.116610 28.279497 6.660919 13.862987 7.469388 -16.024477 19.298777 -16.575005 11.597098 -21.390266 -16.256451 -89.184990 -63.032146 55.885300 15.832952 -58.088898 -13.656969 -0.540590 -0.075053 0.390487 0.440754 0.178806 0.135258 4.910627 12.040683 -17.521587 80.955994 53.802822 41.872486 6.294748 67.669899 0.963872 -0.804616 -0.296598 -0.155846 0.160504 -0.172258 -0.405104
+4.165997 165.794037 -12.161412 -5.519197 -49.605152 10.036591 1.999714 -0.232633 -0.278105 -4.897634 0.411094 6.522964 -0.919088 0.621024 -0.238613 0.845250 0.649124 0.914100 -1.107759 3.589437 -16.049902 -0.967949 -0.086224 5.304147 -0.391172 -0.526863 -0.020104 0.585343 0.085673 0.531035 3.086859 -0.884777 -7.949316 1.180746 -2.246736 13.757518 1.977015 -2.857955 27.356874 6.458653 13.692559 8.186945 -15.852287 19.265665 -16.475861 11.546116 -21.749334 -16.434526 -88.645180 -61.485912 53.443806 9.938176 -58.401215 -10.271932 -0.486820 -0.052285 0.393372 0.406538 0.202982 0.149657 4.690033 11.603480 -17.109907 79.806252 51.520981 38.171230 10.749758 67.738121 3.542996 -0.770098 -0.298185 -0.126424 0.135701 -0.196477 -0.387150
+4.610957 165.588043 -12.151082 -5.346190 -49.173733 10.048797 1.917262 -0.353518 -1.104606 -5.477421 0.511152 7.359171 -0.877000 0.594389 -0.218418 0.806916 0.605841 0.877691 -1.339873 3.501498 -16.382124 -1.248385 -0.097400 5.231574 -0.380703 -0.490192 -0.005740 0.540049 0.090139 0.509067 3.116958 -0.870246 -7.545007 1.188169 -2.145591 13.448503 2.106918 -2.618797 26.097023 6.284989 13.591178 8.933543 -15.135174 19.193541 -15.749553 10.937140 -22.790348 -16.320213 -86.314384 -59.476040 48.946125 2.471347 -58.989697 -6.025545 -0.455803 -0.067012 0.401371 0.381975 0.200434 0.150844 4.853712 11.953414 -16.529488 76.978729 49.035892 33.332592 18.638786 67.594078 8.579813 -0.733749 -0.265663 -0.126498 0.138597 -0.188529 -0.371983
+5.077330 165.365860 -12.137441 -5.391473 -48.710621 10.250090 2.027637 -0.505501 -2.038249 -5.863139 0.586008 8.369407 -0.852626 0.554730 -0.221162 0.795097 0.592508 0.861273 -1.326099 3.550413 -16.915388 -1.715844 -0.076003 5.523638 -0.387742 -0.455855 -0.005836 0.513414 0.062845 0.496346 3.203425 -0.794127 -7.074530 1.232844 -1.989836 13.110909 2.322623 -2.342943 24.812037 6.321569 13.192057 9.625464 -14.632455 18.971157 -15.732099 10.149632 -23.322330 -16.620564 -85.172020 -57.131077 45.054642 -7.118002 -57.804947 -0.524927 -0.409888 -0.070343 0.426631 0.342373 0.219029 0.147328 4.889943 12.002140 -16.083113 75.060051 46.177998 28.621929 24.905453 65.980881 11.947321 -0.704013 -0.241795 -0.117339 0.126451 -0.189432 -0.366851
+5.511160 164.997635 -12.047602 -5.293961 -47.953358 10.497688 2.154961 -0.692010 -3.131081 -6.283369 0.665802 9.389389 -0.817303 0.533133 -0.208708 0.768745 0.558134 0.836564 -1.495044 3.673358 -17.859495 -2.161002 -0.043866 6.412472 -0.385248 -0.428509 0.003951 0.471933 0.059712 0.490823 3.366324 -0.841835 -6.683656 1.144231 -1.938038 12.597975 2.447562 -2.237129 23.291262 6.324219 12.568447 10.208038 -14.122289 18.686655 -15.177151 9.719419 -22.911745 -16.879511 -84.739273 -54.613197 41.959877 -16.604340 -55.848263 4.634556 -0.385034 -0.075838 0.437635 0.321342 0.223975 0.146350 5.108632 11.309784 -15.649613 74.939606 42.879398 24.665571 29.090019 62.523048 13.160874 -0.676342 -0.216955 -0.108009 0.118117 -0.182742 -0.355973
+5.975729 164.718033 -11.863252 -5.302130 -46.612427 10.746910 2.308228 -1.000390 -4.335661 -6.614056 0.711387 10.700800 -0.781744 0.506835 -0.202375 0.744644 0.521985 0.822127 -1.789793 3.734812 -18.708181 -2.280045 -0.040708 7.495085 -0.380034 -0.410630 0.005870 0.431718 0.040083 0.487112 3.765532 -0.969738 -6.342091 1.184046 -1.964829 12.088542 2.803968 -2.239013 21.910166 6.255766 11.739151 10.689406 -13.973336 18.508034 -14.365384 8.812634 -22.665823 -16.757832 -85.319992 -52.447044 39.642731 -20.552885 -51.679966 5.998483 -0.357530 -0.064613 0.443843 0.300321 0.227201 0.137715 5.475376 10.360473 -15.217603 74.407814 39.593071 20.598122 31.128378 58.222523 12.645628 -0.645197 -0.209855 -0.095934 0.087798 -0.182156 -0.354024
+6.541968 164.494919 -11.715359 -5.427540 -44.333920 10.843918 2.756126 -1.444317 -5.672246 -6.777926 0.705462 12.394989 -0.766476 0.478938 -0.202541 0.730849 0.495727 0.827638 -2.056098 3.820168 -19.514698 -2.203588 -0.050312 9.261275 -0.378896 -0.384161 0.010805 0.402850 0.009135 0.473366 4.468591 -1.445414 -5.715921 1.308857 -2.312465 11.729095 3.126073 -2.509551 20.640215 6.035393 11.112825 10.824742 -14.353500 18.398081 -14.218781 7.004889 -23.173594 -16.541067 -84.018723 -50.534496 36.170940 -22.095377 -46.706219 5.857731 -0.326100 -0.075654 0.465094 0.274303 0.237849 0.126984 5.811011 10.063232 -15.150534 72.621315 37.037312 16.759340 31.535904 53.127449 11.101893 -0.622997 -0.192670 -0.095404 0.071260 -0.187882 -0.364899
+7.204546 164.207764 -11.697965 -4.652223 -40.580994 10.249565 2.977822 -2.213176 -7.686277 -7.158882 0.688755 14.940269 -0.744488 0.439522 -0.197998 0.749786 0.521325 0.835127 -3.285902 3.518858 -20.242908 -1.598179 -0.160115 11.265115 -0.389100 -0.361604 0.016573 0.405462 -0.011673 0.460464 4.526140 -2.320081 -4.996784 1.293780 -3.029412 11.429747 3.473411 -3.203922 19.562258 6.089178 10.789883 10.601437 -13.639040 18.064959 -14.178087 6.084700 -23.231354 -16.491701 -82.813477 -48.533394 32.645943 -22.093161 -41.960434 4.915391 -0.285835 -0.071272 0.472608 0.247912 0.255488 0.139776 5.753143 9.326966 -15.474208 70.718216 35.166328 14.048994 31.147116 48.390144 9.502047 -0.603989 -0.192389 -0.083363 0.067918 -0.214041 -0.356415
+7.832886 163.948059 -11.567706 -4.039166 -37.380020 9.506545 2.927914 -2.938613 -9.052074 -7.279142 0.624617 17.243574 -0.733843 0.413355 -0.193854 0.753221 0.523080 0.833917 -4.374572 3.232094 -20.898985 -1.082501 -0.312375 13.822042 -0.401555 -0.326908 0.023027 0.394541 -0.027260 0.446990 4.823312 -3.076018 -4.203299 1.283053 -3.649585 11.199993 3.514127 -3.731237 18.540051 5.794246 10.439932 10.872869 -13.158144 17.439377 -14.327139 4.120765 -23.466368 -15.931002 -80.162827 -46.181778 28.302616 -21.938387 -37.609352 4.062568 -0.247865 -0.094603 0.500648 0.215785 0.276697 0.147368 5.583919 9.475564 -15.545424 68.876045 33.652359 11.724177 29.231306 43.623585 7.412969 -0.588198 -0.164948 -0.081871 0.080303 -0.223093 -0.351407
+8.460488 163.585617 -11.405798 -3.755568 -34.813919 9.017931 3.085687 -3.651858 -10.354903 -7.821445 0.668097 19.724806 -0.724290 0.408701 -0.193456 0.741831 0.501515 0.825046 -5.085648 3.045202 -21.837099 -0.542986 -0.520094 16.834372 -0.401134 -0.315330 0.013051 0.377212 -0.034518 0.445089 5.564223 -3.490164 -3.462853 1.290342 -3.870229 10.969480 3.369160 -3.876795 17.628319 5.523723 9.889712 10.375631 -12.552778 16.659075 -13.887792 1.677854 -23.285875 -15.208591 -77.581581 -43.983147 24.594301 -21.347328 -33.903473 3.281768 -0.231740 -0.091070 0.510287 0.197986 0.276955 0.138715 5.728739 9.141832 -15.529655 66.954773 31.854429 9.537202 27.638260 38.865200 5.758027 -0.572394 -0.157926 -0.079069 0.070625 -0.215600 -0.349366
+9.015208 163.217804 -11.239435 -3.403262 -32.989090 8.500189 3.090080 -4.113754 -11.104386 -8.442555 0.771487 21.286917 -0.710280 0.403827 -0.193826 0.722182 0.466220 0.810645 -5.685480 2.989309 -23.588095 -0.342014 -0.723596 21.241095 -0.396328 -0.305020 0.010894 0.346616 -0.043217 0.446991 6.037810 -3.588850 -2.669135 1.318733 -3.803905 10.653463 3.278777 -3.718045 16.624069 5.429049 9.262973 10.152700 -12.197408 16.071753 -13.294462 -1.349499 -22.502745 -14.363648 -75.219315 -41.628216 21.271864 -20.064365 -29.805319 2.374411 -0.218976 -0.083991 0.520432 0.183799 0.274121 0.127887 5.536554 8.492969 -15.240474 65.425079 29.779852 7.567086 25.802567 34.194653 4.266063 -0.558312 -0.148548 -0.073258 0.051430 -0.203097 -0.350735
+9.548126 162.947296 -11.017152 -3.334122 -31.344221 7.811875 3.351379 -4.316428 -11.063261 -9.298347 0.937335 22.033400 -0.689912 0.363937 -0.207350 0.731362 0.468459 0.818316 -5.819951 3.058365 -25.497442 -0.364857 -0.890390 26.363552 -0.405666 -0.279739 -0.000129 0.330689 -0.088644 0.442846 6.311384 -3.578702 -1.601789 1.718378 -3.716057 10.377161 3.749720 -3.616927 15.713515 4.782694 8.640299 10.450081 -12.011909 15.353668 -13.190159 -3.850189 -21.759279 -13.490373 -72.640694 -39.642048 18.165287 -17.126104 -26.735561 1.163237 -0.172690 -0.064552 0.536757 0.142780 0.293126 0.117057 6.209223 8.137712 -15.045162 62.200516 27.879116 5.806174 24.360037 28.679926 3.186207 -0.530866 -0.145853 -0.050635 0.020775 -0.211659 -0.352408
+10.185560 162.654160 -10.763127 -2.855600 -29.450518 6.683204 2.893708 -4.608005 -10.756348 -9.644609 1.004357 23.003426 -0.678482 0.338515 -0.217568 0.723085 0.447610 0.812042 -6.404965 2.954863 -27.601337 -0.203286 -1.163822 32.067871 -0.415417 -0.234679 -0.001782 0.300252 -0.119911 0.435331 6.261549 -3.621241 -0.182850 2.180018 -3.794796 10.020690 4.288009 -3.625567 14.534997 3.831196 7.921453 11.326707 -11.752654 14.255855 -13.344999 -6.215108 -21.321112 -12.427036 -69.406548 -37.072773 14.570958 -14.190797 -24.220568 0.088817 -0.131624 -0.084574 0.573870 0.097807 0.315769 0.105037 6.855547 8.504256 -14.322910 58.582947 25.681368 3.904279 22.017820 23.576063 2.106881 -0.508782 -0.104326 -0.039798 0.017972 -0.201427 -0.353207
+10.898045 162.396591 -10.544028 -2.723150 -27.932606 5.635265 2.712929 -4.813019 -10.472246 -10.119644 1.150131 24.116980 -0.673374 0.314505 -0.231421 0.718763 0.445225 0.801680 -6.691819 3.079387 -29.902905 0.070381 -1.444628 37.795067 -0.430214 -0.181526 -0.004979 0.281600 -0.141277 0.426583 6.789803 -3.691722 1.488590 2.592946 -3.780725 9.747213 4.403991 -3.533485 13.484839 2.744977 7.700224 12.089128 -11.140582 13.081986 -14.175436 -8.084806 -20.713964 -11.708460 -66.024620 -34.458389 11.332027 -11.020774 -21.438622 -0.841928 -0.097585 -0.121823 0.611253 0.052846 0.345008 0.092906 7.555381 8.497947 -13.813388 55.422333 23.877342 2.475344 18.792103 18.776834 1.139875 -0.491107 -0.046234 -0.028338 0.037339 -0.184903 -0.345369
+11.529470 162.111633 -10.298327 -2.495443 -26.280951 4.348070 2.442348 -5.055665 -10.023326 -10.582248 1.317064 25.364876 -0.672470 0.287845 -0.237984 0.715858 0.438845 0.791396 -6.766778 3.206179 -32.194660 0.263626 -1.714481 43.795910 -0.436268 -0.125258 -0.000960 0.266797 -0.157468 0.399156 7.112445 -3.866680 3.392800 2.979767 -3.884837 9.434582 4.469942 -3.548762 12.360051 1.561258 7.796877 12.856572 -10.119952 12.006000 -14.783854 -9.160623 -19.783697 -11.121583 -62.669003 -31.926392 8.742968 -8.672855 -19.054754 -1.357062 -0.052632 -0.162017 0.651091 0.004424 0.361064 0.086630 8.535338 7.598685 -13.142087 52.223011 21.846369 0.988571 16.367065 16.431997 0.643504 -0.472848 0.007767 -0.031653 0.064928 -0.175544 -0.341088
+12.164960 161.952927 -10.013915 -2.398540 -24.582956 2.902677 2.131619 -5.065949 -8.908701 -10.783195 1.434792 26.044443 -0.682050 0.250719 -0.257115 0.742176 0.457198 0.811764 -6.397417 3.647838 -34.433758 0.370956 -1.873216 49.838406 -0.459638 -0.072150 -0.004570 0.266195 -0.205717 0.383250 7.290061 -3.869615 5.479620 3.580310 -3.928139 9.217341 4.835080 -3.525605 11.416520 0.683580 7.435403 13.507328 -9.651917 10.950624 -16.168123 -9.879373 -18.907215 -10.701279 -59.599251 -29.748726 6.808343 -6.897329 -16.836237 -1.625901 0.007793 -0.188465 0.706273 -0.055879 0.398046 0.081977 8.602891 6.605799 -12.287846 49.425083 19.517731 -0.634265 13.037437 15.636235 0.109706 -0.459547 0.046651 -0.026176 0.074384 -0.185141 -0.349778
+12.792810 161.843613 -9.693863 -2.208760 -23.385796 1.331861 1.790020 -5.037875 -7.601022 -11.237442 1.604962 26.510326 -0.681876 0.204592 -0.274475 0.763898 0.482873 0.828570 -6.042880 4.158489 -36.232037 1.036411 -2.243263 54.902790 -0.485143 -0.021191 -0.008208 0.265067 -0.254825 0.368472 7.415636 -3.840186 7.724665 4.146320 -3.938944 9.068166 5.089520 -3.467563 10.542577 -0.231859 7.442299 14.200356 -9.666759 10.348071 -17.698994 -10.695885 -17.898386 -10.264501 -56.126587 -27.516502 4.990882 -5.431382 -15.129548 -1.759436 0.064350 -0.213054 0.751027 -0.111806 0.439705 0.077823 8.596458 5.660647 -11.704353 46.838070 17.569216 -1.648499 9.836167 13.006682 -0.268956 -0.441483 0.084346 -0.014633 0.082491 -0.196309 -0.353075
+13.414145 161.735931 -9.187688 -2.175047 -22.502855 -0.033394 1.442016 -5.004296 -6.335374 -11.580451 1.757685 27.042522 -0.647801 0.173622 -0.270630 0.772992 0.485825 0.838400 -5.459860 4.745141 -37.654560 1.706883 -2.655010 59.103065 -0.494912 0.001233 -0.009212 0.246123 -0.283816 0.372076 8.114553 -3.976257 9.545574 4.598077 -3.864997 8.910819 5.013246 -3.345956 9.754962 -1.001537 7.293248 14.474712 -9.936454 9.855046 -17.760483 -11.828453 -16.445377 -9.789140 -52.368984 -25.280626 3.461583 -4.625863 -13.554544 -1.701028 0.100089 -0.199133 0.755116 -0.140229 0.459397 0.079458 8.290041 4.392107 -11.157803 44.434635 15.724664 -2.269015 7.302358 9.910656 -0.422149 -0.412208 0.086069 0.011751 0.061697 -0.211697 -0.344706
+13.942862 161.691879 -8.696178 -1.858540 -21.448971 -1.656369 0.888064 -5.126836 -5.047823 -12.242907 1.971118 27.952705 -0.615681 0.139276 -0.264203 0.781038 0.499090 0.826399 -4.752303 5.159188 -38.227467 2.341050 -3.057036 62.024246 -0.504690 0.024116 -0.009551 0.237936 -0.300295 0.366054 8.618409 -4.335685 11.381587 4.874151 -3.995136 8.851495 4.695196 -3.417089 9.072591 -2.195494 7.657135 14.549543 -9.631670 9.209462 -17.948116 -12.417798 -14.865746 -9.102456 -48.489285 -22.627131 1.870270 -3.348772 -12.978039 -1.758532 0.142590 -0.185488 0.757652 -0.172193 0.475031 0.091796 8.490059 3.146681 -10.875352 41.980942 14.299168 -2.710303 5.103944 6.871451 -0.438732 -0.384523 0.089374 0.032075 0.056389 -0.224175 -0.324902
+14.527939 161.639938 -8.070327 -1.987689 -20.319613 -2.985504 0.706570 -5.149181 -3.575767 -12.617609 2.093268 28.402304 -0.621510 0.131086 -0.250697 0.766813 0.484197 0.815888 -3.668618 5.603782 -38.432129 3.418152 -3.815818 64.042374 -0.501132 0.053684 0.006717 0.230114 -0.293987 0.334956 9.512220 -4.957158 12.669002 5.109103 -4.244118 8.977954 4.303888 -3.544610 8.780342 -2.899643 8.002971 14.370511 -9.765591 8.928611 -18.517262 -11.988320 -12.979684 -8.505713 -45.862499 -20.219334 0.759443 -1.738338 -12.751713 -1.887986 0.161790 -0.231011 0.778745 -0.188785 0.473831 0.097934 7.048268 1.408308 -10.675583 40.771896 13.135155 -3.063498 3.419028 5.025157 -0.406247 -0.380247 0.124140 0.008445 0.094086 -0.222191 -0.325160
+15.040525 161.656525 -7.452050 -1.894586 -18.880018 -4.391121 0.481657 -5.295700 -2.164596 -12.952045 2.166445 28.891436 -0.630033 0.142582 -0.253220 0.727329 0.426361 0.797037 -2.630907 5.739707 -37.904804 4.469209 -4.569435 64.450294 -0.483549 0.058387 0.006610 0.199678 -0.295886 0.324848 9.759647 -5.494516 13.911802 5.429357 -4.656223 9.024693 4.294415 -3.798410 8.361103 -3.074886 7.880970 14.327673 -10.304857 8.868049 -18.220480 -12.193139 -11.478036 -7.681106 -42.719383 -17.627207 -0.263942 -0.189310 -12.348225 -1.957202 0.160933 -0.247615 0.794794 -0.192907 0.458769 0.078164 5.803906 0.075581 -10.055680 39.129917 11.509327 -3.619625 1.621444 4.144966 -0.371325 -0.374193 0.143016 -0.011654 0.086946 -0.198184 -0.339092
+15.483229 161.690399 -6.799458 -1.882743 -17.358936 -5.631904 0.137725 -5.501371 -0.916787 -12.694860 2.077723 29.550722 -0.627206 0.155013 -0.244108 0.699355 0.375096 0.788940 -1.516503 5.878325 -37.532955 5.978587 -5.575004 64.459106 -0.469407 0.064039 0.010145 0.170551 -0.292572 0.318183 9.886794 -5.959762 14.860575 5.715011 -5.003253 9.114919 4.414496 -4.008487 8.049731 -3.010254 7.480557 14.010108 -10.442042 8.661354 -17.830647 -11.740071 -9.412351 -7.007250 -40.645203 -15.243233 -1.102214 1.421734 -13.038127 -2.120101 0.162378 -0.254339 0.804854 -0.195971 0.443658 0.068695 4.065310 -1.720223 -9.502506 37.865334 9.886753 -4.142363 0.112870 3.768971 -0.336539 -0.365749 0.152017 -0.026651 0.080070 -0.186366 -0.349371
+16.041679 161.748291 -6.069899 -1.887914 -15.910677 -6.742328 -0.618311 -5.646820 0.535678 -12.046301 1.813194 29.865625 -0.610213 0.168314 -0.226951 0.659603 0.324452 0.757086 -0.585518 5.865366 -37.233700 7.715429 -6.666444 63.780704 -0.452771 0.056697 0.015954 0.136990 -0.270471 0.319443 10.671004 -6.626561 15.513944 5.748904 -5.205064 9.258593 3.959971 -4.088583 7.821506 -2.948819 7.156615 13.324201 -10.562287 8.470918 -17.229403 -11.438228 -7.300696 -6.615018 -38.184170 -13.297992 -1.688035 2.497124 -13.812566 -2.190413 0.151661 -0.250631 0.795968 -0.185534 0.422929 0.065663 2.446911 -4.015463 -9.051552 36.803410 8.150711 -4.753599 -1.518933 4.348881 -0.365237 -0.355870 0.155265 -0.033555 0.072713 -0.167967 -0.343057
+16.591484 161.696030 -5.245648 -1.490190 -14.574328 -7.540933 -1.759423 -5.829533 1.599605 -11.689550 1.616582 30.079950 -0.609239 0.211854 -0.205383 0.590290 0.226915 0.724539 0.065190 5.642805 -36.876362 9.463140 -7.560835 61.792778 -0.415422 0.042000 0.018199 0.091344 -0.233593 0.309348 11.077460 -6.996579 15.539642 5.708070 -5.314978 9.222696 3.738240 -4.055237 7.560711 -2.657047 6.570048 12.704834 -10.919835 8.463791 -15.690054 -10.987993 -5.187271 -6.401853 -36.524437 -11.817648 -2.097512 4.168013 -14.285155 -2.344460 0.118566 -0.264619 0.786008 -0.159759 0.377041 0.046383 0.686815 -6.502624 -8.381346 35.541290 6.082051 -5.362917 -2.860470 5.193972 -0.388392 -0.349154 0.162360 -0.068609 0.069980 -0.132993 -0.352963
+17.110605 161.788162 -4.456103 -1.006073 -13.803840 -8.508443 -2.746237 -5.761288 3.084855 -11.968323 1.649002 29.830801 -0.621846 0.249213 -0.191296 0.527758 0.150228 0.693692 1.059205 5.777504 -36.152599 10.692547 -7.849844 59.134991 -0.378494 0.034080 0.030050 0.059990 -0.198980 0.290624 11.152011 -7.225734 15.588461 5.632852 -5.457507 9.456184 3.526150 -4.056798 7.710233 -2.530942 6.034244 12.079504 -11.756313 8.451816 -14.921094 -11.175639 -3.053476 -6.329702 -34.059891 -10.027780 -2.528913 5.571686 -15.767790 -2.540047 0.081960 -0.300600 0.777732 -0.132580 0.336451 0.027590 -0.203889 -8.401016 -8.051851 33.242374 4.668390 -5.617304 -3.848776 5.753705 -0.377522 -0.354285 0.184400 -0.106498 0.087019 -0.097616 -0.363339
+17.647844 162.072861 -3.672932 -0.406610 -13.206940 -9.828917 -3.926695 -5.543361 5.001095 -11.975647 1.562431 29.236265 -0.605870 0.235404 -0.174646 0.501454 0.138229 0.670391 2.219491 5.904577 -34.555080 11.299890 -7.582111 55.713551 -0.365749 0.038043 0.048153 0.049649 -0.186592 0.270805 11.202026 -7.514512 15.726274 5.375001 -5.591716 9.919951 2.940408 -4.147343 8.114386 -2.081576 5.591244 11.877518 -12.220236 8.634819 -14.657080 -12.036433 -1.674009 -6.001417 -30.690527 -7.703784 -3.032579 7.436668 -18.564142 -2.906068 0.079899 -0.318285 0.762967 -0.123294 0.327401 0.034242 -0.570418 -9.385583 -7.559289 31.135132 3.161576 -5.824035 -5.063494 6.330867 -0.398877 -0.347763 0.193552 -0.116251 0.100272 -0.098737 -0.355191
+18.158537 162.349335 -2.803040 0.276213 -12.243917 -10.925541 -5.044120 -5.461626 6.484826 -12.113650 1.485913 28.846609 -0.622692 0.252239 -0.177419 0.513717 0.135079 0.688628 3.152166 5.742441 -32.748402 11.320073 -7.014176 51.762642 -0.364545 0.028658 0.038032 0.058784 -0.189687 0.273278 11.138654 -7.884581 14.951833 5.003368 -5.947675 10.527719 2.451710 -4.471189 9.198942 -2.240231 5.349474 11.703313 -12.293002 8.299742 -14.648385 -12.094965 -0.320884 -5.883162 -28.073393 -5.768735 -3.212739 8.910892 -19.257002 -3.104298 0.079176 -0.309282 0.767407 -0.123939 0.319132 0.030366 0.014648 -10.083215 -7.654359 28.080332 2.456949 -5.655083 -6.328747 5.859103 -0.365277 -0.353820 0.178416 -0.123510 0.095629 -0.101039 -0.365864
+18.770279 162.584869 -1.938410 0.948997 -11.169830 -12.090234 -6.205921 -5.487468 7.750029 -12.270072 1.400043 28.896019 -0.614251 0.254936 -0.174718 0.524315 0.147737 0.685233 3.936343 5.381242 -30.783531 11.288417 -6.469450 47.540325 -0.366559 0.013733 0.030338 0.066280 -0.185210 0.285442 11.497007 -8.432092 14.508771 4.575527 -6.238729 11.029610 1.642748 -4.743938 9.940915 -2.526060 5.175299 11.113753 -12.130023 7.805564 -14.652235 -12.238344 0.929030 -5.919174 -25.380159 -4.183997 -3.190051 9.866738 -19.473000 -3.134611 0.078861 -0.281435 0.751820 -0.120745 0.315577 0.036771 0.236508 -10.990725 -7.711123 25.326334 1.746981 -5.389225 -7.042243 5.636880 -0.329813 -0.351790 0.156201 -0.110504 0.084722 -0.105083 -0.354697
+19.306488 162.671982 -0.995856 1.516709 -10.182038 -12.921791 -7.064865 -5.638588 8.497404 -12.987692 1.524318 29.409908 -0.598530 0.237255 -0.183489 0.540163 0.167509 0.695151 4.908900 5.088339 -28.563667 11.085308 -5.740803 42.433559 -0.371213 0.007427 0.024585 0.068714 -0.207223 0.298049 11.417262 -8.636563 13.968605 4.485554 -6.467214 11.234585 1.521598 -4.931324 10.365324 -2.464418 4.806523 11.110563 -12.440313 7.651311 -14.648966 -11.645477 1.991255 -5.863386 -24.028017 -3.135989 -3.148629 10.323083 -18.225908 -2.946486 0.087290 -0.250448 0.738480 -0.125137 0.324078 0.034429 -0.959873 -11.958897 -7.447312 23.567247 0.935212 -5.259473 -7.842466 5.129245 -0.262309 -0.344164 0.136116 -0.084886 0.056354 -0.115765 -0.351602
+19.768217 162.487488 -0.107242 1.953781 -9.176653 -13.187037 -7.526330 -5.930067 8.515532 -14.109015 1.814248 30.256285 -0.604168 0.249534 -0.170041 0.532370 0.156245 0.691577 5.666242 4.769866 -26.777435 11.231659 -5.129622 36.885464 -0.357742 -0.007828 0.036477 0.071792 -0.190712 0.287566 11.503110 -8.733062 12.791336 4.297537 -6.545551 11.291996 1.375769 -4.975177 10.847047 -2.383180 4.415726 10.993388 -12.934181 7.620457 -13.793324 -10.655560 2.977595 -5.967607 -22.697716 -2.777072 -2.927337 9.957746 -16.833422 -2.644819 0.076326 -0.257731 0.725798 -0.106267 0.305064 0.043539 -2.167334 -13.120697 -7.042492 21.803942 -0.052955 -5.041074 -7.735918 5.238700 -0.248794 -0.352818 0.124083 -0.100952 0.065147 -0.120454 -0.353779
+20.221535 162.244736 0.823468 2.448682 -8.356561 -13.450181 -7.877079 -6.188453 8.431261 -15.576659 2.252379 31.159008 -0.598571 0.254664 -0.154423 0.539586 0.167877 0.695055 6.516151 4.564859 -24.830172 10.912866 -4.308444 31.196280 -0.354991 -0.026848 0.038192 0.084091 -0.174946 0.286965 11.573364 -8.923255 11.627342 3.975466 -6.685982 11.402855 1.041291 -5.135677 11.418332 -2.181147 4.167827 10.772692 -13.010827 7.578401 -13.137735 -10.077913 4.352905 -6.223819 -21.219194 -2.141149 -2.757571 9.944093 -16.126392 -2.469346 0.069230 -0.247309 0.704824 -0.089953 0.294846 0.057591 -2.731207 -14.117768 -7.233391 19.786867 -0.068752 -4.672304 -8.087139 5.048856 -0.261509 -0.354468 0.098691 -0.103191 0.068015 -0.135121 -0.345937
+20.680140 161.951660 1.678796 2.786683 -7.637924 -13.842036 -8.103809 -6.427369 8.446346 -16.739782 2.635273 32.203377 -0.592900 0.252512 -0.166239 0.553172 0.191362 0.688646 7.454468 4.416574 -22.449331 10.176303 -3.389392 25.191154 -0.353870 -0.053241 0.034468 0.095390 -0.178290 0.306808 11.792910 -9.076713 10.506375 3.685543 -6.803295 11.677050 0.640462 -5.262598 12.224933 -2.152959 4.107105 10.590669 -13.219475 7.525066 -12.941433 -9.822303 5.423920 -6.269403 -19.306263 -1.167899 -2.527622 9.634776 -16.665014 -2.404252 0.056142 -0.206853 0.678734 -0.075488 0.289858 0.057882 -2.770318 -14.699391 -7.437585 17.794374 0.024914 -4.264306 -8.372012 5.305501 -0.306069 -0.364081 0.069364 -0.078687 0.042213 -0.134066 -0.338943
+21.181623 161.525574 2.553061 3.174287 -6.853773 -14.296515 -8.387883 -6.648635 8.555002 -18.129774 3.115965 33.321651 -0.569421 0.241591 -0.161353 0.576049 0.227869 0.694772 8.175173 4.123074 -20.040339 9.147344 -2.592812 19.726526 -0.372583 -0.065819 0.032260 0.104084 -0.181297 0.334243 11.961381 -9.134136 9.740479 3.471229 -6.830770 11.823802 0.264697 -5.294850 12.673656 -1.842391 3.666550 10.645670 -13.441114 7.366487 -13.118397 -9.513453 6.524550 -6.731490 -17.901108 -1.097103 -2.321706 9.492599 -16.394730 -2.287619 0.055952 -0.179758 0.661451 -0.069759 0.310509 0.074933 -3.781359 -15.804683 -7.406123 16.705795 -0.257333 -4.038604 -8.600548 6.224546 -0.384813 -0.360754 0.048516 -0.047453 0.028149 -0.151769 -0.320413
+21.622448 160.804031 3.513095 4.024562 -5.872289 -14.642283 -9.198136 -6.860587 8.581141 -19.530458 3.640507 34.533554 -0.579719 0.253971 -0.155659 0.546840 0.207574 0.676913 8.536102 3.700110 -17.784891 7.390490 -1.835848 14.727482 -0.353685 -0.065003 0.039600 0.103787 -0.159785 0.313112 11.468879 -8.959882 9.120256 3.207470 -6.883799 11.685587 0.094433 -5.330815 12.655455 -1.645102 3.692533 10.653983 -13.556220 7.550326 -12.820971 -8.396857 7.524016 -7.196652 -16.704649 -1.651066 -2.020716 8.377947 -14.339320 -1.900223 0.035184 -0.212803 0.651831 -0.053620 0.292445 0.067909 -5.057623 -17.278666 -7.363119 15.874871 -0.451871 -3.816604 -8.187613 7.389155 -0.448485 -0.365736 0.065905 -0.071869 0.053810 -0.137226 -0.321579
+22.020214 160.024261 4.511944 4.652291 -4.303390 -15.109838 -9.622871 -7.251557 8.833234 -20.994297 4.199568 35.949417 -0.598364 0.258581 -0.167188 0.547445 0.215617 0.683633 8.627649 3.233695 -15.915921 5.674345 -1.375939 11.181055 -0.347103 -0.066404 0.036311 0.117678 -0.159872 0.303920 11.206360 -9.162292 8.149042 2.664571 -7.193390 11.761765 -0.441466 -5.649238 13.152406 -1.220223 3.763769 10.648293 -13.470514 7.756055 -13.140706 -7.481570 8.353357 -7.507329 -14.938253 -1.851918 -1.652692 6.814520 -12.610357 -1.557185 0.021610 -0.222909 0.648065 -0.047038 0.285600 0.055837 -5.657560 -18.414675 -7.735792 15.230223 -0.335267 -3.684000 -8.878238 7.703172 -0.504095 -0.376232 0.069974 -0.080859 0.062912 -0.130681 -0.330252
+22.437374 159.174530 5.460219 5.171485 -3.457431 -15.370790 -9.825744 -7.448458 8.913004 -22.667845 4.944061 37.109230 -0.591631 0.253804 -0.164216 0.557258 0.228446 0.684968 8.518587 2.939024 -14.829436 4.944679 -1.191964 9.281343 -0.343713 -0.077966 0.040118 0.125604 -0.158084 0.305579 11.167620 -9.222609 7.832871 2.365947 -7.227389 11.530937 -0.845358 -5.731473 12.915031 -0.981042 3.773301 10.388954 -13.276467 7.836535 -12.853318 -6.722301 9.333761 -7.985518 -13.801444 -2.412543 -1.430594 6.226957 -11.007538 -1.342433 0.021177 -0.204437 0.634001 -0.039528 0.279344 0.062892 -6.706178 -19.608217 -7.942707 14.592486 -0.076018 -3.491260 -9.746717 8.378202 -0.583484 -0.378160 0.050233 -0.074835 0.053379 -0.141134 -0.327017
+22.864645 158.411270 6.196711 4.831555 -2.748364 -15.783571 -9.225907 -7.776366 8.926030 -24.031298 5.731648 38.716942 -0.597881 0.277068 -0.165818 0.534448 0.198134 0.663393 8.674477 2.893362 -14.287873 5.410257 -1.265435 8.954817 -0.324279 -0.096132 0.043077 0.114325 -0.140422 0.309628 11.981267 -9.557547 8.165059 2.365206 -7.284143 11.348562 -1.261078 -5.744738 12.413712 -1.155864 3.925361 9.609926 -13.480472 7.815515 -12.445586 -6.881211 9.920022 -8.470833 -12.467811 -2.588734 -1.232047 5.971716 -9.312444 -1.180564 -0.004238 -0.194875 0.619768 -0.020242 0.253201 0.053161 -7.286872 -20.409159 -7.970345 13.427250 0.127721 -3.174537 -10.771729 9.433916 -0.667027 -0.388629 0.045664 -0.080765 0.046399 -0.117792 -0.329869
+23.241074 157.710938 6.783777 4.144207 -2.425409 -15.781723 -8.203087 -7.968066 8.519644 -25.089634 6.510585 40.094185 -0.579136 0.307647 -0.131935 0.487959 0.144525 0.630558 8.906473 3.192267 -15.039022 6.293676 -1.476150 10.436006 -0.305540 -0.118252 0.055447 0.083143 -0.092260 0.315156 13.385659 -9.779045 7.938061 2.355916 -7.076808 11.100707 -1.788212 -5.547588 12.016577 -0.932139 3.678276 9.006067 -13.877441 7.967982 -11.015976 -7.067632 9.342567 -8.069016 -10.995346 -2.142030 -1.045620 5.361242 -7.672340 -1.006917 -0.037122 -0.205235 0.597120 0.014963 0.227051 0.061175 -8.266223 -19.996689 -7.042833 12.910398 -0.900626 -3.110002 -12.091113 10.091917 -0.735080 -0.384823 0.044058 -0.095253 0.053339 -0.103161 -0.316673
+23.613152 157.256958 7.096375 3.597286 -2.611845 -16.187992 -7.489793 -7.887073 8.349902 -25.800768 7.256255 41.346813 -0.531356 0.278513 -0.124628 0.488078 0.154872 0.620352 8.746735 3.552403 -16.098890 7.686231 -1.858089 13.307311 -0.310598 -0.125455 0.055216 0.066379 -0.104139 0.333931 14.335569 -9.991561 8.815681 2.481429 -6.824279 11.091916 -2.123575 -5.359133 11.562819 -0.885094 3.771662 8.164620 -14.169802 8.207080 -10.830535 -7.799534 8.883418 -7.355741 -9.854422 -0.736476 -0.935953 5.340904 -7.290670 -0.889146 -0.027120 -0.160519 0.570353 0.013719 0.236340 0.067043 -8.677763 -19.193880 -6.446342 12.455900 -1.332025 -3.024599 -13.342148 10.396764 -0.788946 -0.361597 0.021108 -0.057897 0.015915 -0.114818 -0.297967
+23.844151 156.977127 7.323804 3.347018 -2.652537 -16.740406 -7.375207 -7.711689 8.383319 -25.727104 7.586590 42.271820 -0.463973 0.230246 -0.111409 0.505858 0.181223 0.617479 8.021312 3.660187 -16.761732 9.231949 -2.305269 15.797264 -0.325900 -0.115557 0.060151 0.049510 -0.127910 0.352130 14.189692 -9.782053 10.172961 2.975234 -6.529137 10.956674 -1.669143 -5.116862 10.777116 -1.200501 3.797822 8.106646 -14.033078 8.104652 -10.478606 -7.993258 8.264083 -6.661626 -10.299190 0.147855 -1.115474 5.471440 -6.472231 -0.790633 0.010795 -0.111835 0.550053 -0.005898 0.262341 0.088325 -9.272883 -18.396490 -5.630602 12.047355 -2.115676 -2.988931 -14.155423 10.398777 -0.760044 -0.324367 -0.001117 -0.007940 -0.022945 -0.146085 -0.269980
+23.930017 156.796844 7.354068 3.232635 -2.714440 -17.350124 -7.334579 -7.424700 8.558422 -25.526226 7.887050 43.080967 -0.447463 0.204414 -0.111069 0.502641 0.172903 0.606165 7.340649 3.785547 -17.041624 10.449183 -2.607938 17.317030 -0.324861 -0.094518 0.060861 0.035556 -0.140497 0.337043 13.701658 -9.486518 12.066614 3.393023 -6.236355 10.768343 -1.294028 -4.821706 9.665657 -1.459673 4.129537 8.364676 -13.016049 7.899854 -10.193143 -7.596145 7.995392 -6.292735 -11.293535 0.554614 -1.373175 5.006302 -4.492879 -0.680459 0.045295 -0.104305 0.563128 -0.032564 0.264055 0.088959 -10.157625 -17.852879 -5.125590 12.633853 -2.311388 -3.170700 -14.824760 10.544926 -0.756092 -0.304272 0.005752 -0.005393 -0.031846 -0.150019 -0.266452
+23.856419 156.653244 7.419426 3.325954 -2.423187 -17.376730 -7.334501 -7.138654 8.343206 -25.127584 8.075340 43.822269 -0.447108 0.171137 -0.127983 0.516570 0.187323 0.621114 6.550024 3.865166 -17.312525 11.427946 -2.741930 17.661400 -0.331139 -0.075508 0.056071 0.035816 -0.177751 0.325450 13.008883 -8.993628 12.844796 3.521046 -5.916663 10.562853 -1.005907 -4.542493 9.142510 -1.138466 3.693968 8.605086 -12.772305 7.698024 -10.650091 -7.479589 7.651973 -6.116244 -11.652186 0.886873 -1.537213 3.645853 -1.769328 -0.583025 0.076684 -0.096917 0.578621 -0.060658 0.277091 0.078553 -10.745539 -17.122847 -4.673400 13.821847 -2.803336 -3.496293 -15.482805 10.930993 -0.831296 -0.294332 0.009093 0.003584 -0.047452 -0.159441 -0.276344
+23.915344 156.684326 7.588482 3.421980 -2.739570 -16.814859 -7.461777 -6.667479 7.809859 -24.639397 8.146693 43.947014 -0.430532 0.148933 -0.102314 0.533586 0.205458 0.645152 6.055876 4.020766 -17.621496 12.238129 -2.710548 17.189711 -0.336762 -0.067415 0.065153 0.047211 -0.185195 0.305626 12.452289 -8.537021 12.897413 3.652378 -5.638501 10.291553 -0.624201 -4.363271 8.798929 -0.895484 3.114164 8.706623 -13.015443 7.644840 -10.131007 -7.753488 8.381293 -6.008514 -12.298010 1.854503 -1.687602 2.822390 -1.896179 -0.552010 0.108215 -0.106698 0.577784 -0.069780 0.287303 0.104293 -11.160137 -16.421246 -4.610118 14.126824 -1.905852 -3.442018 -15.352974 11.317345 -0.952855 -0.276235 -0.006753 -0.006018 -0.037793 -0.203557 -0.271825
+23.917660 156.880936 7.577765 3.635858 -2.996314 -16.444433 -7.990368 -6.281932 7.378393 -23.796600 7.970345 44.079601 -0.443616 0.148955 -0.098127 0.547156 0.214189 0.665587 5.968394 4.145527 -17.386885 12.070896 -2.459974 16.260868 -0.335538 -0.061054 0.062121 0.063255 -0.192392 0.288797 11.827845 -8.069633 12.835941 3.734097 -5.432897 10.364620 -0.277183 -4.170524 9.002407 -1.296627 2.593288 8.650102 -13.169559 7.001642 -10.244490 -8.438615 9.182777 -6.225212 -12.940074 2.511759 -1.765737 2.479276 -3.195770 -0.586702 0.122088 -0.121010 0.583306 -0.079201 0.285275 0.106246 -10.258843 -15.881330 -4.890172 13.244956 -0.917805 -3.141329 -14.945401 12.025268 -1.090425 -0.274869 -0.010445 -0.019491 -0.023750 -0.217901 -0.277901
+23.785475 157.166687 7.430794 3.742484 -3.022104 -16.182823 -8.155717 -5.972003 7.115982 -23.271181 7.831366 43.896961 -0.454370 0.166697 -0.093497 0.549135 0.199649 0.676859 6.399158 4.287436 -16.850082 11.069496 -2.047534 14.816210 -0.340110 -0.047780 0.054480 0.059340 -0.188815 0.287366 11.079630 -7.701436 12.968838 3.806796 -5.352726 10.448554 0.070969 -4.042615 9.084357 -1.837973 2.108558 9.006285 -12.976683 6.125064 -10.396426 -8.787158 9.857566 -6.270024 -14.229845 3.270169 -1.998384 3.380275 -4.951536 -0.670378 0.126871 -0.138003 0.599859 -0.091286 0.286247 0.103373 -9.521758 -15.276771 -5.001869 12.978760 -0.229275 -3.026392 -14.286368 13.509858 -1.280340 -0.273381 0.003472 -0.028202 -0.007353 -0.212008 -0.281228
+23.787437 157.497894 7.334952 3.916366 -2.999098 -15.497661 -8.379184 -5.687141 6.592358 -22.912998 7.669127 43.419495 -0.474225 0.205595 -0.103315 0.518960 0.159867 0.626114 6.770722 4.265765 -16.439150 9.820209 -1.645097 12.761703 -0.324324 -0.066942 0.048884 0.046597 -0.155477 0.297358 10.853627 -7.473538 12.355332 3.533782 -5.250336 10.355438 -0.090546 -3.914981 9.207302 -2.497175 2.057365 9.405300 -12.175316 5.221722 -9.648104 -9.085279 10.289204 -6.179782 -15.580684 4.047948 -2.249991 5.602591 -7.238420 -0.863319 0.100241 -0.130031 0.599009 -0.077603 0.256925 0.094417 -8.066611 -14.656738 -5.179974 12.438390 0.248389 -2.882872 -13.990202 15.914768 -1.600016 -0.292725 0.011596 -0.037084 -0.004163 -0.164923 -0.275547
+23.744059 157.821106 7.061959 3.966943 -2.758923 -14.997231 -8.255903 -5.275952 6.219133 -22.613592 7.577706 42.818169 -0.486116 0.206624 -0.111840 0.507172 0.149262 0.588332 7.219385 4.358348 -16.288055 8.392530 -1.305886 11.431644 -0.322421 -0.045340 0.054456 0.039325 -0.143085 0.286862 11.052332 -7.310450 12.500518 3.238065 -4.955773 10.136659 -0.594737 -3.594270 8.804580 -3.663041 2.154204 9.779023 -11.004403 4.005689 -10.240213 -8.505431 10.448475 -5.773791 -18.117880 4.637877 -2.785499 6.715659 -8.673582 -1.064377 0.112852 -0.150194 0.621550 -0.096954 0.254000 0.094244 -7.738446 -13.803526 -4.988966 13.479264 0.211893 -3.157707 -13.342627 17.015072 -1.690594 -0.298428 0.048389 -0.043107 0.020931 -0.138038 -0.265213
+23.739830 157.988235 6.865539 3.915880 -1.910652 -14.186563 -8.201230 -5.107973 5.733835 -22.151482 7.343387 42.362785 -0.511901 0.222026 -0.109240 0.485651 0.130104 0.557590 7.463756 4.280293 -16.385405 7.268109 -1.066722 9.818549 -0.300969 -0.027601 0.069566 0.044621 -0.111182 0.250634 11.261729 -7.288606 11.584753 2.795177 -4.878383 9.998405 -1.089216 -3.528922 8.968927 -4.448556 2.584807 9.904210 -9.842669 3.384850 -10.298676 -7.812850 10.518723 -5.223654 -20.149229 5.139461 -3.193446 7.856315 -11.169394 -1.391444 0.107171 -0.194572 0.631180 -0.096747 0.227661 0.093443 -6.759946 -12.934830 -5.323911 13.938816 1.061456 -3.255354 -12.383081 17.219070 -1.687908 -0.312584 0.083752 -0.078546 0.069793 -0.114924 -0.264587
+23.636047 158.111359 6.496283 3.929877 -0.941418 -13.533870 -7.996876 -4.990278 5.135885 -21.927469 7.293117 42.274246 -0.549865 0.234974 -0.117861 0.492396 0.136284 0.549065 7.582891 4.309534 -16.800430 6.249775 -0.886080 8.812644 -0.297516 -0.018000 0.073336 0.065061 -0.097271 0.230101 10.937512 -7.263999 11.058602 2.400058 -4.923978 10.019734 -1.322454 -3.577488 9.265025 -5.040269 3.045179 9.654984 -8.846375 2.926775 -11.206724 -7.393446 10.881449 -5.031012 -22.179565 5.405029 -3.609457 8.773015 -13.110270 -1.729870 0.110542 -0.218408 0.653744 -0.105067 0.216663 0.095752 -5.507053 -12.225116 -6.204278 14.523633 2.753454 -3.305740 -11.148066 16.988642 -1.627354 -0.333915 0.102853 -0.105414 0.105213 -0.102960 -0.270973
+23.484468 158.164917 6.072131 3.986720 0.293346 -12.739963 -7.654302 -4.882473 4.416079 -21.998569 7.350576 42.115250 -0.547735 0.250104 -0.097882 0.497172 0.134265 0.534943 7.582975 4.293560 -17.427608 5.116940 -0.724834 7.756304 -0.291911 -0.022962 0.084830 0.069134 -0.063990 0.225600 10.813659 -7.430016 10.891404 1.969849 -4.983264 9.676713 -1.745103 -3.714412 8.829390 -5.708045 3.450609 9.289143 -7.832101 2.426238 -10.875951 -7.104867 11.702751 -5.084884 -23.953802 5.307051 -3.929873 8.978323 -14.319538 -1.925886 0.110809 -0.216004 0.649272 -0.098411 0.199108 0.117064 -4.346658 -11.749608 -7.279705 15.521336 4.790210 -3.314195 -9.785967 16.417763 -1.509638 -0.339683 0.096390 -0.114652 0.124657 -0.105852 -0.257998
+23.341188 158.157196 5.580336 3.775319 1.672165 -11.777369 -7.033292 -4.788127 3.521564 -22.137239 7.445682 41.968452 -0.515993 0.230168 -0.089332 0.507043 0.161869 0.500739 7.698678 4.313052 -18.264874 4.180147 -0.594026 6.658639 -0.287723 -0.032990 0.084378 0.080215 -0.046340 0.222400 11.285539 -7.720548 10.262361 1.398567 -4.948231 9.393126 -2.533347 -3.817032 8.643242 -6.390893 4.103488 8.806616 -6.189029 1.904761 -10.325876 -6.523434 12.216082 -4.812400 -25.931305 5.195932 -4.311809 8.751471 -15.619110 -2.088205 0.126039 -0.166522 0.616119 -0.100764 0.185453 0.138669 -3.088890 -11.064935 -8.197205 16.603577 6.510370 -3.252963 -7.919317 15.592102 -1.325857 -0.327689 0.067163 -0.094621 0.116711 -0.113256 -0.226546
+23.089725 158.086304 5.018661 4.015799 3.678971 -10.785007 -6.931099 -4.929534 2.397871 -21.978741 7.430902 42.452541 -0.477851 0.208516 -0.066912 0.530927 0.204815 0.492551 7.210684 4.170346 -19.322847 3.342558 -0.494656 5.710546 -0.292831 -0.040698 0.091523 0.097800 -0.031054 0.223175 10.415236 -7.448551 9.125325 1.036125 -4.891435 9.295308 -2.451778 -3.881030 9.031610 -6.138915 3.527831 8.738290 -4.978232 1.146277 -9.697126 -6.564608 12.156527 -4.697127 -27.791201 4.649632 -4.682385 8.688181 -17.831499 -2.418213 0.138719 -0.133231 0.580192 -0.096196 0.185097 0.170602 -1.508436 -10.180712 -8.818911 17.569128 7.265364 -3.296164 -6.512549 14.376296 -1.200077 -0.317080 0.034944 -0.071596 0.116870 -0.142780 -0.195621
+22.933704 158.056152 4.401904 4.110227 5.690945 -10.244308 -6.929873 -5.036515 1.840681 -21.676477 7.306552 42.726692 -0.495579 0.220861 -0.066152 0.528701 0.203812 0.481851 6.676253 3.980944 -19.938200 2.722808 -0.462652 4.965367 -0.286320 -0.041199 0.094890 0.107734 -0.015076 0.212900 10.124492 -7.383855 8.667751 0.654095 -4.869855 9.284740 -2.775603 -3.868451 9.219626 -6.245075 2.965687 8.491001 -4.417862 0.373769 -10.003896 -7.289856 11.837891 -4.838820 -28.685011 4.091335 -4.803697 8.299001 -20.205982 -2.751060 0.133615 -0.147711 0.582997 -0.093395 0.173413 0.173023 -0.020337 -9.361313 -9.387289 18.991123 7.890006 -3.470946 -5.426448 13.439445 -1.115033 -0.329365 0.042717 -0.086118 0.138532 -0.134594 -0.193994
+22.788465 158.074020 3.655849 3.989285 7.949725 -9.934842 -7.068533 -5.204543 1.643520 -20.526823 6.693830 42.749378 -0.508891 0.215092 -0.072599 0.543176 0.224990 0.481077 6.195630 3.750312 -20.308958 2.124880 -0.445103 4.174116 -0.292244 -0.030613 0.096160 0.123765 -0.016537 0.204749 10.131637 -7.436130 8.328128 0.316831 -4.869542 9.379216 -3.204801 -3.871868 9.497863 -6.320107 2.476312 8.564158 -3.651485 -0.358465 -10.802533 -8.144701 11.110174 -5.017533 -29.684099 3.367062 -4.971554 8.151765 -21.797413 -3.052512 0.144774 -0.157932 0.594302 -0.105054 0.179071 0.178167 1.288811 -8.415938 -9.779671 20.788771 8.305515 -3.690272 -4.315142 12.585699 -1.044921 -0.337616 0.052764 -0.089072 0.156108 -0.136386 -0.191363
+22.615467 158.106491 2.890676 3.769262 10.142946 -9.510277 -6.915069 -5.322228 1.394679 -19.605961 6.208193 42.629673 -0.510372 0.215335 -0.076032 0.543365 0.226132 0.487787 5.713652 3.548740 -20.770416 1.664305 -0.443494 3.353856 -0.290367 -0.026321 0.090741 0.126217 -0.022510 0.201783 10.316546 -7.432814 8.029937 0.058176 -4.764056 9.331895 -3.617023 -3.772039 9.562066 -6.183808 1.687234 8.672363 -3.677676 -0.877481 -10.900681 -9.766968 10.159907 -5.444710 -30.188738 2.365940 -5.018300 8.369763 -23.435642 -3.397267 0.143089 -0.161792 0.589737 -0.107632 0.179003 0.170278 2.599916 -7.522945 -9.998303 22.741796 8.443540 -3.925492 -3.408916 12.107288 -1.021405 -0.335550 0.055184 -0.087100 0.157698 -0.134709 -0.192863
+22.281652 158.083267 2.035510 3.618756 12.252890 -9.076368 -6.690907 -5.411732 1.122130 -18.549414 5.688759 42.417320 -0.538027 0.242453 -0.073322 0.554020 0.229933 0.479347 4.936792 3.344814 -21.383074 1.699067 -0.449997 2.620759 -0.284977 -0.039939 0.098484 0.144329 0.004372 0.199168 9.816666 -6.962046 7.528543 -0.039398 -4.484248 9.457363 -3.540447 -3.473099 9.998437 -6.029660 0.806877 8.952204 -2.826485 -1.948157 -10.763220 -11.109665 9.095212 -6.498713 -30.926548 0.077262 -4.825849 7.688038 -24.054075 -3.533066 0.132304 -0.169422 0.593304 -0.095621 0.161164 0.183734 4.921353 -6.842754 -10.428096 23.844744 8.481438 -4.067387 -2.322381 12.109526 -1.006630 -0.362359 0.050860 -0.103329 0.180925 -0.129467 -0.191675
+21.957394 158.036362 1.142491 3.550957 14.287050 -8.726614 -6.379864 -5.428999 0.794932 -17.746920 5.337739 42.294090 -0.535887 0.226656 -0.084761 0.580355 0.268597 0.482841 4.350528 3.155591 -21.945658 1.090674 -0.427852 1.924945 -0.299845 -0.040489 0.085117 0.164848 -0.009739 0.206339 9.103741 -6.473783 7.299942 -0.109634 -4.198224 9.543425 -3.346781 -3.215122 10.306419 -5.728807 -0.407918 9.457000 -2.026471 -3.029159 -11.204853 -12.260705 8.086427 -7.409365 -32.157204 -2.181705 -4.767282 6.970241 -24.860491 -3.664497 0.148826 -0.147639 0.590159 -0.109668 0.176054 0.190158 6.565689 -5.866500 -10.769029 25.746321 8.863983 -4.256690 -1.788428 11.721493 -1.041462 -0.361173 0.037906 -0.084140 0.174698 -0.139571 -0.180529
+21.600687 157.879700 0.259337 3.490875 16.290594 -8.369267 -6.123561 -5.512448 0.225715 -16.835335 4.993694 42.538658 -0.529575 0.207246 -0.086186 0.615729 0.312163 0.498897 3.516533 3.003710 -22.705107 0.668865 -0.408122 1.784638 -0.314774 -0.037352 0.088549 0.183948 -0.024658 0.213033 8.206921 -5.884849 7.235759 -0.100704 -3.860188 9.605570 -2.969213 -2.920262 10.506064 -5.384141 -1.912697 9.630924 -1.621377 -4.116765 -11.796526 -13.357919 6.874176 -8.138259 -33.406586 -4.287539 -4.698488 5.737362 -26.136980 -3.716217 0.166870 -0.136341 0.588231 -0.119701 0.193111 0.204740 7.898942 -4.715439 -10.719953 27.507015 9.022906 -4.338861 -0.610406 11.896057 -1.024677 -0.364636 0.026022 -0.063349 0.172629 -0.162706 -0.171987
+21.222399 157.739349 -0.618976 3.340810 18.523157 -8.042706 -5.865916 -5.697076 -0.416960 -15.923670 4.634014 42.836346 -0.536444 0.210563 -0.089110 0.599900 0.297343 0.479028 2.465173 2.803395 -23.360516 0.585940 -0.401643 1.831574 -0.303996 -0.036967 0.085269 0.181694 -0.016078 0.199682 7.528837 -5.509830 7.462965 -0.149009 -3.666417 9.473260 -2.767115 -2.749368 10.227280 -5.084553 -2.815793 9.776386 -0.847751 -4.947966 -11.539871 -14.476995 5.471475 -8.519284 -34.511204 -5.950130 -4.605996 4.380730 -27.435734 -3.686648 0.166957 -0.139515 0.586323 -0.121440 0.179011 0.199476 9.410004 -3.304622 -10.528950 29.007563 9.310977 -4.369510 0.753923 12.473527 -0.974835 -0.365232 0.031272 -0.074194 0.179254 -0.149632 -0.170004
+20.778021 157.671585 -1.532560 3.287005 20.838064 -7.844714 -5.518689 -5.826994 -0.980344 -15.070426 4.300341 42.896290 -0.534537 0.212007 -0.085149 0.596286 0.289448 0.476515 1.264955 2.684575 -24.172754 0.426945 -0.366344 2.753053 -0.300671 -0.028023 0.083905 0.178467 -0.011404 0.191490 6.621900 -5.139517 7.803907 -0.199702 -3.535221 9.445150 -2.494071 -2.652894 10.059346 -4.773354 -3.821144 10.110120 -0.015896 -5.843062 -11.397410 -15.678273 3.577830 -8.493804 -35.572437 -7.095898 -4.682981 3.000078 -29.461643 -3.713570 0.172351 -0.146007 0.587641 -0.127482 0.174582 0.198836 11.145553 -1.264125 -10.237552 30.348742 9.749285 -4.419700 1.657949 12.984951 -0.966791 -0.360956 0.037398 -0.078080 0.186802 -0.148174 -0.167314
+20.261976 157.702515 -2.481036 3.256681 22.984734 -7.872527 -5.162873 -5.859348 -1.408191 -14.382940 4.094215 42.937103 -0.539098 0.207744 -0.082608 0.600674 0.291186 0.468888 -0.207190 2.664389 -25.038120 0.797997 -0.322369 4.699804 -0.302919 -0.010965 0.090315 0.180230 -0.005879 0.179071 5.797762 -4.752203 8.556449 -0.271644 -3.353103 9.426964 -2.341650 -2.505987 9.730827 -4.784332 -4.614678 10.739384 1.244864 -6.861841 -11.686688 -16.594900 1.732789 -8.498295 -36.596138 -8.472041 -4.625274 1.232092 -31.370882 -3.566630 0.189349 -0.161561 0.603688 -0.141620 0.176454 0.207889 12.708038 1.014437 -10.021794 31.675770 10.688722 -4.352881 2.392825 12.995306 -0.928877 -0.362566 0.053165 -0.085564 0.205371 -0.149643 -0.162833
+19.763088 157.805084 -3.386162 2.829273 25.304111 -7.843194 -4.616441 -5.980406 -2.100504 -13.393435 3.729141 42.964241 -0.530055 0.178920 -0.086158 0.605119 0.311920 0.469364 -1.889207 2.667138 -26.108799 1.948417 -0.339328 6.981335 -0.311025 0.009784 0.090043 0.183934 -0.022455 0.166879 5.214069 -4.490573 9.074948 -0.133009 -3.294852 9.350096 -1.899279 -2.502079 9.444696 -4.713366 -5.866538 11.395557 1.495125 -7.722886 -12.131602 -17.307749 0.277800 -8.493655 -38.308933 -10.029378 -4.505558 -0.954443 -33.294331 -3.227742 0.209214 -0.176359 0.606336 -0.159298 0.193554 0.207459 13.183927 3.151016 -9.768736 33.386993 11.832898 -4.183924 3.019323 13.261099 -0.913734 -0.352236 0.068232 -0.076462 0.214183 -0.157738 -0.155035
+19.322313 157.937271 -4.257771 2.484049 27.977200 -7.751638 -4.311097 -6.176940 -2.884927 -12.196054 3.263193 43.070892 -0.541206 0.169968 -0.093550 0.598434 0.308080 0.448574 -3.990055 2.576065 -27.252754 3.420485 -0.471439 9.995322 -0.312175 0.030379 0.093349 0.182591 -0.019568 0.149795 4.723536 -4.344171 9.331675 -0.129103 -3.378669 9.279859 -1.612962 -2.613530 9.213121 -4.821572 -6.535404 12.433414 2.953179 -8.676460 -12.525736 -17.024481 -0.717313 -8.231140 -41.065678 -11.602469 -4.369796 -2.967537 -36.218510 -3.001929 0.227194 -0.198091 0.630069 -0.177501 0.196757 0.209210 13.138674 5.245288 -9.554245 35.690285 13.279067 -3.963859 3.592250 13.918047 -0.905734 -0.354573 0.095316 -0.088315 0.233263 -0.148248 -0.152201
+18.907169 158.158401 -4.995666 1.865449 30.718611 -7.708497 -3.815501 -6.392940 -3.783800 -10.971092 2.815003 43.304989 -0.534970 0.167854 -0.084985 0.606785 0.311432 0.452643 -6.223923 2.558901 -28.502472 5.851733 -0.823917 13.767307 -0.316229 0.043373 0.094435 0.182772 -0.014767 0.144054 4.592986 -4.333395 9.320169 -0.114940 -3.472768 9.247038 -1.439753 -2.778500 9.155622 -4.868971 -7.447747 13.027915 3.870798 -9.664237 -12.613807 -17.200693 -1.608177 -8.112102 -43.106060 -13.259000 -4.006097 -5.770580 -39.520477 -2.308715 0.240749 -0.203619 0.634872 -0.188184 0.199478 0.218125 13.289014 7.497856 -9.622794 37.697971 15.197155 -3.475591 4.001468 13.937556 -0.895281 -0.348751 0.100176 -0.087928 0.244808 -0.156016 -0.145232
+18.343428 158.626251 -5.854055 1.354488 33.492352 -8.010381 -3.657483 -6.613099 -4.373858 -9.373219 2.160142 43.303696 -0.573775 0.160410 -0.114128 0.631004 0.333316 0.470132 -8.697450 2.512557 -29.453897 9.226365 -1.555251 18.160492 -0.334760 0.066750 0.087823 0.200052 -0.042485 0.139982 4.095198 -4.177905 10.162710 0.115392 -3.627291 9.343244 -0.937899 -2.929913 9.061774 -4.925704 -8.555503 13.678267 4.634355 -10.417125 -14.409803 -18.023531 -3.492726 -7.916337 -44.503078 -14.743550 -3.742747 -8.245678 -43.131371 -1.610453 0.262669 -0.227501 0.681649 -0.217857 0.224401 0.210756 13.618281 10.377492 -9.356873 38.796154 16.679996 -3.279438 4.152055 15.609466 -0.961879 -0.365449 0.127999 -0.095035 0.258298 -0.153785 -0.161440
+17.621674 159.201157 -6.829165 0.799060 36.031700 -8.099056 -3.281379 -6.738570 -5.465189 -7.982557 1.680459 43.266087 -0.566937 0.115050 -0.133147 0.660233 0.386010 0.471406 -11.225476 2.588183 -30.847837 13.429811 -2.744313 22.998085 -0.355908 0.096970 0.083642 0.217307 -0.070753 0.133214 3.846922 -3.873697 10.806840 0.361600 -3.546401 9.458077 -0.480839 -2.924969 9.071146 -5.239531 -9.521555 14.326625 6.134569 -11.360838 -16.173449 -17.974445 -5.779720 -7.498515 -46.566113 -16.905218 -3.198153 -9.844667 -46.421879 -1.112694 0.299874 -0.225781 0.696549 -0.253184 0.255485 0.214203 13.410293 13.657501 -8.780685 39.728176 17.928946 -3.231884 3.462525 18.221159 -1.250502 -0.358443 0.144400 -0.071750 0.262768 -0.165974 -0.149281
+17.171635 159.773895 -7.603308 -0.032820 38.894947 -8.414475 -2.958220 -6.839622 -6.135656 -6.211365 0.963992 42.859600 -0.571935 0.092545 -0.145623 0.692347 0.433616 0.478547 -13.706189 2.448046 -31.291513 18.053425 -4.395908 26.954058 -0.385581 0.120470 0.080358 0.237111 -0.084937 0.139118 4.136022 -3.832840 10.867440 0.535374 -3.585797 9.711209 -0.327272 -2.992548 9.469954 -5.224710 -10.536887 14.897994 7.549404 -12.029225 -18.052181 -17.926872 -8.213971 -6.929181 -48.450596 -19.065207 -2.565194 -11.832041 -51.055241 -0.311980 0.324362 -0.234166 0.723374 -0.279122 0.291380 0.226534 12.128415 17.020140 -8.116495 40.463005 19.111759 -3.092690 3.265156 21.091084 -1.503549 -0.363474 0.163179 -0.058007 0.277903 -0.177584 -0.140358
+16.689190 160.645325 -8.259390 -0.986604 41.164921 -9.050812 -2.338379 -6.536524 -6.123587 -4.565276 0.398401 41.492256 -0.598095 0.095629 -0.174320 0.713298 0.455097 0.479037 -15.436587 2.733941 -31.114683 22.152109 -6.075501 30.274235 -0.401053 0.138537 0.068341 0.251989 -0.092328 0.146244 4.486831 -3.650137 10.774572 0.768417 -3.542802 10.123421 -0.219267 -2.918562 10.168700 -5.561408 -11.080263 15.945494 9.239957 -12.714532 -19.686199 -17.813103 -11.346509 -6.293537 -49.703735 -21.218960 -1.877871 -13.144697 -54.774200 0.236067 0.335323 -0.241181 0.755782 -0.301869 0.309840 0.221561 11.018990 20.890614 -7.532472 40.089783 20.403116 -3.088251 2.579782 23.512043 -1.844808 -0.375570 0.188226 -0.054556 0.289759 -0.164476 -0.140813
+16.066856 161.580490 -8.824518 -1.853320 43.062630 -9.441301 -1.339475 -6.037842 -6.332682 -3.387012 0.132577 39.805664 -0.619465 0.109737 -0.177787 0.722688 0.471034 0.472999 -16.483078 3.285605 -30.935383 25.272814 -7.653162 33.403931 -0.400728 0.145437 0.068078 0.273476 -0.072611 0.136654 4.428743 -3.256482 10.213517 0.996265 -3.393944 10.690474 0.089975 -2.768482 11.277493 -5.710121 -11.815079 16.473843 10.322266 -13.455010 -20.496716 -17.237873 -14.124852 -6.098426 -50.826546 -24.112024 -0.599019 -13.688970 -57.544189 0.584880 0.330893 -0.263808 0.761597 -0.302538 0.305991 0.227099 9.987198 23.809050 -7.424174 38.840832 21.946421 -3.125399 2.746468 27.756496 -2.139348 -0.388964 0.203511 -0.066864 0.324018 -0.157679 -0.133831
+15.431815 162.631470 -9.463816 -3.073774 44.850723 -9.905937 -0.344240 -5.578189 -6.716943 -1.911630 -0.279858 37.920002 -0.623508 0.096479 -0.165812 0.744080 0.513826 0.461181 -16.938362 3.848876 -30.790859 28.068054 -9.270862 36.143795 -0.402151 0.150942 0.079236 0.306245 -0.052972 0.110588 5.211053 -3.336648 9.509777 1.031199 -3.293776 11.254478 -0.178179 -2.707068 12.427032 -5.961352 -12.370652 16.709988 11.296601 -14.166090 -21.112555 -16.655561 -16.645897 -5.943945 -51.455486 -26.810942 0.572534 -13.033577 -60.670258 0.385723 0.345693 -0.273928 0.750689 -0.306151 0.298678 0.253007 8.647395 26.343460 -7.789784 38.213287 23.906502 -3.027874 2.377561 31.528460 -2.609058 -0.397251 0.200191 -0.074216 0.363389 -0.172271 -0.115292
+14.853101 163.563324 -10.080289 -3.933380 46.278973 -9.955809 0.413590 -5.102113 -7.086916 -0.932157 -0.491077 35.874622 -0.639863 0.111243 -0.174512 0.760998 0.540621 0.437238 -17.193575 4.362242 -30.709711 30.442806 -10.772586 38.339657 -0.402071 0.133349 0.080059 0.331685 -0.029798 0.119525 6.140442 -3.352044 8.535958 0.901594 -3.103024 11.807942 -0.672497 -2.527911 13.692346 -6.163641 -12.825690 16.548044 12.354906 -14.784432 -21.978983 -15.088415 -18.759619 -6.019587 -52.421284 -29.914448 2.272311 -11.611681 -64.063637 -0.263262 0.338116 -0.257264 0.743823 -0.298166 0.289532 0.268452 7.017131 28.010439 -8.476720 38.743263 26.015669 -2.845664 1.119649 35.386250 -3.466334 -0.418539 0.190524 -0.071105 0.376006 -0.163420 -0.099423
+14.262692 164.465393 -10.662485 -4.394501 47.968857 -9.604960 0.657915 -4.733649 -7.321080 0.089162 -0.752888 33.365192 -0.668674 0.165574 -0.183821 0.742590 0.521443 0.398544 -17.627085 4.568457 -30.288893 32.563927 -12.124274 39.766102 -0.385010 0.102899 0.073843 0.338087 0.019461 0.138895 6.942648 -3.350641 7.566299 0.700247 -2.982768 12.279763 -1.249782 -2.383368 14.820922 -6.096032 -13.441024 15.856439 13.158281 -15.428647 -22.558655 -13.408677 -20.584801 -6.537934 -52.518108 -33.455959 4.535246 -10.482761 -66.780449 -0.520075 0.292532 -0.255472 0.731951 -0.268361 0.261156 0.263346 5.890178 28.982708 -9.354383 39.226479 28.550785 -2.334633 -0.334999 38.468678 -4.334949 -0.444521 0.194979 -0.081779 0.392443 -0.121912 -0.086680
+13.720578 165.351089 -11.217707 -4.691928 49.484642 -9.036269 0.941338 -4.341800 -7.423440 0.383917 -0.763143 30.667219 -0.694495 0.208821 -0.179007 0.735090 0.526543 0.351110 -17.716873 4.716155 -29.748976 33.810562 -13.147319 41.044502 -0.360803 0.067176 0.078932 0.368001 0.079686 0.134477 7.611152 -3.423563 6.156785 0.419732 -2.923985 12.849116 -1.851515 -2.331616 16.350416 -5.897556 -13.818178 14.803720 14.000675 -16.115679 -22.806025 -11.285778 -21.951818 -7.596064 -52.932182 -37.586761 7.357834 -7.134709 -67.640076 -2.259878 0.257978 -0.250388 0.700944 -0.234961 0.218763 0.279734 4.518273 29.397842 -10.628153 39.539623 31.923159 -1.339439 -2.295041 41.609447 -5.461801 -0.473009 0.181154 -0.101665 0.427437 -0.097784 -0.064249
+13.206133 166.135834 -11.689218 -4.721579 50.519264 -8.231894 1.369676 -3.931972 -7.428536 0.069967 -0.589116 27.996649 -0.705249 0.243011 -0.159639 0.734859 0.538727 0.313279 -17.462400 4.917012 -29.297411 34.568932 -14.030864 42.485584 -0.340604 0.034988 0.090503 0.395314 0.141447 0.127457 7.829512 -3.335648 4.849782 0.209402 -2.813303 13.250191 -2.196557 -2.252837 17.614441 -5.549158 -14.082881 13.704345 14.663925 -16.709972 -22.696003 -8.531152 -23.391979 -8.679949 -53.343193 -41.482845 10.101558 -1.912550 -67.067848 -5.372011 0.229854 -0.244411 0.663624 -0.201570 0.178161 0.305315 2.932108 29.817005 -11.610174 39.405567 34.995018 -0.163858 -3.843818 44.598351 -6.436661 -0.494800 0.160975 -0.116155 0.464488 -0.087584 -0.037675
+12.806966 166.813156 -12.108746 -4.765068 51.619850 -7.472770 1.687264 -3.538800 -7.139813 -0.021548 -0.550014 24.713989 -0.711897 0.259648 -0.139709 0.757639 0.578440 0.300162 -16.783701 4.947324 -28.501793 34.548111 -14.707168 43.973442 -0.337574 -0.001493 0.097800 0.436337 0.177332 0.123631 7.923903 -3.287674 3.454765 0.036565 -2.742622 13.537065 -2.399040 -2.254027 18.830299 -4.749619 -14.726138 12.635323 14.308443 -17.039587 -22.261341 -6.170968 -24.408869 -9.756115 -53.373894 -45.434513 12.881877 4.733017 -65.473183 -9.183408 0.214087 -0.222208 0.624443 -0.173738 0.153593 0.339315 0.880408 30.138102 -12.370649 39.587921 37.750633 1.172552 -6.238890 47.454464 -7.925097 -0.517609 0.118406 -0.120527 0.489027 -0.100248 -0.018800
+12.485918 167.349182 -12.455145 -4.546903 52.472927 -6.440916 1.790508 -3.155471 -6.712024 0.006666 -0.538840 21.043997 -0.741445 0.317358 -0.127913 0.740768 0.552199 0.279518 -16.014681 4.871949 -27.506166 34.232586 -15.069905 44.868546 -0.301013 -0.040530 0.099281 0.454912 0.228842 0.111434 8.023895 -3.151315 2.042318 -0.236207 -2.600844 13.690130 -2.729212 -2.113617 19.842817 -4.128011 -15.161515 11.507362 13.993971 -17.594133 -21.337301 -3.516108 -24.910122 -10.827344 -53.465519 -49.066177 15.660485 10.845249 -62.916119 -12.373714 0.171895 -0.221116 0.588836 -0.134309 0.096760 0.341677 -0.983713 29.978006 -12.921232 39.739288 40.512497 2.811495 -8.581274 50.315239 -9.412786 -0.540438 0.094500 -0.153488 0.514443 -0.079074 -0.016819
+12.185399 167.680847 -12.770546 -4.199746 53.300293 -5.104796 2.011855 -2.797463 -6.613676 -0.297071 -0.445910 17.846504 -0.766706 0.393060 -0.121096 0.698258 0.501681 0.214382 -15.122671 4.816261 -26.472750 33.415573 -15.000266 45.211437 -0.256473 -0.096737 0.093961 0.458889 0.304505 0.116285 8.007273 -2.930420 0.612796 -0.493445 -2.432881 13.695381 -2.954969 -1.909390 20.669956 -3.729801 -15.489372 10.222374 14.363081 -18.483309 -20.452068 -0.516053 -24.818974 -11.770927 -55.440075 -52.854946 19.578350 17.035805 -60.294605 -15.535601 0.114273 -0.199549 0.545407 -0.085207 0.027928 0.342457 -2.414251 29.132845 -13.523192 40.007385 43.564026 4.947254 -10.685788 52.179882 -10.543545 -0.563612 0.071504 -0.182300 0.530502 -0.029085 0.001265
+11.827415 167.908798 -13.025373 -3.258121 54.340790 -3.223927 1.884056 -2.521969 -6.641483 -0.738588 -0.356498 15.033443 -0.786429 0.462044 -0.113364 0.672532 0.466679 0.157387 -14.276792 4.649783 -25.241364 31.972466 -14.392402 44.932030 -0.219025 -0.165812 0.096303 0.466160 0.372005 0.135307 7.085906 -2.563354 -0.670349 -0.628186 -2.313606 13.572267 -2.657947 -1.830939 21.292379 -2.972504 -15.984257 8.863647 14.277975 -19.240900 -19.270519 2.247758 -24.691788 -12.692981 -57.466736 -56.847778 24.138208 21.543144 -57.074776 -17.199856 0.058151 -0.159590 0.499103 -0.029841 -0.035013 0.353270 -3.120981 28.574865 -13.730799 39.697868 46.499565 6.885114 -13.931258 53.517982 -12.202740 -0.594531 0.029750 -0.197572 0.529147 0.007511 0.017945
+11.576501 168.005081 -13.240208 -2.372653 54.892162 -1.302026 1.798462 -2.161704 -6.592886 -1.374662 -0.240132 12.139935 -0.785975 0.504077 -0.088770 0.659712 0.475048 0.084610 -13.029270 4.599431 -23.689720 29.901279 -12.982606 43.378571 -0.176936 -0.230933 0.113545 0.496891 0.453736 0.130870 6.270736 -2.257029 -2.202848 -0.801386 -2.127399 13.521660 -2.435039 -1.698844 22.225773 -2.369886 -16.387335 7.009543 14.367639 -20.225208 -18.367674 4.681623 -23.712393 -13.480686 -61.294563 -60.470791 29.778421 25.807856 -54.062775 -18.728111 0.013014 -0.118481 0.420013 0.027117 -0.106332 0.385430 -3.867907 27.760944 -14.162540 39.734589 49.959095 9.323121 -17.782619 54.002815 -14.106361 -0.620794 -0.021250 -0.204888 0.553346 0.026988 0.059859
+11.298621 167.994858 -13.368040 -0.792905 55.117901 0.992292 1.331171 -1.825020 -6.295365 -2.043552 -0.140157 9.480446 -0.806420 0.542573 -0.069253 0.657416 0.492128 0.048487 -12.006227 4.464552 -21.888779 27.517517 -11.207448 40.990120 -0.151873 -0.275528 0.123679 0.536979 0.516732 0.115415 4.665720 -1.940511 -3.655426 -1.080963 -2.009114 13.416307 -2.087149 -1.627495 23.073221 -1.301061 -16.551044 5.809267 13.975609 -20.398928 -17.605257 7.058963 -22.867157 -14.088727 -64.752594 -63.495991 35.174774 29.102512 -50.911228 -19.560602 -0.026070 -0.111168 0.369820 0.071671 -0.156600 0.410573 -5.647641 27.745802 -14.611363 40.926132 53.300507 11.981313 -22.539183 52.508587 -16.325834 -0.650313 -0.053849 -0.229089 0.595152 0.036668 0.080354
+11.044272 167.863754 -13.506510 0.689970 55.309681 3.017497 0.712117 -1.525772 -5.918084 -2.489396 -0.095539 7.264932 -0.796555 0.562162 -0.039260 0.664602 0.518503 -0.000107 -10.791027 4.340140 -19.392477 24.839870 -8.935286 36.903790 -0.134061 -0.318434 0.134922 0.569795 0.577360 0.106810 3.188261 -1.623040 -4.846014 -1.245507 -1.824696 13.449485 -1.734775 -1.503938 23.828091 -0.655398 -16.558241 4.449826 14.372648 -20.930107 -17.078518 9.612616 -22.311209 -14.395437 -66.392403 -65.933136 39.015152 32.935078 -49.109322 -21.000660 -0.040477 -0.070331 0.312961 0.102478 -0.202122 0.452650 -6.989347 28.121992 -15.001750 39.929863 56.287239 13.442595 -25.634418 50.352642 -17.219332 -0.663450 -0.102301 -0.232946 0.620826 0.034268 0.118344
+10.683971 167.607010 -13.641575 2.301018 55.495644 5.225068 0.136649 -1.301191 -6.003906 -3.139930 -0.030604 5.361740 -0.791643 0.598247 -0.007455 0.636454 0.498858 -0.056506 -9.415196 4.088541 -16.926962 21.280912 -6.608449 32.432419 -0.101092 -0.366363 0.156036 0.573975 0.645436 0.102147 1.486730 -1.276938 -5.811574 -1.339177 -1.625680 13.308718 -1.164265 -1.270748 24.099091 0.122562 -16.696753 3.312419 13.982677 -21.384287 -15.820205 11.485244 -22.223478 -14.397874 -67.658150 -67.822037 42.112904 35.702618 -47.122803 -21.767176 -0.081452 -0.054435 0.259550 0.152341 -0.258025 0.476082 -8.356370 28.885790 -14.853574 37.338409 58.112141 13.393728 -28.892778 48.827816 -18.279493 -0.682336 -0.132696 -0.248042 0.640709 0.051143 0.143560
+10.433165 167.313736 -13.822708 3.085291 55.201031 6.583440 -0.182547 -1.107644 -6.131724 -3.486523 -0.002874 3.804310 -0.774682 0.613866 0.017077 0.615278 0.481965 -0.093948 -7.659652 3.835726 -14.356615 17.591459 -4.572694 27.843292 -0.079045 -0.387056 0.167921 0.568818 0.686795 0.096004 0.669106 -0.811065 -6.553516 -1.355054 -1.195394 13.194625 -0.869005 -0.763251 24.211855 0.569497 -17.043695 2.612498 14.208424 -21.997995 -15.270849 12.650104 -22.158976 -14.445641 -70.607552 -69.651314 46.479816 36.791348 -44.981388 -21.559603 -0.098274 -0.040712 0.222557 0.175401 -0.292177 0.490606 -9.119526 28.959354 -14.593018 34.873951 59.328346 13.131479 -30.959402 48.125580 -18.858667 -0.681409 -0.148675 -0.252443 0.651665 0.059984 0.165620
+10.168530 166.994415 -13.932798 3.440435 54.120106 7.253881 -0.327975 -0.966965 -6.204790 -3.845398 0.030914 2.937017 -0.768880 0.620936 0.033052 0.599479 0.476993 -0.131315 -5.748344 3.571602 -11.632558 13.994715 -2.931813 23.635168 -0.055769 -0.409885 0.177687 0.576763 0.718004 0.079172 0.054127 -0.220166 -7.222698 -1.366285 -0.596868 13.257779 -0.665200 -0.087652 24.573917 0.785538 -17.182543 1.930159 14.138578 -22.439123 -14.657471 13.215646 -22.514431 -14.361300 -72.916046 -71.137932 49.822723 38.065071 -42.924686 -21.498182 -0.108553 -0.025506 0.186367 0.194525 -0.328299 0.503421 -9.584297 29.608854 -14.482474 32.095570 60.248268 12.352732 -31.489964 47.351395 -18.650467 -0.685298 -0.170123 -0.262035 0.663012 0.066536 0.182081
+9.876453 166.776535 -14.079514 3.705465 52.135876 7.563731 -0.634769 -0.985742 -6.384923 -3.967617 0.028612 2.851323 -0.733407 0.593263 0.055491 0.613572 0.508526 -0.152162 -4.228597 3.184979 -9.141521 10.468566 -1.651037 19.803923 -0.055230 -0.414818 0.191513 0.586018 0.730800 0.069975 -0.178917 0.590098 -7.646791 -1.499009 0.337605 13.456400 -0.790496 0.859650 24.964397 0.559576 -16.949734 1.702214 14.728318 -22.738453 -14.576132 13.943546 -22.919796 -14.628919 -73.628769 -72.062859 51.199928 37.536575 -41.313354 -20.662922 -0.086744 0.005011 0.156555 0.192519 -0.335725 0.534067 -9.482147 30.307566 -14.418263 30.040119 61.405636 11.847075 -31.358892 46.619648 -18.184090 -0.672619 -0.195990 -0.244785 0.664581 0.044254 0.210639
+9.541223 166.600311 -14.281933 3.897967 49.956551 7.945073 -0.835268 -0.994800 -6.756844 -4.159813 0.035783 2.472673 -0.761857 0.639733 0.057832 0.585431 0.472841 -0.191228 -3.390173 2.775713 -7.327933 7.811741 -0.870193 16.256784 -0.041512 -0.421091 0.191806 0.583036 0.775388 0.068135 0.157326 1.451674 -7.918721 -1.763887 1.283587 13.637240 -1.321790 1.970589 25.279144 0.132657 -17.040478 1.363859 15.331385 -23.328138 -15.201108 14.069064 -23.202278 -14.966962 -74.900719 -72.624817 52.846272 36.863003 -40.433186 -20.076008 -0.111019 -0.022263 0.165581 0.204544 -0.358252 0.534861 -9.620315 30.997015 -14.753606 29.495163 62.514088 11.926205 -30.272646 45.762093 -17.296398 -0.689332 -0.170738 -0.273464 0.701419 0.081499 0.218607
+9.165306 166.542740 -14.588821 4.312086 48.742527 8.651112 -1.267901 -1.120650 -7.363928 -3.927954 -0.017736 2.007799 -0.784652 0.667005 0.053832 0.589126 0.479262 -0.204507 -3.074463 2.334141 -6.427413 6.136187 -0.500483 13.593515 -0.039706 -0.431810 0.183195 0.601509 0.798533 0.070578 0.326973 1.923448 -8.098138 -1.979100 1.878178 13.755208 -1.468070 2.656774 25.650402 -0.320981 -17.012539 0.838655 15.417466 -23.638208 -15.848079 13.990120 -23.491034 -15.341755 -77.930733 -72.656303 55.037014 36.375736 -39.230991 -19.693182 -0.123361 -0.026028 0.163329 0.210050 -0.368757 0.539255 -9.793149 31.793833 -15.295434 29.589550 63.675911 12.513328 -28.640936 45.407253 -16.345547 -0.701877 -0.169262 -0.283468 0.725509 0.097339 0.227777
+8.800166 166.512451 -14.923620 4.501782 47.991787 9.502778 -1.567154 -1.301594 -8.329415 -3.535054 -0.081842 1.741989 -0.802597 0.684757 0.039981 0.602603 0.494486 -0.214386 -3.045985 2.127106 -6.651189 5.411744 -0.371149 12.115112 -0.035919 -0.454349 0.175064 0.621735 0.803925 0.082878 0.959851 2.374315 -8.147620 -2.129027 2.486639 13.625222 -1.678009 3.319854 25.686594 -0.743208 -17.362083 0.332323 15.154826 -24.157352 -16.242849 13.197869 -23.827110 -15.367462 -84.174477 -72.335609 59.836182 36.009281 -38.454174 -19.556496 -0.131846 -0.004850 0.152749 0.216757 -0.378459 0.541594 -10.089988 32.153591 -16.014200 31.557972 64.344025 14.306068 -25.902817 45.694057 -15.074304 -0.716068 -0.186516 -0.277857 0.722627 0.107022 0.234166
+8.586409 166.435776 -15.205557 4.357199 48.056946 10.202083 -1.541206 -1.458974 -9.371375 -3.338039 -0.145400 1.436439 -0.790205 0.650547 0.035060 0.640863 0.551252 -0.195058 -2.866284 1.915725 -7.251720 5.079064 -0.357461 11.291877 -0.051994 -0.445918 0.171395 0.646115 0.779552 0.081174 2.122202 2.365496 -8.087042 -2.359376 2.746652 13.304601 -2.086706 3.539975 25.337971 -1.233855 -17.532305 0.141490 15.119608 -24.367640 -17.006695 12.299326 -24.492140 -15.525284 -87.916679 -71.367073 61.343941 34.485294 -36.580051 -18.552229 -0.104693 0.010584 0.144377 0.198554 -0.358704 0.551563 -10.357691 32.372093 -16.816174 35.862228 64.677437 17.374866 -22.408247 45.315441 -13.420506 -0.707343 -0.200197 -0.252300 0.719723 0.081239 0.245471
+8.365909 166.348557 -15.287476 4.481395 48.717144 11.229159 -1.506186 -1.746563 -10.662601 -3.187374 -0.194939 1.672659 -0.790696 0.653744 0.050814 0.622708 0.528947 -0.202562 -3.029966 1.665542 -8.089219 5.585807 -0.538036 10.837866 -0.044540 -0.434963 0.185036 0.634671 0.792574 0.064563 2.281876 2.203046 -8.005975 -2.511377 2.668709 12.764715 -1.892890 3.375859 24.415306 -1.564923 -17.423315 0.330084 15.106267 -24.453798 -16.821606 11.703501 -25.013308 -15.621318 -90.749596 -69.434044 60.911686 32.497971 -34.802826 -17.526775 -0.104625 -0.021541 0.152061 0.200787 -0.365619 0.554622 -9.781490 32.639088 -17.248283 41.267487 64.379097 21.050037 -17.403309 45.503872 -11.094868 -0.706645 -0.182058 -0.271120 0.740292 0.082561 0.243460
+8.143301 166.261108 -15.231646 4.537762 49.026669 11.842216 -1.513544 -1.891543 -11.292871 -2.788465 -0.261638 1.423785 -0.774746 0.612598 0.033162 0.658000 0.571083 -0.164493 -3.255824 1.469867 -8.872176 6.203793 -0.732421 11.028582 -0.070961 -0.409952 0.169279 0.642828 0.742670 0.071686 2.249299 2.036830 -7.920214 -2.575247 2.564997 12.438123 -1.540122 3.139765 23.828650 -2.026118 -17.326401 0.966563 15.329157 -24.199612 -17.587408 10.904853 -25.179010 -15.937105 -92.720840 -67.124458 58.881336 30.363918 -32.735668 -16.416487 -0.068388 -0.006885 0.166931 0.166842 -0.325089 0.549229 -9.647424 33.000530 -18.185049 46.914017 63.340549 24.205454 -11.747767 45.353100 -8.513728 -0.685879 -0.183125 -0.241217 0.716831 0.056860 0.240440
+7.919151 166.182098 -15.086643 4.882562 49.088245 12.560188 -1.646205 -1.994519 -11.730253 -2.593798 -0.276948 1.103996 -0.783290 0.629875 0.025744 0.622093 0.511723 -0.169862 -3.661989 1.384174 -9.660918 6.778508 -0.931180 11.547165 -0.064407 -0.396727 0.162346 0.609184 0.738423 0.071848 1.721237 2.052161 -7.859854 -2.630929 2.439674 12.125605 -1.150576 2.843761 22.986265 -2.266062 -17.056347 1.921646 15.527466 -23.977873 -17.125113 10.585032 -25.467415 -16.166025 -92.096764 -64.311882 54.587063 27.116297 -32.591377 -15.272180 -0.074578 -0.027446 0.194861 0.161210 -0.325202 0.527176 -8.040195 34.027721 -18.237406 52.058891 60.867493 25.269495 -6.801988 44.892387 -6.477385 -0.679810 -0.155272 -0.259965 0.708341 0.080392 0.221564
+7.708000 166.076431 -15.019375 4.891163 49.298996 12.903920 -1.373117 -2.050375 -12.124472 -2.788312 -0.301026 0.887262 -0.781020 0.581281 -0.000643 0.655208 0.545500 -0.116903 -3.786401 1.322249 -10.318563 7.443825 -1.102855 11.907032 -0.095816 -0.355242 0.154380 0.608799 0.674809 0.073234 1.653304 2.060060 -7.563870 -2.557212 2.350304 11.908047 -0.815841 2.471697 22.056047 -2.351642 -17.028824 3.059626 15.872387 -23.246794 -17.891459 9.994926 -25.295576 -16.630726 -90.056297 -61.521477 49.970879 21.031487 -34.317795 -13.115070 -0.034842 -0.041571 0.239237 0.121379 -0.272106 0.512454 -6.797518 34.856380 -19.077749 56.475948 57.286404 24.898460 0.848842 43.729294 -3.297004 -0.665992 -0.133079 -0.240759 0.686760 0.053617 0.199505
+7.558056 166.022339 -14.928993 5.156370 49.299538 13.119983 -1.497503 -2.198920 -12.268657 -2.729464 -0.327182 1.159377 -0.783565 0.555791 -0.023744 0.663726 0.532889 -0.048060 -4.328371 1.219764 -10.495923 8.310390 -1.310449 12.102896 -0.133338 -0.295499 0.140272 0.577394 0.610945 0.086199 1.366414 2.158886 -7.040232 -2.427647 2.258941 11.764637 -0.494538 2.209458 20.906759 -2.444399 -17.329126 4.586859 16.052788 -22.484980 -18.733454 9.007660 -25.980270 -16.963682 -86.752937 -58.920528 45.109226 13.114853 -35.913803 -9.907279 -0.009002 -0.092468 0.312361 0.079502 -0.204796 0.479826 -4.655673 36.298157 -18.884190 57.715847 52.779709 21.508251 7.616702 42.152321 -0.713929 -0.646352 -0.076203 -0.233521 0.669795 0.041403 0.162606
+7.403898 166.014511 -14.856607 5.713187 49.824459 13.451518 -1.743251 -2.458213 -12.548515 -2.618566 -0.363211 1.814877 -0.786483 0.525021 -0.054097 0.661560 0.515255 -0.009823 -4.868898 1.036621 -10.419855 9.133850 -1.507971 12.084392 -0.162641 -0.232021 0.127880 0.544656 0.556157 0.089013 1.125299 2.039922 -6.385442 -2.395841 1.977829 11.655608 -0.446087 1.867340 19.737991 -2.823179 -17.366270 6.628657 17.273310 -21.811930 -19.744745 8.735539 -26.703094 -17.844551 -84.353661 -56.155235 40.941517 4.522118 -34.931519 -6.049644 0.025305 -0.138276 0.387438 0.030916 -0.146052 0.449501 -1.636153 37.035191 -18.094498 59.075771 48.025200 17.861216 13.302143 39.757851 1.084397 -0.624654 -0.011383 -0.230898 0.656818 0.041508 0.134486
+7.308335 165.935120 -14.677050 6.056174 49.621754 13.558562 -1.633479 -2.515436 -12.523724 -3.137474 -0.346319 2.238423 -0.759760 0.460495 -0.074241 0.667497 0.518837 0.034681 -5.284434 1.105066 -10.308366 9.520355 -1.525271 12.103705 -0.192411 -0.162917 0.120529 0.511170 0.485184 0.083934 1.281461 1.884225 -5.767192 -2.425411 1.804386 11.461668 -0.875435 1.796514 18.503225 -3.681761 -17.133041 8.797185 18.042494 -21.308290 -20.588692 7.917057 -27.224052 -18.161848 -81.689880 -52.850731 36.326008 -3.390332 -32.716526 -2.646130 0.077336 -0.172603 0.441501 -0.024765 -0.082742 0.422332 0.328119 37.369125 -16.871666 60.195213 43.979336 15.223101 16.415321 36.569405 1.750872 -0.584668 0.040649 -0.207953 0.632627 0.021520 0.116506
+7.222530 165.790985 -14.424200 6.222787 49.329704 13.502449 -1.433889 -2.583524 -12.568765 -3.683424 -0.320416 2.849767 -0.720465 0.402833 -0.080576 0.651156 0.491172 0.055143 -5.537789 1.240691 -10.269406 9.959090 -1.563341 12.347569 -0.216733 -0.099602 0.118456 0.456482 0.427040 0.081281 1.626643 1.603362 -4.958027 -2.575586 1.579837 11.144292 -1.625325 1.762221 17.042660 -4.523530 -16.530920 10.625171 18.984337 -20.977682 -21.005888 5.460007 -28.200312 -17.344046 -77.952995 -49.019753 30.493645 -8.920753 -29.659513 -0.577901 0.128504 -0.197832 0.493621 -0.076991 -0.029937 0.401339 3.389914 37.707573 -14.546169 60.476727 39.951435 12.292974 17.520931 33.188557 1.663699 -0.540439 0.090417 -0.189045 0.602464 0.010152 0.103146
+7.257911 165.664780 -14.196741 6.068663 48.982750 13.092708 -1.275038 -2.676178 -12.624972 -3.994640 -0.311980 3.708781 -0.688832 0.333421 -0.100070 0.683049 0.515016 0.101976 -5.683858 1.390805 -10.201271 10.577806 -1.652842 12.895468 -0.253211 -0.046870 0.110512 0.435673 0.347642 0.086127 2.665548 1.094023 -4.339436 -2.886705 1.315713 10.892720 -2.841803 1.705405 16.039413 -5.164535 -15.548826 12.096003 19.783546 -20.322725 -21.678541 2.952286 -28.455566 -16.529682 -74.839020 -45.312260 25.573900 -12.479416 -25.392401 0.484022 0.196305 -0.187884 0.541870 -0.137517 0.031081 0.391990 5.444046 37.254150 -12.769888 62.033958 36.442944 10.233200 15.985066 29.018864 0.743560 -0.504401 0.107433 -0.153911 0.558445 -0.024636 0.087492
+7.231276 165.497192 -13.960865 5.475095 48.362885 12.382147 -0.824226 -2.812631 -13.001430 -3.978670 -0.307449 5.025348 -0.661843 0.300261 -0.109850 0.671723 0.496168 0.119168 -5.375193 1.652507 -10.291723 10.698443 -1.700049 13.704402 -0.273456 -0.010510 0.099592 0.399161 0.302346 0.096335 3.733293 0.557089 -3.720694 -3.145124 1.017859 10.615686 -3.931014 1.646758 15.080782 -5.588854 -14.606967 12.909463 19.854031 -19.796961 -21.773750 -0.130361 -28.346601 -15.149776 -71.731926 -41.652863 20.817795 -13.233912 -21.507406 0.455692 0.224275 -0.194925 0.574062 -0.171004 0.072025 0.372647 7.195993 36.783283 -10.976293 62.795464 33.251778 8.260902 13.735017 25.166000 -0.040252 -0.472748 0.135788 -0.134973 0.528030 -0.028566 0.077301
+7.105272 165.311066 -13.613081 5.365870 47.606838 11.957332 -0.538040 -3.057651 -13.304878 -4.192593 -0.304740 6.399856 -0.650173 0.252107 -0.115379 0.677482 0.490095 0.172096 -5.172139 1.813432 -10.405328 10.582556 -1.750540 14.726678 -0.299217 0.050152 0.097882 0.372158 0.239246 0.079847 3.885468 0.141295 -2.767048 -3.308509 0.747439 10.234798 -4.435966 1.553199 13.910095 -6.260769 -14.032915 14.104314 19.477415 -19.237778 -22.176252 -3.312828 -27.336796 -13.724944 -69.054184 -37.969772 16.503103 -12.997993 -18.359997 0.165917 0.270593 -0.237211 0.626109 -0.219446 0.119931 0.352479 8.999011 36.399685 -9.411306 63.235405 29.776789 6.474898 13.439345 20.425074 -0.066040 -0.444366 0.178019 -0.131684 0.520294 -0.051423 0.049051
+7.042147 164.932983 -13.228033 4.824483 46.797722 11.392849 -0.083983 -3.394823 -14.077321 -4.293402 -0.300665 8.456056 -0.634155 0.229818 -0.122591 0.656022 0.450906 0.187335 -4.734184 2.077147 -10.795070 10.579069 -1.847365 15.975374 -0.309027 0.081003 0.093228 0.329289 0.196039 0.084422 4.108383 -0.183911 -1.766162 -3.243842 0.505394 9.733383 -4.532923 1.434235 12.593848 -7.003399 -13.480977 14.350963 18.841665 -19.048658 -22.202625 -6.427839 -25.577593 -11.991044 -67.157104 -34.113861 12.289431 -11.049267 -17.101004 -0.551275 0.293133 -0.251012 0.659670 -0.247789 0.147469 0.329104 11.165059 35.918949 -7.724825 62.905212 26.482115 5.093244 12.972432 14.852954 0.108594 -0.419988 0.206679 -0.124221 0.491589 -0.048909 0.030095
+6.826192 164.504303 -12.779776 4.175603 45.557297 10.881368 0.448597 -3.728263 -15.026337 -4.297830 -0.260523 10.802460 -0.614247 0.221575 -0.113740 0.599972 0.372359 0.181538 -4.251351 2.433985 -11.365546 10.651768 -1.925857 17.210424 -0.291211 0.104595 0.103873 0.267363 0.181165 0.073371 4.026907 -0.312265 -0.623641 -3.172777 0.416439 9.113387 -4.541625 1.421509 11.086587 -7.507260 -12.729448 14.226683 18.121353 -18.877125 -21.256618 -9.175915 -23.504866 -10.361178 -65.151901 -30.284336 8.537227 -9.121081 -16.351141 -1.149289 0.294063 -0.280362 0.676108 -0.254043 0.142960 0.299431 13.987885 34.725685 -5.470861 61.839397 23.133219 3.524296 11.366380 10.243397 0.161910 -0.396158 0.240859 -0.135098 0.471649 -0.032325 0.010899
+6.506155 164.064133 -12.251725 3.412129 43.764992 10.115116 0.985803 -4.085879 -16.042143 -4.126146 -0.223476 13.661530 -0.613642 0.220927 -0.121255 0.561487 0.298364 0.202701 -3.609402 2.853647 -11.758275 10.677591 -1.968582 18.319479 -0.297043 0.129127 0.095936 0.211727 0.141164 0.080597 3.531725 -0.253081 0.892367 -3.065955 0.415709 8.368942 -4.364793 1.486223 9.405380 -7.611533 -12.066051 14.440909 17.307844 -18.250181 -20.697237 -11.348995 -20.444183 -9.172819 -63.677010 -26.558044 5.366391 -6.893565 -15.402795 -1.734634 0.302791 -0.301576 0.724223 -0.274390 0.163824 0.266954 15.546034 32.418419 -3.771429 61.089897 19.951551 2.112639 10.172945 6.662013 0.296893 -0.378721 0.272346 -0.147324 0.437777 -0.020333 -0.026765
+6.270269 163.501343 -11.728296 2.547572 41.254810 9.590787 1.434347 -4.510625 -17.496738 -3.671793 -0.182095 17.110561 -0.587604 0.239457 -0.098354 0.486555 0.185531 0.202223 -3.313914 3.312979 -12.456188 11.156573 -2.086648 19.510107 -0.268126 0.131424 0.100042 0.137139 0.139845 0.078573 3.180734 -0.130206 2.323437 -3.089445 0.572474 7.443666 -4.492903 1.658461 7.478240 -7.205336 -11.211704 13.523434 15.947338 -17.675100 -18.471857 -13.653336 -16.838743 -8.284184 -61.181000 -22.719866 2.679110 -5.590855 -13.611327 -1.902488 0.279948 -0.316662 0.723500 -0.259124 0.141694 0.232700 17.166412 29.084427 -2.380426 59.493000 16.912361 0.801035 8.886380 3.304665 0.423479 -0.351249 0.285523 -0.167323 0.403455 -0.000649 -0.052955
+5.913066 163.001617 -11.229018 1.213431 38.326046 8.412236 2.212956 -4.774106 -19.006292 -3.330813 -0.102043 21.463533 -0.549878 0.203116 -0.101125 0.470505 0.157558 0.225149 -2.369908 3.889864 -12.674294 11.299666 -2.080574 20.550905 -0.277710 0.143380 0.098707 0.092169 0.089359 0.094967 3.141000 -0.008211 4.258471 -3.003833 0.843278 6.515022 -4.620874 1.877322 5.577638 -6.824768 -10.422808 13.283290 14.911944 -16.659822 -17.575895 -14.880026 -12.994343 -7.629478 -59.113651 -19.071966 0.607224 -4.753996 -11.675690 -1.889405 0.294586 -0.296074 0.733408 -0.272156 0.167317 0.211889 16.979078 25.233715 -2.003001 58.096233 14.364386 -0.510373 7.698509 1.706884 0.453945 -0.324445 0.283107 -0.142486 0.343959 -0.012808 -0.072890
+5.397470 162.586990 -10.679737 -0.227933 35.157028 6.861727 3.194799 -4.878402 -20.666231 -2.867561 0.027170 26.923565 -0.537782 0.179553 -0.107601 0.476880 0.162012 0.263674 -0.870204 4.567334 -12.544567 11.073423 -1.961666 21.739981 -0.298687 0.157751 0.097679 0.076028 0.051865 0.112071 2.805073 0.195785 6.161027 -2.921648 1.150901 5.961303 -4.623248 2.137849 4.354261 -5.903542 -9.686723 13.038357 14.175903 -15.188299 -17.623960 -15.228307 -9.128397 -7.554036 -56.767712 -16.037092 -0.813273 -4.627177 -9.664286 -1.740720 0.297891 -0.300012 0.754379 -0.279758 0.202141 0.198200 15.820862 21.832270 -2.592506 56.321861 12.903458 -1.278687 6.751014 -0.140766 0.521406 -0.316811 0.291446 -0.127856 0.316180 -0.028892 -0.093567
+4.567258 162.272659 -10.177400 -1.307575 31.504532 5.101419 4.136148 -4.640971 -22.067869 -2.598397 0.350302 32.738289 -0.563362 0.161129 -0.127968 0.494197 0.179267 0.322679 0.685926 5.363585 -12.062779 10.674849 -1.765763 23.466158 -0.328965 0.191945 0.090683 0.080065 0.005377 0.112212 1.624512 0.736497 8.313964 -2.786476 1.541635 5.643032 -4.202678 2.522297 3.509857 -5.044995 -9.162097 13.436290 13.404222 -13.516983 -18.700151 -15.006967 -5.872342 -7.430754 -54.737816 -13.181705 -1.995807 -4.067081 -8.022627 -1.679808 0.306207 -0.344855 0.806030 -0.301548 0.248960 0.177105 14.090717 19.669712 -3.132192 53.779202 11.851755 -1.879015 6.290861 -1.316035 0.559270 -0.321668 0.327179 -0.136427 0.320980 -0.042366 -0.130047
+3.806163 162.113342 -9.799991 -2.539107 28.322392 2.833482 4.872251 -4.300162 -23.150055 -1.660327 0.401590 38.239227 -0.578022 0.133079 -0.154250 0.524875 0.209181 0.383968 2.411171 5.959274 -10.860471 10.297550 -1.562141 24.708605 -0.363893 0.226103 0.082705 0.082651 -0.050679 0.124605 1.081031 1.220703 11.061692 -2.509348 2.084770 5.352878 -3.891179 3.074405 2.609147 -4.580213 -8.891906 14.238051 12.953568 -12.245547 -20.158567 -15.471665 -3.481658 -7.349738 -52.073566 -10.683299 -2.900753 -3.261326 -6.653798 -1.618655 0.323486 -0.370119 0.855304 -0.329994 0.303045 0.157654 12.743415 17.718288 -3.151638 49.721561 10.354803 -2.680617 6.189994 -1.063249 0.490560 -0.322229 0.356002 -0.125303 0.309838 -0.060494 -0.160120
+3.116638 161.917282 -9.458108 -3.576508 25.685055 0.670709 5.226413 -4.126737 -24.746094 -0.384913 0.198002 44.123356 -0.585848 0.104052 -0.175516 0.532001 0.226030 0.414568 3.902846 6.359382 -9.497768 10.259862 -1.487704 25.945204 -0.382850 0.248775 0.077002 0.080979 -0.092923 0.126200 0.738732 1.671333 13.854104 -2.295930 2.724071 5.140554 -3.725916 3.717514 1.736037 -4.080506 -9.088213 14.627869 12.427448 -11.449990 -21.170031 -15.863491 -1.992991 -7.198258 -49.243698 -8.534172 -3.418180 -2.403185 -4.782040 -1.463233 0.332926 -0.390102 0.882469 -0.347846 0.337877 0.137207 11.418810 16.064615 -2.736591 45.485100 8.325389 -3.542760 5.982856 0.200104 0.376738 -0.320224 0.379267 -0.118529 0.299937 -0.067278 -0.180210
+2.539884 161.656021 -8.998959 -4.476938 22.734089 -1.434413 5.619981 -3.726193 -26.316362 0.458103 0.125947 49.857468 -0.585286 0.097488 -0.174620 0.529123 0.229392 0.428094 5.274849 6.652184 -7.818714 10.122679 -1.367846 27.086338 -0.384313 0.257991 0.081860 0.079427 -0.097722 0.123479 0.380052 2.073292 15.931518 -2.079429 3.274668 5.250958 -3.499412 4.270154 1.402892 -3.867792 -8.653831 14.407247 12.065282 -10.680009 -21.544882 -16.196476 0.124349 -7.140453 -46.873825 -6.247642 -4.067607 -1.032439 -3.984376 -1.395412 0.325300 -0.407583 0.885460 -0.344694 0.345540 0.129567 10.699325 14.104102 -3.202756 40.436977 7.522338 -3.815850 5.914464 0.539262 0.303880 -0.319828 0.391584 -0.121211 0.304949 -0.071017 -0.187362
+2.065509 161.339554 -8.460928 -5.093108 20.353559 -3.235485 5.517555 -3.530102 -28.271029 1.613774 -0.235199 55.886833 -0.548762 0.069867 -0.163076 0.533215 0.242867 0.429141 5.972101 6.726998 -6.121060 10.821815 -1.510506 27.929968 -0.387530 0.254599 0.086945 0.072083 -0.106932 0.128263 0.033118 2.417176 17.530741 -1.996534 3.811437 5.452229 -3.413073 4.751803 1.222151 -3.637442 -8.410713 13.970202 12.022425 -10.333411 -21.116890 -15.794313 2.174526 -6.808105 -45.186874 -4.069597 -4.732700 0.800223 -3.966060 -1.338225 0.334250 -0.376853 0.863421 -0.343209 0.350388 0.138062 9.464603 12.674188 -3.069733 35.959827 6.309332 -4.051636 6.294337 2.371308 0.220190 -0.304255 0.369474 -0.099351 0.280923 -0.090210 -0.178240
+1.482761 161.167542 -7.862010 -5.105045 17.429916 -5.118362 5.301467 -3.021235 -29.252670 2.287838 -0.272677 60.713123 -0.526412 0.040705 -0.153377 0.543770 0.266556 0.440963 6.468807 6.813415 -4.084388 10.750420 -1.387013 28.837938 -0.397870 0.267213 0.090966 0.075976 -0.116623 0.121134 -1.099141 3.081818 19.142580 -2.032782 4.302707 5.847382 -3.151303 5.194668 1.248127 -3.378396 -7.691559 13.719065 12.371578 -9.482788 -21.355881 -15.105375 4.480360 -6.642928 -43.629379 -1.998153 -5.356958 2.524998 -4.507165 -1.314576 0.348870 -0.370547 0.859371 -0.350891 0.364211 0.146919 8.503178 11.524672 -3.270375 31.654100 5.848723 -4.026677 5.530474 2.325818 0.206212 -0.291550 0.364538 -0.091793 0.278902 -0.112845 -0.174920
+1.038719 160.995148 -7.260876 -5.345058 14.688125 -6.975748 5.474342 -2.406427 -30.006945 2.088737 0.141902 64.787849 -0.519593 0.028243 -0.154257 0.555017 0.280568 0.453635 6.893890 7.053107 -2.387663 11.187949 -1.449732 30.159697 -0.403435 0.263138 0.089436 0.079694 -0.127255 0.124990 -1.460409 3.397153 20.199087 -2.119491 4.680070 6.417265 -3.262808 5.568897 1.606546 -3.255279 -7.043422 13.304834 12.098211 -8.700166 -21.440773 -14.071699 7.722288 -6.880201 -42.371433 -0.171041 -5.995424 3.715330 -6.530705 -1.455800 0.353388 -0.351580 0.856379 -0.351830 0.368961 0.148064 6.268089 10.051180 -3.797478 28.483416 5.984369 -3.853035 4.664458 0.974154 0.201976 -0.288708 0.349797 -0.084637 0.264350 -0.124614 -0.178977
+0.785386 161.005997 -6.642054 -5.648067 12.173503 -8.847096 5.375130 -1.763657 -30.022617 1.978590 0.499626 67.122322 -0.545612 0.079110 -0.150612 0.511550 0.204792 0.434366 7.434772 7.277781 -0.486197 11.442039 -1.431772 31.150515 -0.382807 0.266754 0.086399 0.052911 -0.094596 0.117976 -1.047283 3.538762 21.477217 -2.243210 5.087854 6.822426 -3.809104 6.064154 1.529290 -3.932249 -5.776592 13.389167 12.846866 -8.462846 -21.006618 -12.809849 10.142777 -6.662536 -41.667118 2.006035 -6.584204 6.149600 -7.207947 -1.508674 0.333018 -0.381019 0.882698 -0.345543 0.343357 0.133918 4.741908 8.771924 -3.687470 24.915491 5.407989 -3.852806 4.101911 0.939659 0.237225 -0.292536 0.379015 -0.127357 0.281774 -0.089107 -0.193621
+0.469341 161.051086 -5.990804 -5.553627 10.545307 -10.150057 4.915453 -1.486096 -30.243385 1.034615 1.266122 67.861649 -0.543040 0.082356 -0.129364 0.478734 0.184843 0.395283 7.701634 7.322996 1.120506 11.417393 -1.347143 31.755268 -0.360893 0.268556 0.106343 0.046299 -0.057175 0.089449 -0.601671 3.804550 21.464237 -2.410040 5.565807 7.625996 -4.264804 6.574021 2.422313 -4.367423 -5.561579 12.944975 13.121475 -8.732081 -20.762899 -11.872951 10.754381 -6.306997 -40.254539 3.484143 -6.836795 8.056922 -7.418377 -1.473992 0.321282 -0.411070 0.866785 -0.330668 0.315600 0.140275 4.001138 7.251029 -3.342404 21.593536 4.211805 -3.882658 2.409232 1.797303 0.239636 -0.295353 0.396028 -0.149704 0.316801 -0.075377 -0.180396
+0.169476 161.245056 -5.286876 -5.373340 9.269474 -11.470525 4.428051 -1.365638 -30.148535 -0.642694 2.402830 67.441689 -0.534814 0.107326 -0.118022 0.450683 0.145472 0.360703 8.120428 7.188668 2.995039 10.812201 -1.088163 31.921980 -0.344101 0.258554 0.111191 0.026410 -0.025023 0.093232 -0.100794 3.927018 21.314911 -2.640380 5.895441 8.416068 -4.807360 6.954647 3.320374 -4.931509 -5.015524 12.786389 13.782091 -9.102973 -20.026529 -10.843379 10.628262 -5.400447 -38.944599 5.289118 -7.127090 9.904167 -8.429241 -1.579623 0.306926 -0.404736 0.857221 -0.317638 0.292600 0.144280 3.611411 6.399340 -2.556140 18.077679 2.872836 -3.705589 1.466547 2.345926 0.274155 -0.293713 0.397912 -0.157386 0.318325 -0.054775 -0.169470
+-0.253318 161.462997 -4.527893 -5.086693 8.736547 -12.279838 3.726744 -1.454920 -30.136715 -2.490851 3.443774 65.184624 -0.528844 0.141864 -0.113646 0.416009 0.100414 0.310043 8.414451 7.136766 4.190736 10.623656 -0.981190 32.101711 -0.320516 0.236213 0.107548 0.007305 0.018829 0.103387 0.150617 4.007604 20.791025 -2.994122 6.005545 9.158159 -5.350822 7.082654 4.278436 -5.295396 -4.060397 11.986820 15.227148 -9.325465 -19.372549 -9.056774 11.164083 -4.787869 -37.750969 6.504941 -7.302257 11.679968 -9.863174 -1.795802 0.283280 -0.378539 0.840487 -0.298774 0.258260 0.143530 3.347882 5.020547 -2.222383 15.141552 2.119232 -3.431368 0.960813 2.482885 0.304130 -0.293330 0.391712 -0.164680 0.310879 -0.021655 -0.153889
+-0.707196 161.832962 -3.703665 -4.574328 8.190018 -13.558673 2.755128 -1.544344 -28.792286 -4.203548 4.239782 61.150776 -0.568483 0.195638 -0.121904 0.369375 0.036844 0.272950 8.547026 7.038483 6.083698 10.264359 -0.804472 32.223774 -0.292347 0.227951 0.105588 -0.006923 0.060853 0.095513 0.115850 4.215330 20.639395 -3.419868 6.087671 10.035092 -5.856781 7.230531 5.247694 -5.462580 -3.812564 11.649525 16.199734 -9.598606 -19.389700 -8.072838 11.716550 -4.692099 -36.073376 7.265125 -7.217174 14.116966 -11.897864 -2.226597 0.248184 -0.409151 0.855543 -0.281168 0.224145 0.125174 2.918489 4.261512 -1.706414 12.424563 1.498610 -3.087065 1.254789 1.707770 0.349793 -0.311587 0.422375 -0.206980 0.335070 0.026540 -0.162422
+-1.131265 162.227234 -2.939591 -4.255844 7.941957 -14.780095 1.861434 -1.673558 -27.223433 -6.228176 4.854126 55.953262 -0.587504 0.220829 -0.118198 0.356204 0.019289 0.270622 9.028520 6.898214 7.874267 10.045667 -0.652826 32.229458 -0.284912 0.230328 0.105408 -0.005869 0.083497 0.089263 0.510640 4.188280 20.285748 -3.885718 6.199993 11.005700 -6.553563 7.363367 6.472535 -5.153725 -4.140232 11.177868 16.760815 -9.684392 -19.926695 -7.825684 12.028406 -4.898031 -33.660114 7.600220 -6.873980 16.058943 -14.039983 -2.725705 0.229814 -0.434820 0.862424 -0.272607 0.213473 0.119740 2.425594 3.497288 -1.279037 10.274022 0.985408 -2.698193 2.102755 0.730417 0.348464 -0.320857 0.439757 -0.229002 0.359924 0.040118 -0.166117
+-1.520667 162.671402 -2.051301 -4.133640 7.775108 -16.066874 1.016259 -1.680784 -24.754183 -7.782279 4.954781 49.632782 -0.602724 0.231635 -0.125577 0.334359 -0.002994 0.252413 9.620517 6.863173 9.653393 10.166613 -0.585444 32.524147 -0.275121 0.229829 0.100303 -0.009738 0.090823 0.078906 0.596255 4.280644 20.244202 -4.089829 6.214974 11.609694 -6.775900 7.392162 7.049859 -5.379565 -4.175507 11.369206 16.904623 -9.879606 -19.786856 -7.276313 12.442415 -4.864797 -32.285316 8.225782 -6.806865 19.245926 -15.601656 -3.279148 0.223029 -0.447532 0.868091 -0.271488 0.203065 0.109887 1.792449 3.360036 -0.724649 8.254638 0.454911 -2.409374 2.880080 -1.335449 0.300510 -0.323989 0.452285 -0.246231 0.368112 0.059046 -0.170111
+-1.838051 163.000549 -1.170230 -3.991011 7.566072 -16.811357 0.015242 -1.759893 -22.646992 -8.783721 4.611768 42.975014 -0.600023 0.228006 -0.119236 0.335753 -0.004177 0.258429 10.054263 7.056480 10.484654 10.304205 -0.518566 33.243122 -0.275476 0.240011 0.098153 -0.008033 0.091124 0.066278 0.856621 4.318690 19.646355 -4.427507 6.256151 12.018683 -7.213134 7.389434 7.654943 -5.540719 -3.978971 11.650670 17.325384 -9.919218 -19.608664 -5.986817 13.069184 -4.650084 -31.265684 8.768179 -6.832482 21.656338 -17.152130 -3.848125 0.233543 -0.453307 0.870992 -0.279542 0.202209 0.112996 0.894782 2.747542 -0.364839 7.325491 -0.062510 -2.233165 3.256404 -1.812000 0.276014 -0.316195 0.453849 -0.253969 0.376768 0.052224 -0.170688
+-2.069604 163.063599 -0.239760 -4.126831 7.794203 -16.931412 -0.838905 -1.945436 -20.907887 -9.649115 4.012560 36.095867 -0.586681 0.242247 -0.101813 0.333547 -0.021901 0.247374 10.426807 7.294118 10.473509 10.715249 -0.609220 34.109272 -0.272744 0.220915 0.097301 -0.015245 0.106236 0.071910 1.288474 4.161274 18.749071 -4.554429 6.068383 11.918659 -7.490805 7.137002 7.757003 -5.724540 -3.703621 11.876848 17.202044 -10.260029 -18.103973 -4.190076 14.253014 -4.313207 -30.333218 9.290280 -6.741004 22.727171 -18.430447 -4.210660 0.236752 -0.424085 0.858514 -0.272035 0.187165 0.131754 -0.457903 1.925927 -0.257216 6.762671 -0.182746 -2.122958 3.273176 -2.112386 0.259466 -0.312003 0.424635 -0.254839 0.365665 0.047466 -0.163797
+-2.287521 162.974655 0.670188 -4.472632 8.186842 -17.068024 -1.681443 -2.192682 -19.145027 -10.050715 3.262365 29.829958 -0.580924 0.220266 -0.092879 0.369760 0.015570 0.270284 10.700032 7.579958 10.174514 11.769273 -0.956435 35.226055 -0.285394 0.215500 0.102202 0.004025 0.089943 0.066559 1.851078 3.906550 17.835476 -4.600837 5.890313 11.957416 -7.671165 6.931386 8.162291 -5.633642 -3.869373 11.850266 16.729771 -10.200115 -17.948910 -3.339663 14.925987 -4.434889 -29.188829 9.280815 -6.522336 25.171671 -19.160498 -4.643772 0.260612 -0.400930 0.853417 -0.279848 0.191324 0.151523 -1.802044 0.956153 -0.305770 6.092908 -0.285560 -1.983551 3.251094 -2.641173 0.214050 -0.314547 0.392826 -0.245236 0.359221 0.016158 -0.165461
+-2.406758 162.612686 1.605807 -5.273454 8.759889 -16.899858 -2.325442 -2.321586 -17.611217 -9.977678 2.435954 23.767332 -0.583020 0.220507 -0.083728 0.361795 0.016042 0.254268 11.224492 7.864279 9.390880 13.273502 -1.518406 36.308239 -0.274971 0.206743 0.115033 0.010522 0.109031 0.050706 3.165966 3.297576 16.746153 -4.833251 5.644050 11.693574 -8.450964 6.624115 8.286426 -5.066832 -3.607091 12.068057 16.789845 -9.951369 -16.948109 -2.176359 15.778897 -4.120201 -27.414852 9.957491 -6.149684 26.460249 -20.542669 -5.067749 0.252733 -0.407751 0.841299 -0.264546 0.175027 0.162073 -3.061572 0.003088 -0.553859 5.996947 -0.045110 -1.955649 3.121947 -3.069754 0.191597 -0.323283 0.387458 -0.258793 0.372885 0.015049 -0.162605
+-2.570024 162.004578 2.745764 -5.823000 9.023178 -16.107115 -3.114632 -2.334603 -16.552248 -9.486646 1.767136 18.535543 -0.586465 0.239557 -0.066767 0.340895 0.002554 0.236150 11.608273 8.240806 8.167039 14.639769 -2.008888 37.219173 -0.244436 0.195399 0.129728 0.019045 0.144947 0.024487 3.615959 3.252626 14.353859 -4.823358 5.471860 11.435597 -8.546617 6.525540 8.967821 -4.747459 -3.621076 12.051307 16.356836 -10.078753 -15.634142 -1.407556 16.463936 -3.780350 -25.572245 11.023976 -5.787002 27.796854 -22.104076 -5.580411 0.226584 -0.429262 0.807359 -0.235593 0.138073 0.165091 -3.407697 -1.064206 -1.018846 4.634058 0.453520 -1.711582 3.157428 -3.292393 0.142838 -0.330055 0.384666 -0.281421 0.401913 0.022230 -0.156269
+-2.701938 161.330673 3.853200 -6.460461 9.240113 -15.371279 -3.561190 -2.234961 -15.754445 -9.184750 1.340235 14.598996 -0.591596 0.238616 -0.074665 0.342567 0.025995 0.220906 11.966275 8.574569 6.935697 16.050371 -2.548697 38.008537 -0.231573 0.179489 0.127971 0.042171 0.156777 0.015269 4.535338 3.111742 11.601721 -4.877549 5.408737 11.400077 -8.911553 6.609269 10.182840 -4.239476 -3.753650 12.304109 16.287533 -10.061085 -15.114967 -1.045628 16.588171 -3.591037 -23.517746 11.893268 -5.349704 29.385859 -22.672020 -5.911297 0.210626 -0.420950 0.777305 -0.219133 0.121203 0.163044 -3.712678 -2.101429 -1.395728 3.350409 0.689741 -1.434433 3.358288 -3.473799 0.085072 -0.338465 0.371201 -0.279711 0.408401 0.027977 -0.147176
+-2.907429 160.675476 4.802375 -6.810372 9.275526 -15.355342 -3.931231 -2.122959 -14.697793 -9.139399 1.159144 12.435735 -0.570536 0.196972 -0.066574 0.386659 0.095302 0.240252 12.099261 8.897943 6.390271 17.576565 -3.165321 39.007683 -0.251564 0.187064 0.139145 0.070132 0.141384 0.011566 4.882299 3.023941 9.901226 -4.852162 5.337343 11.577704 -8.958626 6.600912 11.189610 -4.053915 -3.954886 12.654314 16.261168 -9.924858 -15.537534 -0.587312 16.302937 -3.170566 -22.000633 12.982309 -5.143117 30.010637 -22.280674 -5.793110 0.234604 -0.409866 0.764058 -0.227618 0.142593 0.187401 -4.055399 -2.499152 -1.299668 2.119795 0.429654 -1.166324 3.541401 -3.541464 0.042051 -0.336532 0.353557 -0.254124 0.413109 -0.010322 -0.133254
+-3.139224 160.038803 5.561710 -6.669817 9.652380 -15.728880 -4.499605 -2.291588 -14.128936 -9.495353 1.221258 12.546248 -0.552937 0.164668 -0.059256 0.414982 0.141496 0.263696 11.617004 9.110893 6.263068 19.087206 -3.937845 40.179920 -0.253824 0.197457 0.158306 0.086927 0.129370 0.001806 4.488379 3.002986 9.375340 -4.834395 5.191481 11.796747 -8.757939 6.424351 11.727263 -3.739225 -4.088414 12.754100 15.967181 -9.654363 -15.645126 -0.089609 15.987109 -3.053134 -20.490063 13.025313 -4.758587 30.259727 -21.178267 -5.408865 0.243799 -0.416562 0.747185 -0.225891 0.151635 0.196645 -4.446105 -2.732316 -1.197526 1.270329 0.162522 -1.006136 3.400819 -3.779029 0.008734 -0.334872 0.347403 -0.236856 0.417840 -0.040635 -0.128409
+-3.428349 159.475601 6.144428 -6.032451 9.876884 -16.616261 -4.996894 -2.444383 -13.455304 -10.543872 1.508445 13.736222 -0.513213 0.117958 -0.057877 0.432978 0.185026 0.268405 10.887471 9.295085 6.745805 20.079943 -4.566698 41.559490 -0.268517 0.199890 0.155451 0.092760 0.102950 0.009131 3.859790 2.859071 10.205362 -5.215463 5.088456 12.065938 -8.967978 6.137178 11.686544 -3.472038 -4.360729 12.366304 15.827411 -9.488283 -15.909581 -0.003556 15.518715 -3.015717 -18.173122 13.000220 -4.203537 30.487890 -19.424179 -4.788542 0.264949 -0.383947 0.724507 -0.236084 0.174683 0.204792 -4.277845 -2.476399 -0.903966 0.835400 -0.360045 -0.924176 2.730377 -3.356227 0.044024 -0.314029 0.326410 -0.200417 0.392245 -0.066848 -0.111943
+-3.682288 159.016922 6.581068 -5.551052 9.878587 -17.501078 -4.845501 -2.537252 -13.493332 -11.813136 1.986752 16.000912 -0.492978 0.098405 -0.046346 0.439015 0.189605 0.260722 10.277125 9.390698 7.223122 21.047129 -5.237915 42.820995 -0.277432 0.201850 0.158928 0.086599 0.099001 0.008465 2.762301 2.987737 11.206544 -5.156317 4.976137 12.254649 -8.437346 5.901616 11.419457 -3.573648 -4.205540 12.035791 16.597221 -9.643493 -15.806314 0.703397 14.689911 -2.570893 -17.622530 12.990817 -4.139852 30.650360 -18.257814 -4.419649 0.289771 -0.362214 0.728043 -0.248031 0.180494 0.222484 -3.701504 -1.919399 -0.251441 -0.229506 -1.340169 -0.773066 2.409193 -2.807476 0.081000 -0.303515 0.312764 -0.193625 0.380727 -0.082580 -0.104205
+-3.893998 158.568985 6.966792 -4.929891 9.488955 -18.203884 -4.374753 -2.442448 -13.616536 -13.454579 2.611083 17.959927 -0.514775 0.121368 -0.062201 0.439389 0.175490 0.287939 9.826928 9.542854 7.654323 21.269226 -5.587439 44.119705 -0.279158 0.200912 0.144325 0.084202 0.082448 0.025800 1.578688 3.293712 11.785263 -5.032387 4.914522 12.684107 -7.779404 5.887495 11.745414 -3.241165 -5.044104 11.124470 15.849629 -9.586782 -16.922413 0.453727 14.212224 -2.916010 -16.196539 12.211713 -3.703997 29.969469 -17.242598 -4.093431 0.271847 -0.369436 0.740453 -0.247855 0.186755 0.196897 -3.718600 -1.895893 0.084661 -0.592408 -1.914284 -0.630470 2.649701 -2.121696 0.100070 -0.310996 0.321019 -0.194241 0.371055 -0.070079 -0.123736
+-3.979040 158.242630 7.281065 -4.576007 8.706415 -18.530401 -3.584489 -2.097750 -13.497498 -14.935224 3.097521 18.574690 -0.521081 0.121746 -0.063135 0.434012 0.176286 0.287586 9.717605 9.692623 7.891283 21.109074 -5.654881 45.152569 -0.268262 0.193425 0.145458 0.091038 0.083881 0.015469 0.982511 3.662735 12.186826 -4.826372 5.090731 12.834388 -7.313937 6.037491 11.749137 -3.035353 -4.881558 10.555465 15.230491 -9.235505 -16.684244 0.394961 13.954680 -3.416221 -15.286575 10.527269 -3.318347 29.636141 -16.606667 -3.922671 0.262765 -0.371829 0.727575 -0.238874 0.174062 0.190039 -3.584359 -2.293776 0.217537 -0.775149 -2.474589 -0.462050 2.933989 -1.096669 0.106055 -0.314221 0.315177 -0.201086 0.373615 -0.067791 -0.127781
+-4.046525 158.050903 7.495108 -4.728564 8.062548 -18.326052 -2.658056 -1.862699 -13.731881 -15.715814 3.277472 18.571857 -0.538020 0.158503 -0.057617 0.431562 0.152943 0.296664 10.045768 9.655723 7.644972 20.876585 -5.667818 45.662395 -0.261336 0.184374 0.145326 0.089048 0.103409 0.023173 1.339209 3.571880 12.295890 -4.946685 5.165821 12.674780 -7.660355 6.102020 11.527073 -2.805838 -4.561454 9.957518 15.306567 -8.992541 -16.592108 0.786733 13.993357 -3.709794 -14.286946 8.952341 -2.837391 28.665321 -16.804798 -3.933703 0.243113 -0.377100 0.733552 -0.226125 0.159843 0.188638 -3.508577 -2.782237 -0.131474 0.263298 -2.266652 -0.607973 2.883276 -0.491513 0.123234 -0.325678 0.314343 -0.217065 0.381197 -0.059061 -0.137099
+-4.140383 158.089508 7.484550 -4.895236 7.432902 -17.854683 -2.113874 -1.748330 -13.805694 -15.552965 3.098426 17.744396 -0.499506 0.114727 -0.035493 0.438645 0.184729 0.282994 10.561412 9.551908 7.204821 20.163866 -5.389934 46.087952 -0.255190 0.182641 0.156341 0.101020 0.106092 -0.004834 1.377042 3.508867 12.480667 -4.967859 5.230163 12.347021 -7.737837 5.998957 11.026372 -2.667446 -3.880090 9.767068 15.675796 -8.730340 -15.417990 1.133555 13.875749 -3.730793 -14.355453 7.654456 -2.759485 28.763899 -17.518848 -4.125731 0.269161 -0.352353 0.697577 -0.227401 0.149859 0.212410 -2.973618 -2.897520 -0.396360 1.103943 -2.022044 -0.677411 3.001562 -0.240137 0.089109 -0.304632 0.283507 -0.209004 0.379361 -0.090245 -0.116526
+-4.167020 158.272018 7.312718 -5.474507 7.057204 -17.512535 -1.687398 -1.742356 -13.658428 -14.894259 2.706068 16.541752 -0.495791 0.114264 -0.023061 0.427961 0.171091 0.262201 11.342493 9.234778 6.946210 19.550903 -5.158121 45.869450 -0.249277 0.164995 0.170132 0.093401 0.118133 -0.009661 1.798280 3.362192 13.147634 -4.674337 5.177801 11.889111 -7.586560 5.886666 10.112708 -2.821289 -3.283498 9.898936 15.097484 -8.465652 -14.126748 1.029614 13.545817 -3.816471 -15.260507 6.508913 -2.838840 29.547970 -18.949345 -4.683426 0.270714 -0.341940 0.692529 -0.215772 0.135852 0.228733 -2.872077 -3.019885 -0.337296 2.468552 -2.573386 -0.929480 2.518557 0.383905 0.109882 -0.310458 0.267723 -0.217600 0.374737 -0.092460 -0.115118
+-4.255490 158.591217 7.080715 -5.525690 6.643189 -16.781773 -1.739013 -1.828545 -13.588310 -14.104346 2.258789 14.864264 -0.498152 0.119066 -0.023439 0.428673 0.170815 0.263698 11.382758 8.901643 6.531032 18.890930 -4.876945 45.151787 -0.253825 0.156564 0.166454 0.094393 0.117203 -0.001975 1.698232 3.400842 13.139298 -4.583563 5.124149 11.549253 -7.427307 5.820834 9.700743 -2.909871 -3.053829 10.202699 14.552790 -8.203836 -13.751229 1.219036 13.474152 -4.119719 -16.445009 4.803295 -2.917284 29.472849 -19.894625 -5.070312 0.267972 -0.338880 0.694202 -0.211910 0.140027 0.231273 -2.926183 -3.471682 -0.689204 4.793883 -2.590908 -1.346429 2.217576 0.814022 0.112270 -0.311758 0.261684 -0.217550 0.370002 -0.093555 -0.116016
+-4.275052 158.914322 6.783090 -5.611749 6.028143 -15.916254 -1.954579 -1.867604 -13.460104 -13.062427 1.765702 12.707577 -0.515330 0.148724 -0.025044 0.411756 0.147614 0.271001 11.490089 8.564092 6.122901 17.992548 -4.464954 44.180592 -0.253084 0.158921 0.169666 0.083305 0.128684 0.010883 1.636103 3.406329 13.129486 -4.443459 4.975444 11.189629 -7.216844 5.715500 9.268760 -2.622431 -3.128877 10.111777 13.734401 -7.724998 -14.168811 0.922523 13.521897 -4.463075 -17.292879 3.709733 -2.923253 28.915710 -21.382702 -5.532259 0.233529 -0.374101 0.704379 -0.195574 0.142817 0.216052 -3.052137 -3.872083 -1.161016 7.203297 -2.304205 -1.821709 1.787751 1.143558 0.125811 -0.326457 0.289703 -0.226884 0.385336 -0.072945 -0.127077
+-4.333601 159.203186 6.425268 -5.793404 5.034198 -14.978838 -1.817959 -1.641853 -13.311058 -12.262595 1.359153 10.131037 -0.495148 0.144533 -0.022228 0.428027 0.171063 0.303682 11.463897 8.376217 5.533312 17.434933 -4.198422 43.530918 -0.261829 0.150629 0.174898 0.082494 0.114929 0.040429 0.630329 3.872684 12.953299 -3.687336 4.864581 10.882153 -5.875412 5.628141 8.981506 -1.851942 -3.682354 9.725750 12.149154 -7.123487 -14.332967 -0.194883 13.913610 -5.201725 -18.561829 2.385224 -2.992951 28.892714 -23.348284 -6.170388 0.210860 -0.367843 0.682539 -0.176941 0.160753 0.210733 -3.146991 -4.473629 -1.666033 8.737342 -1.890279 -2.024049 1.897110 1.376961 0.097880 -0.326871 0.279169 -0.195067 0.366087 -0.087691 -0.126955
+-4.335764 159.504257 5.962725 -6.056501 4.317076 -14.044091 -1.841374 -1.586961 -13.457497 -11.196698 0.991095 8.074436 -0.490393 0.146872 -0.026956 0.444629 0.180284 0.342418 11.092835 8.019511 4.849185 17.630259 -4.340019 42.492218 -0.278549 0.143104 0.174461 0.076181 0.091871 0.073083 -0.359603 4.231621 12.956341 -2.881751 4.618248 10.394810 -4.477184 5.408149 8.407340 -1.154337 -3.624262 9.796670 10.514549 -6.032311 -14.355914 -0.925410 13.901865 -5.417738 -20.188593 1.606490 -3.137655 28.223068 -25.602871 -6.777121 0.196185 -0.360462 0.686601 -0.167378 0.184548 0.204213 -3.157259 -5.153779 -2.180488 11.304285 -1.971972 -2.651613 -0.129108 2.851939 0.085543 -0.331694 0.271134 -0.174107 0.340289 -0.099098 -0.141155
+-4.265573 159.766876 5.346015 -6.426638 3.536702 -13.586271 -1.945859 -1.582665 -13.331447 -9.689974 0.632015 6.213453 -0.470395 0.102348 -0.048291 0.466405 0.200744 0.366441 10.910153 7.551595 4.636722 17.629892 -4.397682 41.544319 -0.299257 0.150129 0.157674 0.070936 0.033515 0.084942 -0.534407 4.211211 14.273615 -2.380306 4.423529 9.663254 -3.860014 5.113439 7.002732 -1.014222 -2.874205 10.240171 10.420996 -5.094820 -14.366950 -1.235526 13.494546 -5.240668 -21.792099 0.956805 -3.356978 27.958836 -27.097466 -7.202539 0.233332 -0.313191 0.699692 -0.197356 0.214318 0.196125 -2.577214 -5.349192 -2.378464 14.041695 -2.504968 -3.431460 -2.565401 4.379806 0.022432 -0.311519 0.248779 -0.145534 0.285337 -0.120281 -0.154062
+-4.198506 159.976089 4.694472 -7.111927 2.733611 -12.768071 -1.623541 -1.522498 -13.890051 -8.352998 0.378807 4.952783 -0.450083 0.091897 -0.062484 0.493507 0.225836 0.378559 11.236578 7.084146 4.047431 17.564560 -4.421905 40.534851 -0.321440 0.137019 0.140104 0.070200 0.011470 0.125927 -0.194313 4.178257 14.585880 -1.791273 4.375157 9.218682 -3.322288 5.068130 6.408412 -0.799754 -2.438090 10.195643 10.786695 -4.700784 -14.650027 -1.472904 12.910835 -5.800559 -23.600740 -1.389718 -3.381789 27.297716 -26.758974 -7.163976 0.240964 -0.255909 0.697913 -0.205029 0.237606 0.198226 -2.048752 -5.800371 -2.739186 16.061876 -2.447714 -3.813282 -2.833793 4.235734 0.012486 -0.304081 0.220733 -0.106104 0.239204 -0.129378 -0.148072
+-4.062976 160.074249 3.919719 -7.842191 1.821958 -11.850981 -1.344640 -1.537237 -14.852860 -6.840158 0.192858 4.260090 -0.470127 0.104994 -0.068153 0.518332 0.244448 0.396797 11.346648 6.684801 3.279359 18.139788 -4.707869 39.552475 -0.333094 0.129464 0.131481 0.089450 0.011423 0.135001 0.763873 4.111154 14.052859 -1.389540 4.523220 9.240656 -3.171785 5.271646 6.775806 -0.507326 -2.363046 9.887308 11.086481 -4.533690 -15.255362 -1.711168 11.937687 -6.742143 -24.926035 -4.446634 -3.197478 25.960289 -25.971628 -6.959079 0.241144 -0.246440 0.709604 -0.207264 0.241889 0.204043 -1.741394 -6.143349 -3.013689 17.872826 -2.106651 -3.922175 -1.163330 3.032800 0.037642 -0.317028 0.209550 -0.109558 0.242839 -0.134966 -0.154173
+-4.002143 160.271332 2.955624 -8.507977 1.138346 -11.368317 -1.176508 -1.626343 -15.616118 -5.140998 0.044430 4.068170 -0.492683 0.103531 -0.081990 0.531865 0.244946 0.427342 11.428002 6.171286 2.768709 19.046562 -5.170203 38.563126 -0.349212 0.143883 0.119972 0.093479 -0.014539 0.133957 1.787275 3.758174 14.483984 -1.229457 4.507627 9.122309 -3.388549 5.265185 6.605910 -0.015911 -2.415135 10.400638 11.310843 -4.113503 -15.783969 -2.181336 9.796334 -6.965028 -25.545555 -6.310042 -3.187025 24.959631 -25.215872 -6.821713 0.256305 -0.257824 0.746413 -0.227078 0.261342 0.195915 -1.265792 -5.382290 -2.575724 21.292364 -2.632297 -4.571605 -1.560523 3.144281 0.037535 -0.320099 0.219349 -0.121027 0.240424 -0.141356 -0.177148
+-4.049554 160.403305 2.072108 -8.633756 -1.573110 -11.131506 -0.203922 -1.224436 -15.803123 -4.197039 0.004062 3.513190 -0.502556 0.082074 -0.103136 0.571505 0.289076 0.465337 11.485034 6.254771 2.735065 18.980968 -4.991551 38.182899 -0.375473 0.153498 0.109329 0.114425 -0.051667 0.143695 1.708814 4.016927 14.783199 -1.004399 4.721136 9.165123 -3.098986 5.446383 6.684872 0.168611 -1.713058 11.103239 11.074471 -3.057301 -16.518053 -2.915517 8.498285 -7.275072 -26.412558 -7.560674 -3.246636 24.463438 -24.882555 -6.837063 0.275801 -0.246606 0.768323 -0.246557 0.293801 0.195718 -0.038173 -4.175982 -3.132375 23.756567 -1.008345 -4.766864 -2.484317 2.362930 0.049244 -0.322589 0.214022 -0.107409 0.227608 -0.161461 -0.190197
+-3.982683 160.382217 1.110609 -8.537161 -5.603940 -10.895358 1.388055 -0.640032 -16.175356 -4.060088 0.036970 3.348687 -0.530282 0.083468 -0.127672 0.593581 0.317036 0.492598 11.600969 6.851070 2.496194 18.122404 -4.475215 38.860382 -0.389137 0.151589 0.102064 0.134564 -0.073257 0.155409 1.672062 4.506456 14.977209 -0.909994 5.174288 9.396465 -2.968445 5.891224 7.051129 0.448807 -0.948838 11.272614 10.081798 -1.760068 -17.441475 -4.506136 7.173597 -7.921355 -26.435722 -8.692410 -3.251347 24.333052 -24.820116 -6.956473 0.265957 -0.252267 0.784387 -0.246645 0.311669 0.183596 1.465188 -3.019612 -3.733973 25.382353 0.768599 -4.717405 -2.609383 3.173218 -0.046670 -0.340359 0.218296 -0.104868 0.225037 -0.160753 -0.208198
+-3.846908 160.344986 0.065614 -8.669955 -8.889622 -11.010361 2.918513 -0.311682 -16.804071 -3.715788 0.060996 4.770159 -0.563680 0.084882 -0.158341 0.642437 0.361210 0.553384 11.842121 7.214280 2.396221 17.341831 -4.117503 39.610577 -0.419174 0.146923 0.080880 0.165016 -0.119036 0.180379 1.583976 4.852439 15.092634 -0.438878 5.399742 10.036619 -2.262841 6.173857 8.026983 0.872611 -0.598690 11.179655 8.533089 -0.450847 -18.925381 -6.853514 5.159647 -8.631979 -26.402456 -9.910235 -3.360875 24.437632 -25.717844 -7.433562 0.267544 -0.238903 0.809897 -0.258282 0.344903 0.172067 2.978642 -1.577064 -4.083611 25.788862 2.369560 -4.421221 -1.979339 4.469774 -0.160062 -0.357317 0.204773 -0.093568 0.207167 -0.175287 -0.236513
+-3.785211 160.255768 -0.939924 -8.528865 -11.782388 -11.195033 4.459744 -0.110428 -17.892426 -3.735615 0.167769 7.501095 -0.599703 0.106453 -0.172358 0.657286 0.377027 0.600818 12.099599 7.397387 2.463532 15.885890 -3.528864 40.273319 -0.426225 0.145770 0.070183 0.189493 -0.133071 0.184561 0.915948 5.305832 14.975981 -0.037992 5.541575 10.677609 -1.368023 6.343130 9.082764 1.788709 -0.880840 11.040250 6.904176 0.548386 -19.768591 -9.620966 2.947673 -9.533632 -25.201527 -11.288460 -3.407972 24.132675 -27.396652 -7.948968 0.239935 -0.269987 0.818005 -0.246933 0.356549 0.153252 5.349040 0.007910 -4.450488 25.759266 3.802063 -4.170220 -1.572287 6.403039 -0.322354 -0.375529 0.212634 -0.106757 0.222181 -0.176610 -0.262144
+-3.557226 160.112869 -1.870080 -8.460671 -14.527918 -11.673638 6.337739 0.072293 -19.120441 -4.539550 0.399319 11.629545 -0.622813 0.106341 -0.195881 0.685742 0.414705 0.629621 12.305518 7.433043 2.855242 14.219005 -2.873035 40.789646 -0.441972 0.146645 0.053224 0.217805 -0.153457 0.192429 0.884196 5.316093 15.401406 0.188066 5.599452 11.225707 -1.031792 6.389999 9.863536 1.962904 -0.619630 11.305351 6.481837 1.201231 -20.698587 -12.037810 0.462215 -10.103388 -24.030695 -12.430778 -3.561134 23.659901 -29.257032 -8.453406 0.235837 -0.268050 0.825987 -0.253056 0.374124 0.143284 8.291071 1.970936 -4.981664 25.244617 5.533561 -3.994895 -1.858768 8.133864 -0.502231 -0.386510 0.211124 -0.100760 0.223942 -0.178936 -0.272788
+-3.196674 159.876678 -2.811517 -8.202033 -17.271656 -12.029581 8.168844 0.142976 -20.848936 -5.765432 0.832474 16.946722 -0.678158 0.145943 -0.222460 0.700551 0.408424 0.675796 12.332624 7.529608 2.954453 12.540421 -2.259396 41.437984 -0.448535 0.144590 0.036579 0.232147 -0.167545 0.204412 0.344542 5.466733 15.686317 0.592577 5.489139 11.656077 -0.191052 6.344524 10.536777 1.996294 -0.162407 11.627958 5.226803 2.072626 -21.464582 -13.769635 -2.252175 -10.151012 -23.997086 -13.259304 -3.765440 22.946787 -30.919790 -8.927555 0.211025 -0.295198 0.858036 -0.249756 0.380503 0.116691 10.503650 4.041214 -5.526779 24.693262 7.500402 -3.864114 -1.800703 9.561327 -0.632198 -0.411608 0.225655 -0.119966 0.231962 -0.163862 -0.308462
+-2.780333 159.780212 -3.829581 -7.493930 -20.085546 -12.756677 9.833111 0.131750 -22.539646 -7.500815 1.534848 22.963163 -0.689699 0.155924 -0.238336 0.724115 0.436334 0.693573 11.932456 7.729371 3.050954 10.584814 -1.494938 42.297615 -0.465228 0.136853 0.027093 0.248603 -0.173967 0.228126 -0.365394 5.540658 16.634020 0.781927 5.382965 11.937026 0.315444 6.206819 10.709776 1.702091 0.962741 12.321740 4.547072 3.029237 -21.655489 -15.226779 -4.632668 -10.294576 -23.944445 -14.416365 -3.948618 22.693195 -31.371840 -9.148130 0.198781 -0.288318 0.862737 -0.244923 0.398923 0.116980 12.859879 6.237404 -6.419742 24.072592 10.100929 -3.650813 -1.070169 10.362658 -0.666614 -0.422411 0.222532 -0.106768 0.228769 -0.163415 -0.310463
+-2.403623 159.867004 -4.829451 -6.744398 -22.626949 -13.503515 11.471275 0.112351 -24.025383 -9.662679 2.541649 28.939156 -0.706735 0.150195 -0.262449 0.763716 0.479853 0.726663 11.914480 7.862225 3.132725 8.254448 -0.520064 42.922150 -0.489629 0.133154 0.010901 0.274273 -0.200378 0.245752 -1.220822 5.615343 17.529762 0.933697 5.239964 12.212817 0.846218 6.006251 10.912934 1.484120 2.219348 13.229385 3.987791 4.196107 -22.047091 -15.953197 -6.503157 -10.496484 -24.116835 -15.854611 -4.032582 22.157085 -32.495907 -9.432555 0.204493 -0.271942 0.877351 -0.253995 0.424459 0.115734 14.681398 8.250980 -7.425218 24.198839 12.861330 -3.409259 0.455122 11.024898 -0.605893 -0.431157 0.210858 -0.092617 0.216975 -0.174109 -0.320899
+-1.957768 159.956421 -5.777781 -5.753385 -24.796505 -14.087120 12.781827 -0.207441 -25.675493 -12.218158 3.856990 34.823349 -0.728402 0.145072 -0.285555 0.798853 0.520402 0.758505 11.549994 7.961546 2.747579 5.990807 0.354238 43.553497 -0.509133 0.132643 0.000493 0.298837 -0.223943 0.257642 -1.953511 5.594425 18.223082 0.937189 5.056224 12.397540 1.186916 5.778185 11.090706 1.037798 3.244866 14.073717 3.185899 5.111345 -22.634178 -16.179165 -8.301425 -10.830832 -24.511190 -17.792847 -3.967719 20.699020 -33.894817 -9.485025 0.208119 -0.270920 0.892861 -0.261299 0.447494 0.112228 16.211451 10.084715 -8.288543 25.085737 15.262400 -3.263641 1.651075 12.056154 -0.578516 -0.441781 0.208540 -0.083026 0.214279 -0.182551 -0.331225
+-1.442752 160.134232 -6.668283 -4.659774 -26.503271 -14.570338 13.707999 -0.876459 -27.343254 -14.741407 5.410605 40.615929 -0.769704 0.150191 -0.314337 0.814781 0.543442 0.772671 10.616905 8.038514 1.844983 4.421527 0.827156 44.246857 -0.514995 0.130340 -0.002675 0.324365 -0.238970 0.254222 -2.824683 5.566606 18.798265 0.901086 4.761019 12.483549 1.575875 5.467233 11.194688 0.661860 4.355558 15.046920 2.263628 6.139658 -22.975840 -16.242790 -10.588554 -11.123248 -24.970383 -19.963137 -3.880551 19.440142 -35.328617 -9.593328 0.199534 -0.289451 0.911532 -0.260070 0.455719 0.102632 17.808470 12.115895 -9.035743 26.005264 17.621380 -3.116271 2.568244 12.555613 -0.539392 -0.466386 0.218758 -0.094191 0.225199 -0.174701 -0.350544
+-0.882936 160.310898 -7.468408 -3.951068 -28.314140 -14.658726 14.656464 -1.484501 -28.988861 -16.692184 6.948024 46.013744 -0.781411 0.157537 -0.326287 0.834949 0.561806 0.796363 10.009518 8.156072 0.609379 2.790552 1.355837 44.942593 -0.529109 0.132999 -0.007122 0.334129 -0.246105 0.268468 -3.047845 5.335081 19.334686 0.839016 4.587658 12.353227 1.608082 5.275980 11.017730 0.437865 5.567584 16.024952 1.901066 7.147861 -23.041361 -16.170395 -13.187204 -11.091045 -25.422512 -21.855394 -3.810431 18.075987 -36.958931 -9.666641 0.192161 -0.295266 0.924107 -0.259308 0.472521 0.100895 19.069092 14.252347 -9.332437 27.213049 19.503361 -2.955547 3.485200 13.497530 -0.491509 -0.474513 0.224502 -0.088273 0.227158 -0.176478 -0.358150
+-0.385209 160.709290 -8.098943 -2.896662 -30.115959 -14.805517 15.251166 -2.069932 -29.847027 -18.544859 8.535769 50.239414 -0.805040 0.159552 -0.347084 0.865764 0.586449 0.845685 8.913358 8.079727 -0.280793 1.316384 1.804896 44.753677 -0.552468 0.146162 -0.028084 0.351881 -0.276800 0.277291 -3.832794 5.394170 19.295912 0.814932 4.357676 12.312677 1.997712 5.024978 11.154979 0.011191 6.492095 17.167461 1.177251 8.008206 -23.738403 -15.853295 -15.522545 -11.102896 -26.583313 -23.804476 -3.760355 17.679979 -38.716789 -10.173847 0.199799 -0.308034 0.952064 -0.276772 0.502234 0.088901 20.382586 16.483505 -9.621178 28.525106 21.361944 -2.873426 4.053050 14.467405 -0.493729 -0.474997 0.232469 -0.086949 0.228462 -0.185461 -0.376933
+0.109740 161.208115 -8.563685 -2.009492 -32.103107 -14.571639 15.690452 -2.468781 -30.211660 -20.086716 9.942435 53.228905 -0.824168 0.149686 -0.371978 0.900415 0.627798 0.870592 7.707985 7.885155 -1.140233 0.317813 2.014092 43.834743 -0.568441 0.149165 -0.037252 0.377586 -0.301117 0.284288 -4.087099 5.370061 18.836349 0.673531 4.316521 12.288920 2.009706 4.951563 11.451797 -0.449880 7.678872 17.719826 0.946899 8.769865 -24.558426 -15.501579 -17.728943 -11.281701 -27.603498 -26.205488 -3.452594 16.468843 -40.785332 -10.343193 0.208900 -0.300627 0.965986 -0.288729 0.521930 0.086196 22.039856 18.005072 -9.962749 29.935440 23.090492 -2.860291 4.654496 16.845171 -0.536531 -0.484247 0.229993 -0.077167 0.224943 -0.193187 -0.385325
+0.615264 161.803940 -8.906473 -1.159633 -34.417976 -14.113240 16.254591 -2.486581 -30.078491 -21.829233 11.530076 55.452095 -0.817439 0.111422 -0.398393 0.929744 0.686760 0.888795 6.591913 7.667726 -1.917775 -0.506562 2.177115 42.379234 -0.581796 0.150947 -0.049624 0.403784 -0.337581 0.287185 -4.317830 5.527941 17.547800 0.622589 4.396069 12.401053 2.226631 4.937293 12.249357 -0.603485 8.691172 18.291443 0.333090 9.715027 -25.155951 -14.696858 -19.727465 -11.243314 -29.037321 -28.495146 -3.001236 15.277623 -42.961945 -10.489894 0.218893 -0.277447 0.951106 -0.298480 0.544736 0.077655 23.210218 19.423939 -10.020134 31.335407 24.357399 -2.894075 5.340564 20.328924 -0.598119 -0.478576 0.217230 -0.047901 0.206710 -0.206626 -0.383251
+1.198880 162.473297 -9.250564 -0.508101 -36.275551 -13.372909 16.369020 -2.927111 -29.939592 -22.814600 12.535553 57.173092 -0.836719 0.107558 -0.423427 0.972779 0.732218 0.948996 5.427729 7.206614 -2.720895 -1.176937 2.110198 40.667812 -0.605508 0.140913 -0.063456 0.430563 -0.378063 0.311365 -4.656405 5.472090 15.542945 0.534732 4.162086 12.803163 2.584735 4.643502 13.712276 -0.035264 9.062766 18.888077 -1.375103 10.961511 -26.018171 -12.964817 -21.662720 -11.440739 -30.999987 -31.429777 -2.242731 14.988541 -45.140751 -11.083923 0.209694 -0.266970 0.957691 -0.295261 0.575338 0.067502 22.610880 21.099209 -10.295825 33.775581 26.205519 -2.374150 6.621922 22.771980 -0.497026 -0.492275 0.199208 -0.030320 0.185510 -0.226563 -0.406514
+1.895378 163.283859 -9.539839 -0.188872 -37.987804 -12.384252 16.186266 -3.313287 -29.581469 -23.117594 13.074473 58.509781 -0.859864 0.137657 -0.422318 1.000346 0.754921 0.980029 4.516550 6.785149 -3.590943 -1.777411 2.037611 38.593773 -0.622438 0.119869 -0.074240 0.456210 -0.368956 0.331829 -4.081478 5.046100 13.537821 0.307615 3.955226 13.266047 2.319573 4.426194 15.248762 0.099114 9.324507 18.971975 -2.113749 11.425934 -26.141409 -11.261165 -23.439707 -11.521269 -32.529953 -34.112473 -1.371864 15.120495 -48.673763 -12.116186 0.189029 -0.266114 0.959605 -0.278709 0.583505 0.077869 21.793381 22.915958 -10.753973 35.712666 28.473804 -1.489384 8.507584 24.322695 -0.140397 -0.511834 0.180841 -0.034278 0.195644 -0.235733 -0.412708
+2.530561 164.138290 -9.730065 -0.542251 -39.944088 -10.915195 16.314032 -3.403374 -28.652822 -22.771137 13.174883 59.425407 -0.911298 0.178894 -0.421773 1.002673 0.749986 0.990762 4.396669 6.370944 -4.169369 -2.806166 2.146480 35.777962 -0.615354 0.099170 -0.070744 0.482067 -0.346302 0.320824 -2.882785 4.556510 11.570958 0.197635 3.843090 13.670925 1.922955 4.362372 16.704454 -0.018685 10.005386 18.846231 -3.027206 11.904634 -26.099365 -9.734567 -25.398897 -11.464329 -34.038246 -36.989613 -0.178231 15.993881 -51.362659 -13.309598 0.160318 -0.297221 0.967722 -0.254360 0.563586 0.081063 21.165436 24.301682 -11.337437 37.767395 30.888477 -0.584838 9.875473 26.708069 0.148753 -0.547113 0.178486 -0.073544 0.229573 -0.227812 -0.432248
+3.130436 165.013077 -9.881728 -0.856332 -41.929783 -9.695102 15.919070 -3.492672 -27.085224 -21.717609 12.839348 60.061893 -0.937801 0.192432 -0.437172 1.015883 0.768596 1.021454 4.173833 5.876807 -4.288719 -3.558881 2.115716 32.378529 -0.618884 0.076039 -0.078767 0.503126 -0.359664 0.332117 -2.260154 4.276648 9.761883 0.186860 3.655869 14.210108 1.881805 4.161911 18.277431 0.333169 10.605669 18.321684 -4.968009 12.809434 -26.825466 -8.415435 -26.805695 -11.385502 -35.180901 -39.826572 1.051894 17.880074 -54.470871 -15.113780 0.132578 -0.296201 0.958876 -0.233944 0.566775 0.069467 19.697815 25.482771 -12.363465 39.688690 33.755463 0.871723 12.100214 28.769585 0.842052 -0.566970 0.162527 -0.074986 0.223590 -0.229272 -0.450840
+3.686080 165.810837 -10.013850 -0.708711 -43.809464 -8.467267 14.905660 -3.534812 -25.559381 -20.248421 12.217989 60.160931 -0.946055 0.210920 -0.418664 1.024623 0.787402 1.030497 3.471545 5.498128 -4.822309 -3.885707 1.971624 29.379862 -0.611777 0.046737 -0.062921 0.526348 -0.332026 0.331516 -1.974897 4.220587 7.711865 0.019630 3.570854 14.578968 1.722256 3.962033 19.697908 0.817285 11.011915 17.349674 -5.980451 13.452775 -26.642031 -6.325960 -27.790190 -11.353952 -36.349861 -42.721581 2.795760 19.648014 -57.580349 -16.854179 0.100534 -0.300538 0.929589 -0.195230 0.550063 0.087429 18.356791 26.276810 -13.279320 42.114651 36.407654 2.660153 14.139043 30.977058 1.550706 -0.589365 0.137617 -0.085893 0.241467 -0.243162 -0.449749
+4.259910 166.414413 -10.207077 -0.526642 -45.121262 -7.063622 13.826838 -3.506287 -24.599703 -19.174902 11.631252 59.457645 -0.946995 0.258391 -0.387693 0.999439 0.771575 1.008299 2.826969 5.272092 -5.705747 -3.972290 1.806051 27.176693 -0.582507 -0.008145 -0.044892 0.536935 -0.267804 0.336139 -2.219940 4.336460 5.366789 0.003672 3.388917 14.782374 2.017438 3.591717 21.089649 1.700519 10.786987 16.190712 -6.775830 13.974439 -25.134264 -3.153059 -28.147654 -11.463265 -38.719383 -46.343384 5.620354 23.407269 -59.769814 -19.725792 0.033027 -0.296529 0.870817 -0.124095 0.503584 0.103738 16.166775 26.730240 -14.252510 44.815201 38.909500 4.892429 15.825143 33.364933 2.250826 -0.615879 0.101931 -0.105385 0.256990 -0.237588 -0.440071
+4.808022 166.904221 -10.422624 -0.733068 -46.235039 -5.375851 12.913041 -3.198283 -23.421019 -17.914255 10.767119 57.741364 -0.954308 0.307424 -0.364783 0.986264 0.777217 0.987194 2.533220 5.195895 -6.705918 -4.037186 1.696595 25.221849 -0.553377 -0.077391 -0.025005 0.561223 -0.200391 0.349465 -2.017075 4.387517 3.086557 -0.028125 3.278562 14.960279 2.086468 3.206985 22.626192 2.779102 10.826136 14.578620 -7.635259 14.627603 -23.868572 0.433951 -27.764511 -11.965924 -40.785454 -49.879936 8.719790 27.362999 -60.750969 -22.435328 -0.046996 -0.280404 0.800177 -0.040896 0.455218 0.121873 13.817894 26.494278 -15.624992 48.139809 41.790955 7.802432 16.585855 35.660488 2.705543 -0.655214 0.055326 -0.116324 0.269366 -0.232309 -0.427753
+5.337681 167.258530 -10.614243 -0.671565 -46.814785 -3.893197 11.459826 -2.942939 -22.181154 -16.140398 9.583920 55.547531 -0.950636 0.365005 -0.340331 0.966309 0.764097 0.954548 1.957998 5.182302 -7.797228 -3.645499 1.523312 23.671066 -0.517947 -0.164296 -0.022018 0.578267 -0.131754 0.372793 -1.919564 4.425741 1.148464 -0.076473 3.175823 14.957006 2.065717 2.795013 23.794067 3.826082 10.731641 12.605187 -7.889929 15.008503 -21.867220 3.222129 -27.083439 -12.216269 -42.217484 -53.365868 12.120479 31.694693 -61.845379 -25.287073 -0.122936 -0.224026 0.718904 0.040902 0.393354 0.137271 12.114221 25.818710 -16.546345 51.171307 44.459446 10.872104 16.401535 38.809841 2.942775 -0.682854 -0.019257 -0.122532 0.252873 -0.223520 -0.411786
+5.970829 167.468262 -10.722678 -0.859234 -46.958382 -2.335909 9.919062 -2.736645 -20.640936 -14.101479 8.071872 52.302254 -0.958169 0.440343 -0.315949 0.939822 0.745111 0.919628 1.410876 5.200613 -8.952253 -2.924253 1.288273 22.457314 -0.481776 -0.251803 -0.021149 0.597846 -0.051501 0.399063 -1.350319 4.238487 -0.561026 -0.121929 2.950678 14.955166 1.860435 2.281338 24.973686 4.827607 10.758275 10.633663 -8.282496 15.194546 -20.152388 6.449837 -25.609381 -12.709257 -43.667767 -56.592579 15.710822 35.943020 -62.011654 -27.848598 -0.213995 -0.185012 0.638861 0.129724 0.330546 0.149686 9.052210 24.649481 -17.605297 55.137161 47.822521 15.320253 15.135632 43.891220 2.928677 -0.717636 -0.082079 -0.135897 0.252205 -0.204097 -0.395094
+6.541596 167.615463 -10.855451 -0.878984 -46.990540 -1.003827 8.527240 -2.343069 -18.514132 -12.292443 6.673387 47.958683 -0.971574 0.502153 -0.290632 0.947485 0.767150 0.897013 1.071578 5.108507 -9.644040 -2.864466 1.226002 20.680563 -0.453429 -0.340292 -0.010996 0.641907 0.025014 0.420717 -0.767321 4.114294 -2.158368 -0.179680 2.845925 15.011827 1.526419 1.896911 26.267313 5.323076 10.922235 8.268052 -8.490258 14.956399 -18.852190 9.191633 -24.203531 -13.362367 -45.204578 -60.212364 19.946867 39.044483 -61.700741 -29.297483 -0.289116 -0.141418 0.558560 0.213191 0.272033 0.179572 7.379398 23.140976 -18.209124 58.328152 51.342308 20.247238 12.153774 49.311752 2.164521 -0.762205 -0.156868 -0.142680 0.261443 -0.205165 -0.372922
+7.057555 167.557571 -10.920549 -1.230472 -46.656609 0.442605 7.331985 -1.740466 -16.060001 -10.061866 5.214743 42.836052 -0.997944 0.571828 -0.276640 0.947832 0.780475 0.880163 1.053766 5.037213 -10.068597 -2.993827 1.212883 18.801537 -0.425038 -0.432788 -0.008094 0.684772 0.094772 0.446590 -0.284973 3.882831 -3.749554 -0.072697 2.528199 14.991328 1.398276 1.312439 27.576986 6.027594 11.206347 5.910971 -9.104285 15.137292 -17.829308 11.725971 -22.904642 -13.194918 -47.234917 -64.533775 25.224836 48.677532 -60.326427 -34.716457 -0.376537 -0.100843 0.483832 0.301007 0.215342 0.196626 4.899434 21.511467 -18.576088 61.936188 55.069584 26.199390 4.828767 54.079399 -1.240528 -0.812577 -0.227911 -0.154991 0.264950 -0.197050 -0.362811
+7.587570 167.365753 -10.901763 -2.077862 -46.110245 2.012757 6.535984 -1.331937 -13.081786 -8.285513 3.906640 36.841415 -1.018823 0.641023 -0.253573 0.927581 0.766131 0.849975 1.363298 4.890635 -10.263627 -2.874372 1.114060 16.737457 -0.388357 -0.516681 -0.005158 0.712771 0.169920 0.458273 0.481760 3.436158 -5.048006 0.158610 2.045128 14.902683 1.410088 0.645872 28.431152 6.507666 11.548370 4.081892 -9.396035 15.291439 -16.265709 13.629256 -22.269430 -12.785307 -47.420818 -67.600021 28.423721 55.280792 -57.893425 -37.501396 -0.455382 -0.070563 0.415153 0.382152 0.149462 0.210388 2.309518 20.545267 -18.556328 63.445854 58.406113 31.174095 -3.587263 57.647339 -5.777683 -0.851452 -0.290484 -0.180625 0.271849 -0.183372 -0.353475
+8.139922 167.086945 -10.794964 -3.024992 -45.163448 3.657308 5.893311 -1.174371 -10.053085 -6.714139 2.707225 30.537392 -1.019406 0.691615 -0.225973 0.901554 0.746145 0.812211 1.922684 4.651367 -10.529010 -3.311572 1.057028 14.482162 -0.352628 -0.579892 0.002972 0.725711 0.238784 0.462736 1.321715 2.750009 -6.127728 0.409789 1.401359 14.669721 1.591582 -0.009055 28.826303 6.777174 12.019965 2.717205 -9.378774 15.401419 -14.719897 14.439263 -21.786655 -12.179305 -48.106052 -69.398895 30.808195 59.139744 -55.577740 -38.558247 -0.514520 -0.042489 0.351448 0.446580 0.090689 0.226204 -0.302565 19.854856 -17.972563 63.413548 61.707382 35.246841 -15.484043 60.341480 -12.905975 -0.872714 -0.338976 -0.199186 0.278354 -0.171877 -0.336583
+8.799688 166.731125 -10.707587 -4.209492 -43.682922 5.327074 5.640352 -1.121407 -7.192679 -4.969370 1.564939 24.122175 -1.042845 0.742357 -0.223079 0.920845 0.791623 0.796968 2.511583 4.493289 -10.739907 -3.291160 0.951021 12.801895 -0.332223 -0.665120 0.001257 0.783237 0.295874 0.487380 2.675274 1.955778 -7.170510 0.667585 0.729253 14.539393 1.773978 -0.718704 29.603876 6.918083 12.356170 0.999013 -9.626181 15.236059 -13.834995 15.685409 -19.757973 -12.304187 -52.083424 -71.228249 35.669212 61.458885 -53.491234 -38.906113 -0.587467 0.003552 0.274759 0.521872 0.045669 0.245024 -2.650172 18.035553 -18.101049 64.836891 65.297920 40.881710 -27.158100 60.834400 -19.952339 -0.919769 -0.409900 -0.196231 0.282147 -0.170038 -0.317770
+9.478745 166.407898 -10.659604 -4.985158 -41.739777 6.478364 5.355981 -1.161506 -4.619622 -3.154108 0.644335 18.145716 -1.090246 0.817315 -0.219817 0.915304 0.789075 0.788350 2.564704 4.277537 -10.861807 -2.881729 0.762308 11.261994 -0.306446 -0.734677 -0.003111 0.822015 0.355988 0.500772 3.502032 1.115947 -7.960092 0.944044 -0.097512 14.434904 2.296673 -1.536874 30.153122 7.272769 12.537025 -0.196136 -10.017186 15.306556 -13.035751 15.669153 -17.467937 -12.309466 -56.735508 -72.494247 40.849648 63.261333 -51.987835 -39.211372 -0.667121 0.012065 0.229978 0.592134 -0.004957 0.247079 -4.700796 16.199377 -18.488214 66.628220 68.156883 46.066250 -34.702087 59.956367 -24.123089 -0.970360 -0.451779 -0.225195 0.301113 -0.150006 -0.322229
+10.139124 166.208511 -10.655588 -5.300417 -40.164059 6.764904 4.916523 -1.123915 -2.158214 -1.728130 0.088607 13.530686 -1.099236 0.839905 -0.209688 0.915599 0.801475 0.780011 2.097042 4.026699 -10.743176 -2.141443 0.577856 10.268116 -0.295503 -0.763969 0.000655 0.844227 0.386985 0.501329 3.746252 0.343584 -8.364570 1.232044 -0.869282 14.649433 2.940700 -2.295182 30.753368 7.235092 12.683440 -0.707292 -10.284906 15.279030 -12.616693 15.196456 -16.014782 -11.866718 -56.073547 -72.118721 40.071522 67.018219 -51.379295 -41.398281 -0.697536 0.014138 0.198975 0.624464 -0.025672 0.257716 -6.720199 15.631665 -18.756304 65.503212 70.584396 47.880749 -40.419041 58.486000 -26.962854 -0.987462 -0.472984 -0.233663 0.316679 -0.150354 -0.313422
+10.654404 166.179779 -10.645554 -4.944256 -39.087788 6.348263 4.325727 -0.970683 0.016181 -1.205743 -0.157807 9.864465 -1.096951 0.822241 -0.219537 0.954418 0.851100 0.799497 1.295098 3.731236 -10.465878 -1.462644 0.427104 9.707247 -0.313712 -0.764381 -0.004805 0.867795 0.368795 0.511673 3.171412 -0.430666 -8.544799 1.389963 -1.645985 15.086342 3.622384 -2.982769 31.504795 6.846983 12.960088 -0.861428 -10.437006 15.113918 -13.143548 13.846340 -14.872466 -11.076325 -54.482483 -70.344421 37.039261 72.295982 -51.172344 -45.048656 -0.682150 0.032925 0.196125 0.613875 -0.006114 0.268225 -8.196864 15.559580 -19.170992 64.083588 72.440781 48.616299 -43.497639 57.674503 -28.336992 -0.988700 -0.487447 -0.210443 0.311457 -0.168925 -0.305869
+11.125395 166.299744 -10.601816 -4.740160 -38.537167 6.115050 4.048481 -0.737400 1.379201 -1.179225 -0.227580 7.158032 -1.084738 0.788376 -0.228655 1.000917 0.920972 0.829529 0.713187 3.411147 -10.135060 -0.925823 0.299939 8.839221 -0.336795 -0.755659 -0.007592 0.898849 0.341237 0.516950 2.366146 -0.958242 -8.728352 1.630340 -2.214990 15.438787 4.476635 -3.578359 32.226089 6.641571 12.948731 -0.745057 -10.782589 14.985612 -13.848970 13.948818 -13.862144 -10.626502 -56.628014 -69.249527 36.820278 75.675552 -49.002544 -46.430412 -0.661248 0.045069 0.186051 0.600412 0.025978 0.282437 -9.989197 15.184614 -19.792603 63.833912 73.167816 49.030106 -44.953426 57.150688 -29.091829 -0.983364 -0.499070 -0.180107 0.311097 -0.200623 -0.294014
+11.704982 166.443573 -10.500327 -4.902152 -38.577633 6.606191 3.967666 -0.571117 1.688066 -1.402363 -0.226259 5.278137 -1.077761 0.775152 -0.227254 1.014740 0.938797 0.830495 0.492277 3.368220 -10.587141 -0.772997 0.246548 8.689735 -0.344673 -0.747596 -0.001659 0.902613 0.336509 0.516506 2.692729 -1.349458 -8.828351 1.617638 -2.523815 15.354789 4.594627 -3.812340 32.288555 6.288514 13.026314 -0.367314 -10.775361 14.813252 -14.011901 13.776206 -13.612578 -9.788488 -60.582260 -68.036064 37.971722 78.955338 -46.889603 -47.705170 -0.646007 0.045985 0.189765 0.590842 0.035649 0.293364 -11.118945 14.942119 -19.831707 66.460342 73.011261 51.017929 -46.437981 57.026867 -30.156076 -0.980619 -0.496784 -0.170941 0.315331 -0.209686 -0.286371
+12.290704 166.611801 -10.457254 -4.451474 -38.422558 6.790403 3.186703 -0.593420 1.158560 -1.276390 -0.268725 4.707998 -1.069638 0.768653 -0.232556 1.016225 0.945699 0.824963 0.018032 3.191138 -10.856431 -1.310403 0.235380 8.007919 -0.350006 -0.756330 -0.000957 0.898630 0.330614 0.531174 2.337476 -1.658933 -8.863449 1.543133 -2.792575 15.227049 4.852370 -4.019577 32.291412 6.229304 13.150345 -0.183849 -11.170837 15.021295 -14.089559 13.014682 -13.408588 -8.975149 -65.255104 -67.021538 40.152306 82.305130 -45.638062 -49.411636 -0.647906 0.061677 0.185085 0.594335 0.043850 0.295907 -11.717545 14.692482 -19.848322 69.128975 72.343956 52.539219 -47.315952 57.403542 -31.085566 -0.980848 -0.502920 -0.156300 0.300064 -0.209540 -0.281604
+12.875531 166.796127 -10.318791 -4.070812 -38.260422 7.089659 2.559883 -0.654498 0.366627 -1.238704 -0.282167 4.543143 -1.077106 0.788649 -0.222730 0.994107 0.917558 0.828116 -0.513203 2.922876 -10.851745 -1.647080 0.162917 6.766772 -0.346808 -0.757777 0.008350 0.884187 0.340838 0.534871 2.385808 -1.728528 -8.986812 1.525151 -2.863063 14.998963 5.042413 -4.071307 32.190971 6.303298 12.619086 0.119050 -12.283116 15.076365 -14.216791 12.455155 -13.078830 -8.884089 -72.097710 -67.240944 45.277969 81.637329 -44.454758 -48.337662 -0.669855 0.028617 0.190516 0.610847 0.044922 0.292762 -11.799401 14.050757 -19.717897 72.974464 71.297256 54.834290 -47.838268 58.205597 -31.992229 -0.988223 -0.485575 -0.170921 0.313014 -0.202340 -0.289735
+13.395077 166.737762 -10.082503 -4.089847 -38.572506 7.906460 2.023226 -0.771835 -0.614322 -0.956871 -0.310606 4.438101 -1.090999 0.837962 -0.221204 0.939800 0.833757 0.820332 -0.772714 2.743091 -11.101755 -2.010183 0.080789 5.364624 -0.320281 -0.772708 -0.000133 0.844304 0.358260 0.544182 3.062252 -1.634425 -9.226872 1.376643 -2.750168 14.442250 4.875720 -3.944598 31.619038 6.492706 12.150744 0.513427 -13.014243 15.226171 -13.560247 12.360047 -12.960727 -9.066564 -79.192009 -67.515518 50.885387 78.395531 -42.794807 -45.265221 -0.717387 0.013727 0.188676 0.637388 0.013729 0.254864 -11.302478 13.244636 -19.318937 77.865608 69.759842 57.727581 -47.193928 59.089581 -32.161739 -0.993525 -0.474057 -0.192754 0.299459 -0.161056 -0.313150
+13.828653 166.652512 -9.840980 -4.151379 -39.715862 8.555477 1.746907 -0.754878 -1.088156 -1.389479 -0.252810 4.218377 -1.094460 0.847454 -0.218103 0.918178 0.790864 0.826976 -1.008653 2.547835 -11.201224 -2.324178 0.017737 3.860257 -0.313390 -0.762404 -0.003633 0.820353 0.350867 0.538424 3.126805 -1.284690 -9.438453 1.382890 -2.418868 14.068754 5.008206 -3.604424 31.115501 6.412742 11.882789 1.204330 -13.347988 15.287351 -13.348889 12.705297 -13.583503 -9.407660 -85.446564 -67.152603 54.847454 74.411972 -41.302387 -42.276527 -0.715568 -0.002619 0.206030 0.630796 0.009265 0.238870 -10.225543 13.082952 -19.100153 79.090797 68.281090 57.511650 -43.573631 60.552917 -30.385550 -0.984893 -0.460988 -0.207544 0.293337 -0.152303 -0.329515
+14.215366 166.400497 -9.639891 -4.677720 -41.686428 9.656706 1.885013 -0.656468 -1.603452 -2.277337 -0.131871 4.024805 -1.096539 0.847049 -0.216312 0.899181 0.765406 0.823466 -0.900262 2.684221 -12.250626 -2.741712 0.018088 3.545446 -0.316231 -0.743360 -0.003258 0.803856 0.347300 0.530707 3.160746 -0.712731 -9.501808 1.436634 -1.890032 13.627561 5.169096 -3.120769 30.388159 6.273380 12.225251 1.860964 -13.435210 15.693666 -13.532401 13.751966 -14.217770 -9.579228 -91.074524 -66.179016 58.107872 71.605705 -41.023403 -41.015305 -0.707246 -0.029610 0.230715 0.619336 0.019214 0.234175 -8.760969 13.039057 -19.083811 80.860359 66.582199 57.432156 -37.243942 61.676510 -26.572687 -0.976292 -0.434797 -0.222670 0.302144 -0.146139 -0.336545
+14.641613 166.171127 -9.462562 -4.921983 -42.801075 10.401458 1.961649 -0.653288 -2.308728 -2.962060 -0.032566 4.267697 -1.101563 0.853457 -0.224961 0.870326 0.719591 0.826937 -0.979882 2.826349 -13.204652 -3.001142 0.008811 3.600504 -0.311085 -0.731952 -0.012616 0.774296 0.332458 0.530921 3.247879 -0.434707 -9.442404 1.396472 -1.644224 13.281281 5.101701 -2.848711 29.631275 6.132382 12.535857 2.332519 -13.839775 16.173334 -13.591652 14.036519 -14.964469 -10.235558 -94.001587 -65.193275 59.397999 65.991959 -42.356003 -38.854191 -0.711980 -0.044189 0.250843 0.612267 0.019960 0.205883 -6.929202 13.165133 -19.168177 81.738197 65.022469 56.448383 -29.359505 61.857716 -21.390314 -0.967768 -0.414291 -0.232128 0.287072 -0.126680 -0.356596
+14.929004 165.985611 -9.151836 -5.146772 -44.025570 10.659870 1.861766 -0.618712 -2.457432 -3.627368 0.076044 4.691832 -1.113603 0.862037 -0.234416 0.836180 0.655577 0.837443 -1.104248 2.909253 -13.575015 -3.150526 -0.015004 3.813988 -0.314156 -0.699742 -0.017814 0.729508 0.310522 0.530876 3.055251 -0.057957 -9.364016 1.450817 -1.412310 13.194138 5.110569 -2.577329 29.038452 6.297140 12.702289 3.478209 -14.333034 16.750994 -14.108746 14.413742 -15.568020 -11.278418 -95.429695 -63.821934 59.185909 57.418194 -45.314835 -35.808811 -0.706590 -0.085103 0.302984 0.591128 0.034978 0.175094 -5.280315 13.301097 -19.151182 81.850861 62.609364 53.425987 -20.594717 61.990658 -15.891312 -0.957578 -0.366274 -0.250480 0.280691 -0.103298 -0.386017
+15.239906 165.860687 -8.873873 -5.101358 -44.078457 10.554264 1.762973 -0.619790 -2.705960 -4.132512 0.163494 5.248610 -1.065822 0.808932 -0.239849 0.811836 0.623993 0.841892 -1.365934 2.949719 -13.787544 -3.244636 -0.017868 4.303505 -0.331706 -0.644221 -0.022773 0.671724 0.259055 0.532400 2.976861 -0.084707 -9.119883 1.366517 -1.515588 13.196385 4.765889 -2.713930 28.262587 6.814708 12.806744 5.025874 -14.482751 17.505720 -14.744325 14.495887 -16.764977 -12.363049 -92.717079 -62.055065 55.235191 46.282558 -50.457123 -31.692688 -0.660865 -0.094262 0.338789 0.541981 0.078395 0.152664 -3.421954 14.127910 -18.576777 82.206139 59.136444 48.684807 -12.521753 61.617619 -11.249223 -0.906939 -0.322045 -0.224770 0.247289 -0.103141 -0.389675
+15.554181 165.727951 -8.521416 -4.992289 -43.029907 10.302081 1.799044 -0.734454 -3.166370 -4.538305 0.242601 6.367111 -1.036913 0.752425 -0.246099 0.799819 0.595353 0.851504 -1.727636 3.030383 -13.933911 -3.180070 0.005409 5.350820 -0.342926 -0.582150 -0.018190 0.625031 0.202747 0.512445 3.246763 -0.343732 -8.779749 1.318521 -1.792602 13.138346 4.421697 -2.928024 27.262768 7.133666 12.467698 6.503696 -14.343180 17.727160 -15.214037 13.763721 -18.234430 -13.430535 -90.439125 -59.598083 50.590897 32.098812 -54.040592 -24.599171 -0.596401 -0.113991 0.388799 0.482040 0.111295 0.135804 -1.226582 14.862134 -17.865034 81.529343 55.168659 42.481625 -3.667370 60.634468 -6.241711 -0.865408 -0.278168 -0.215349 0.225861 -0.110626 -0.402989
+15.849076 165.574310 -8.131860 -5.068333 -41.067970 10.106946 2.219613 -0.983507 -3.892625 -4.928264 0.300052 8.002980 -0.974695 0.673846 -0.249245 0.785369 0.561364 0.864256 -1.804403 3.097839 -13.968277 -3.114265 0.019697 6.572827 -0.362699 -0.512554 -0.022638 0.559440 0.124588 0.503094 3.246873 -0.894110 -8.172311 1.569622 -2.382916 12.990288 4.773133 -3.400424 25.807117 7.534362 11.780448 8.253345 -14.297837 18.063457 -15.435966 12.291859 -20.430418 -13.915789 -87.921021 -56.758984 44.783585 17.719345 -55.451141 -16.588863 -0.510555 -0.109447 0.436906 0.405972 0.161027 0.118351 0.317219 15.617240 -17.052387 78.412018 50.447380 34.290943 8.714778 60.411060 0.767698 -0.795650 -0.242457 -0.184958 0.174225 -0.129363 -0.409777
+16.292578 165.454025 -7.821098 -4.871679 -38.688713 9.761529 2.260157 -1.424712 -5.083307 -4.831028 0.272306 10.155741 -0.929159 0.591818 -0.264899 0.778132 0.545931 0.891141 -2.257285 3.204778 -14.475119 -2.807207 0.011261 8.639344 -0.386443 -0.438901 -0.028916 0.507698 0.036384 0.489523 3.615349 -1.483473 -7.302910 1.715158 -2.932990 12.817417 4.830313 -3.806264 24.267712 7.908114 10.728236 9.849509 -14.754625 18.273989 -16.239548 10.317590 -21.980553 -14.548903 -85.792686 -53.839848 39.431683 2.632618 -54.322548 -7.791092 -0.432590 -0.123592 0.486953 0.331576 0.219326 0.092193 1.359591 15.725340 -16.802837 77.041733 45.500538 26.988073 19.085180 56.334438 5.642725 -0.736002 -0.196466 -0.155901 0.134010 -0.147351 -0.423532
+16.767014 165.220108 -7.596445 -4.816630 -36.790577 9.367983 2.466438 -1.855611 -6.022723 -5.049363 0.254085 12.265924 -0.890086 0.510714 -0.288790 0.798678 0.555843 0.921003 -2.412832 3.453909 -15.473419 -2.841933 0.052842 11.852003 -0.429361 -0.365020 -0.042164 0.468560 -0.055111 0.493362 4.239603 -1.800911 -6.213076 1.862685 -3.158482 12.595392 4.732828 -3.848646 22.623755 8.044323 9.594744 11.559546 -14.349407 17.979103 -17.310083 8.532695 -23.883814 -15.057103 -83.152710 -51.063713 33.961685 -8.430391 -50.342369 -1.799217 -0.341301 -0.123655 0.553789 0.244320 0.293513 0.077877 2.455341 15.799919 -16.267269 75.115257 40.511330 19.463898 24.019423 50.752930 6.489604 -0.683317 -0.154140 -0.114255 0.092475 -0.169525 -0.430516
+17.290911 164.959213 -7.414825 -4.478417 -35.145138 8.876101 2.365196 -2.374192 -7.190221 -5.518082 0.285005 14.595009 -0.847710 0.429252 -0.295581 0.817548 0.578810 0.953382 -2.935126 3.624351 -16.941275 -2.514184 0.023516 15.458811 -0.462106 -0.291627 -0.037040 0.440824 -0.127184 0.480081 4.448170 -2.098420 -4.941921 2.011973 -3.327550 12.311473 4.844123 -3.878735 21.023130 7.943216 8.780449 12.722813 -14.475996 17.711874 -18.331877 5.413836 -24.815405 -15.323556 -80.279602 -48.015671 28.767843 -16.461260 -44.307777 1.851089 -0.264389 -0.148040 0.597518 0.176007 0.357297 0.073871 3.838594 15.699075 -15.997826 72.945160 36.886215 14.157047 24.673544 44.276363 5.275273 -0.636407 -0.109438 -0.081147 0.079550 -0.201851 -0.430333
+17.785343 164.539001 -7.141523 -3.791245 -33.846031 8.387157 1.852908 -2.899937 -8.296381 -6.096842 0.341151 16.631353 -0.808238 0.355307 -0.302025 0.831616 0.598727 0.951845 -3.781037 3.740919 -19.018318 -2.164133 -0.041196 19.654463 -0.487705 -0.232848 -0.030307 0.416189 -0.179527 0.467214 4.306993 -2.352704 -3.638881 2.095264 -3.466448 11.781212 5.023437 -3.875977 19.177557 7.386358 8.591800 13.662288 -13.834954 17.137136 -18.778818 1.960691 -25.163218 -14.632752 -78.016800 -44.202263 23.552284 -19.917215 -38.329239 2.590349 -0.187717 -0.154263 0.635079 0.111997 0.403640 0.079281 5.163298 15.574767 -15.607550 70.591850 33.865841 10.379823 24.017225 37.946579 3.954708 -0.597360 -0.074694 -0.049744 0.067209 -0.221737 -0.418418
+18.330759 164.179581 -6.870327 -3.681135 -33.151340 8.070025 1.865900 -3.263278 -9.093833 -7.076929 0.525211 18.374027 -0.798733 0.300127 -0.318664 0.838479 0.605428 0.959621 -4.173430 4.119389 -21.660055 -1.905512 -0.082959 24.898504 -0.506839 -0.166358 -0.028408 0.397086 -0.230968 0.442493 4.744067 -2.604010 -2.125001 2.256796 -3.581299 11.288576 5.008955 -3.833755 17.503284 6.419683 8.837600 14.846249 -13.476909 16.512730 -19.515322 -1.287033 -25.412186 -13.747530 -75.364235 -40.273064 18.525545 -19.840181 -32.175537 1.762491 -0.122956 -0.192694 0.686309 0.048361 0.443977 0.068460 6.177608 15.792447 -15.426707 68.357788 31.555937 7.664391 21.241856 31.155571 2.268438 -0.569114 -0.019661 -0.039187 0.075034 -0.226762 -0.421802
+18.939306 163.776047 -6.580958 -3.720657 -32.206123 7.651282 2.004519 -3.678839 -9.836908 -7.989707 0.724398 20.425817 -0.760992 0.249768 -0.309020 0.846747 0.610231 0.966991 -4.569657 4.494790 -24.502705 -1.122313 -0.321967 30.765654 -0.523824 -0.115091 -0.017938 0.373039 -0.266962 0.427568 5.576309 -2.850151 -0.464693 2.555452 -3.584078 10.752144 4.959300 -3.723801 15.846239 5.325629 8.634088 15.645189 -13.433267 15.707110 -19.426193 -5.470442 -25.574333 -12.463014 -71.813065 -36.774284 14.242193 -18.183001 -26.963381 0.834180 -0.061498 -0.211856 0.711779 -0.000145 0.478787 0.079219 7.203215 16.091066 -14.941464 65.143066 29.111261 5.211731 18.671806 25.223808 1.173900 -0.532027 0.009685 -0.019613 0.075905 -0.250108 -0.410450
+19.439470 163.280258 -6.358846 -3.231553 -30.929041 6.858565 1.773720 -4.101543 -10.373734 -8.927192 0.938995 22.065350 -0.725303 0.186942 -0.318703 0.872240 0.637902 0.986968 -5.462763 4.586460 -27.163103 0.127730 -0.821714 36.262287 -0.552885 -0.064471 -0.024821 0.358027 -0.325464 0.425053 5.291738 -2.864788 1.258097 2.988086 -3.640156 10.240232 5.567379 -3.770025 14.406233 4.510455 8.365150 16.270124 -13.276519 15.029097 -20.173136 -7.593249 -24.577877 -11.412386 -69.818794 -33.859203 11.203640 -15.123612 -23.856007 -0.217358 0.006055 -0.206937 0.740991 -0.060412 0.527148 0.078416 7.802942 15.485609 -14.418867 62.464172 26.800749 3.287712 15.403626 20.315866 0.300987 -0.492762 0.030450 0.016900 0.056504 -0.274000 -0.402824
+19.946774 162.931671 -6.141751 -2.898714 -29.681501 5.870984 1.895730 -4.475026 -10.590205 -10.181825 1.255313 23.522692 -0.724974 0.146599 -0.336209 0.882914 0.638385 1.002475 -6.115812 4.700952 -29.537872 1.648692 -1.540842 41.458977 -0.568589 -0.009576 -0.027956 0.343671 -0.376250 0.405295 4.895731 -2.932024 3.379297 3.563492 -3.887345 9.761519 6.236234 -3.949844 12.988148 3.558750 8.314308 17.141518 -13.135340 14.367659 -21.049139 -9.910426 -23.669518 -10.299650 -66.558167 -30.758142 8.031378 -11.624775 -21.327078 -1.136563 0.063747 -0.232437 0.790183 -0.118794 0.558664 0.065577 9.075508 14.934098 -13.808750 59.144989 24.671946 1.479747 11.770635 15.992798 -0.301133 -0.470865 0.071178 0.022373 0.057114 -0.278523 -0.414184
+20.385530 162.420090 -5.809050 -2.629579 -28.410467 5.047889 1.947702 -4.909387 -10.967044 -11.035223 1.555276 25.477037 -0.688370 0.129967 -0.322121 0.851673 0.598775 0.973703 -6.486128 4.818720 -32.389385 2.907674 -2.365039 47.160591 -0.562033 0.015903 -0.023939 0.302312 -0.378122 0.398145 4.998044 -3.110595 5.404242 4.020192 -4.073726 9.107855 6.576442 -4.041526 11.299379 2.619753 8.141638 17.236959 -12.970862 13.684276 -20.442793 -12.173937 -22.142656 -9.391544 -63.350090 -27.746367 5.657024 -9.421108 -18.544302 -1.481310 0.088213 -0.236741 0.793615 -0.140827 0.558756 0.062063 10.041064 13.447751 -13.078409 56.055981 22.263443 0.006051 9.110870 12.424438 -0.542901 -0.438307 0.093594 0.031726 0.050469 -0.267912 -0.399299
+20.655802 162.026123 -5.410189 -2.579285 -27.030783 3.905214 2.193041 -5.118251 -10.440008 -11.731739 1.839855 26.942944 -0.670667 0.106306 -0.319521 0.839352 0.575707 0.980028 -5.922709 5.223995 -34.627769 3.335677 -2.860260 52.538612 -0.569161 0.054167 -0.021103 0.271084 -0.405383 0.389587 5.081206 -3.273753 7.688556 4.604631 -4.311306 8.630200 6.929250 -4.148957 9.902285 2.230366 7.774840 17.572731 -13.491461 13.308335 -20.964165 -13.982994 -20.404556 -8.745137 -59.872799 -24.946609 3.649870 -7.365471 -16.181147 -1.686979 0.119134 -0.259946 0.819565 -0.173347 0.578928 0.052047 9.670031 11.711251 -12.443888 53.719810 20.020018 -1.216445 6.452978 9.831444 -0.684007 -0.413292 0.126729 0.037462 0.048415 -0.268086 -0.403226
+20.923830 161.772049 -4.961757 -2.448963 -26.234571 2.501436 2.375989 -5.115589 -9.258163 -12.836029 2.252694 27.794682 -0.665110 0.086009 -0.329235 0.833262 0.564884 0.964623 -5.266737 5.865745 -36.718525 4.138410 -3.463048 57.418667 -0.572619 0.075839 -0.026541 0.255885 -0.426751 0.383084 5.098778 -3.299753 10.047618 5.168306 -4.453836 8.310069 7.203218 -4.160669 8.788762 1.265124 7.959083 17.824543 -13.343112 12.685974 -21.318361 -15.072963 -18.624985 -8.199430 -56.492081 -22.251076 1.979178 -5.183663 -14.359780 -1.866831 0.152452 -0.261217 0.841903 -0.205720 0.588665 0.044471 9.763039 9.814312 -12.009745 50.379032 18.102114 -2.084780 4.678450 7.296798 -0.614830 -0.396773 0.144943 0.043737 0.040403 -0.259832 -0.400414
+21.304970 161.639526 -4.406205 -2.477626 -25.583950 1.134860 2.446629 -5.093029 -7.781987 -13.718141 2.549747 28.231613 -0.650031 0.086525 -0.313719 0.812903 0.526092 0.965160 -4.345796 6.413343 -37.727325 5.292819 -4.207455 59.874550 -0.569063 0.094820 -0.020372 0.225577 -0.431553 0.377287 5.368691 -3.518675 12.142909 5.688255 -4.636598 8.160872 7.295374 -4.185848 7.942498 0.932564 7.465970 17.837507 -14.010962 12.280703 -21.185457 -16.195415 -16.694933 -7.628699 -52.625534 -19.637558 0.561332 -3.642333 -13.151987 -1.899352 0.165656 -0.279686 0.853868 -0.218140 0.590423 0.042038 8.520665 8.301280 -11.396812 47.538345 16.361395 -2.569279 3.455353 4.880548 -0.454788 -0.378742 0.162765 0.038497 0.041495 -0.258521 -0.403009
+21.733635 161.645325 -3.841963 -2.286617 -25.117910 -0.636689 1.986293 -5.084488 -5.939081 -14.112706 2.645925 28.494408 -0.632304 0.063293 -0.300490 0.807424 0.519311 0.950874 -3.194491 6.859639 -37.570408 6.066957 -4.599330 60.515621 -0.570016 0.119315 -0.009515 0.213131 -0.435593 0.357969 5.798743 -3.771970 14.191962 6.053557 -4.701538 8.294361 7.031574 -4.094211 7.448591 0.239990 7.740993 17.806854 -13.703785 11.927844 -21.271889 -16.054817 -15.618456 -6.624852 -48.945755 -16.865530 -0.683796 -2.067552 -12.982361 -1.973437 0.199944 -0.290488 0.866414 -0.241907 0.594869 0.054184 6.860387 7.078993 -10.348022 44.608337 14.283694 -3.020995 2.963342 3.447149 -0.298268 -0.360637 0.177405 0.035423 0.051756 -0.266719 -0.393854
+22.125004 161.531906 -3.083708 -2.166203 -24.630690 -1.663722 1.515905 -5.174159 -4.827649 -14.471898 2.769121 29.009676 -0.600593 0.070499 -0.270768 0.743624 0.453749 0.892089 -1.901205 7.162938 -37.692253 6.769125 -4.928093 60.020603 -0.535954 0.111024 0.003509 0.173496 -0.396985 0.339500 6.378611 -4.183243 15.112103 6.172395 -4.737058 8.396427 6.765175 -3.990396 7.125211 0.108338 7.708813 16.786697 -13.546597 11.916632 -19.829775 -15.221964 -13.651916 -5.751749 -46.389057 -14.438077 -1.558282 -0.554936 -13.152649 -2.043138 0.188790 -0.289363 0.838840 -0.224319 0.555854 0.054913 4.676977 4.906705 -9.400670 42.898899 12.146390 -3.640697 1.656223 3.159911 -0.287754 -0.340275 0.179447 0.018132 0.051056 -0.245426 -0.377672
+22.466068 161.500366 -2.304932 -2.055101 -23.829338 -2.975442 1.081498 -5.366776 -3.480710 -14.614173 2.810500 29.752996 -0.580074 0.087083 -0.245907 0.686938 0.390968 0.825781 -0.878860 7.192424 -37.356110 8.201337 -5.672806 58.829304 -0.500118 0.103878 0.024154 0.136142 -0.348393 0.324482 7.110904 -4.645409 16.056213 6.283606 -4.748927 8.607339 6.359359 -3.813424 6.912333 -0.444602 7.587723 15.901487 -12.809057 11.334287 -18.524189 -14.213674 -11.942996 -5.137749 -43.866344 -12.573420 -2.079563 0.714412 -13.109380 -2.073658 0.173702 -0.291662 0.817658 -0.206092 0.511064 0.057749 3.064054 2.571803 -8.369623 40.710045 9.655045 -4.404863 0.360695 3.894627 -0.319801 -0.334030 0.190125 0.002431 0.059564 -0.214290 -0.359476
+22.872311 161.422791 -1.313470 -2.041801 -22.954294 -4.169893 0.394290 -5.555633 -1.919752 -14.591467 2.741154 30.261702 -0.562184 0.104488 -0.218997 0.637668 0.336687 0.781187 0.177427 7.040009 -36.515480 9.750964 -6.347628 56.410931 -0.475205 0.096511 0.041173 0.103359 -0.310694 0.316994 8.046453 -5.338715 16.680611 6.365494 -4.895295 8.906464 5.858542 -3.778972 6.917534 -0.668868 7.227249 14.600461 -13.153727 11.007820 -18.080950 -13.998933 -9.715944 -4.894775 -40.921242 -10.897231 -2.568496 1.856445 -13.603149 -2.119638 0.155882 -0.300594 0.800210 -0.187286 0.481149 0.060986 1.558456 0.042937 -7.874634 38.117565 7.941613 -4.851634 -0.943324 4.074091 -0.304717 -0.327695 0.199637 -0.012387 0.069006 -0.193076 -0.347032
+23.301834 161.322922 -0.261919 -2.056665 -22.119368 -5.023495 -0.362816 -5.720055 -0.578047 -14.546800 2.626470 30.498734 -0.509479 0.104380 -0.184608 0.601993 0.300938 0.747661 1.292220 6.826552 -35.948139 11.114471 -6.784885 53.397564 -0.454093 0.078111 0.056263 0.068971 -0.284203 0.324373 9.215619 -6.142268 16.680567 6.343857 -4.990275 9.155828 5.281582 -3.772311 7.048426 -0.810808 6.742489 13.154643 -13.888503 10.898558 -17.038511 -13.540312 -7.637950 -4.623315 -38.357166 -9.490891 -2.898944 3.393082 -13.749544 -2.143231 0.142634 -0.272378 0.754306 -0.163511 0.457513 0.071870 -0.374009 -2.491237 -7.236812 35.854542 6.106411 -5.189278 -1.819005 4.761631 -0.318013 -0.305341 0.178193 0.001749 0.048948 -0.192783 -0.323438
+23.686234 161.253693 0.765744 -1.725216 -21.339085 -5.937430 -1.456206 -5.890038 0.603888 -14.389922 2.487462 30.867016 -0.467344 0.106356 -0.154289 0.573984 0.274580 0.705853 2.280473 6.587149 -35.320629 11.818334 -6.785094 50.434319 -0.430463 0.055359 0.069255 0.047685 -0.249134 0.325109 10.032748 -6.845631 16.477690 6.122768 -5.138239 9.398839 4.615995 -3.864534 7.240083 -1.097282 6.626784 11.815160 -13.572453 10.636536 -15.706458 -12.353410 -5.602449 -4.248758 -36.042843 -8.030957 -3.102039 4.601740 -14.035872 -2.149399 0.133448 -0.237907 0.710573 -0.141117 0.425247 0.087278 -1.906721 -4.765110 -6.783354 33.498581 4.657531 -5.353775 -2.893635 5.280101 -0.335961 -0.289823 0.150717 0.009177 0.034345 -0.191540 -0.297698
+24.157162 161.186646 1.785058 -1.249826 -20.869225 -6.807131 -2.470140 -6.057405 1.476139 -14.745549 2.538543 31.418257 -0.432540 0.122809 -0.118299 0.539019 0.236929 0.654842 3.155160 6.387020 -34.742477 12.157935 -6.587288 47.521358 -0.401949 0.028409 0.084073 0.027185 -0.198550 0.322055 11.136605 -7.642877 16.154589 5.693991 -5.246580 9.628061 3.579639 -3.931761 7.420284 -1.653527 6.734112 10.493245 -13.025815 10.277324 -13.970187 -10.855429 -3.764762 -3.729257 -33.783527 -6.491786 -3.186473 5.447280 -14.330245 -2.110219 0.118431 -0.211203 0.668036 -0.112853 0.383642 0.107391 -3.683405 -6.718032 -6.234053 31.197969 3.397299 -5.334574 -3.333689 6.100046 -0.351692 -0.279308 0.125034 0.004580 0.031082 -0.184717 -0.270690
+24.543816 161.174515 2.710782 -0.406381 -20.720381 -8.002530 -3.568417 -6.142345 2.381830 -15.562885 2.771184 31.928183 -0.431420 0.139155 -0.105472 0.504654 0.206354 0.612895 3.927871 6.285587 -33.950470 12.257437 -6.179771 44.537949 -0.377832 0.010202 0.097563 0.016162 -0.162029 0.312303 11.388369 -8.015214 16.041689 5.233425 -5.344669 10.024038 2.808575 -3.967666 7.848491 -1.716463 6.841720 9.684943 -12.925175 10.299583 -13.257487 -9.800729 -2.117863 -3.490895 -31.199598 -5.060237 -3.232592 6.552756 -14.953437 -2.155915 0.095794 -0.212339 0.647986 -0.088289 0.351028 0.110882 -4.967220 -8.380969 -6.015828 28.897964 2.465482 -5.281107 -4.415234 5.208174 -0.258431 -0.287061 0.123772 -0.011843 0.040513 -0.164899 -0.262101
+24.924366 161.217102 3.655488 0.191367 -20.605526 -9.026384 -4.248478 -6.148026 3.274610 -16.468519 3.030528 32.124470 -0.422023 0.168055 -0.076619 0.478701 0.179473 0.574375 4.985765 6.271129 -32.759853 12.047461 -5.575088 40.923805 -0.353344 -0.003018 0.115113 0.009624 -0.103811 0.301709 11.800886 -8.365379 15.511666 4.840786 -5.417903 10.482122 2.078977 -3.982810 8.514678 -2.136933 7.185528 9.123150 -11.892690 9.930886 -12.057791 -8.794961 -0.788652 -3.314827 -29.166594 -3.931620 -3.237716 8.134041 -15.434363 -2.293288 0.070375 -0.218305 0.620836 -0.059979 0.313135 0.127324 -5.318571 -9.627439 -5.699814 25.206091 1.572420 -4.848063 -4.352842 4.992142 -0.188344 -0.293107 0.122209 -0.029410 0.067850 -0.151368 -0.242778
+25.193609 161.167664 4.602196 1.085115 -20.448780 -9.963815 -4.886878 -6.181475 3.799244 -17.912523 3.479262 32.480518 -0.424365 0.174109 -0.074736 0.492259 0.198889 0.570425 5.998796 6.188677 -31.345177 11.295822 -4.744587 36.859245 -0.355300 -0.017430 0.108482 0.028617 -0.095045 0.306364 12.166010 -8.641418 14.318472 4.200000 -5.463840 11.083456 1.172160 -4.028099 9.788781 -2.614137 7.395840 8.664772 -11.645167 9.604754 -12.155647 -7.988835 0.250729 -3.292256 -26.588480 -3.090108 -3.088936 8.976839 -15.737493 -2.332803 0.069957 -0.200423 0.609161 -0.055942 0.308886 0.138074 -4.957414 -10.655613 -5.491759 21.727760 0.616460 -4.410783 -4.809480 5.624505 -0.204448 -0.296788 0.102599 -0.026947 0.069686 -0.156954 -0.233054
+25.456829 161.244141 5.453497 1.736750 -20.427681 -11.156069 -5.374030 -6.222365 4.504257 -19.052168 3.874412 33.023182 -0.437924 0.150381 -0.100211 0.518343 0.239356 0.593834 7.190833 6.185464 -29.300119 10.783119 -3.999894 32.469421 -0.371075 -0.006022 0.088833 0.051988 -0.131293 0.303353 12.465596 -8.790054 13.584994 3.781213 -5.458520 11.813186 0.470457 -3.974958 11.109085 -2.747384 7.548503 8.673517 -11.898371 9.585697 -13.587842 -7.373384 0.819262 -3.283963 -24.075962 -2.472735 -2.910372 9.845958 -15.636508 -2.342551 0.087705 -0.194055 0.618596 -0.079389 0.329918 0.124256 -5.216070 -11.429153 -5.208989 19.450302 -0.398579 -4.194067 -5.936078 6.376239 -0.240710 -0.294362 0.102938 -0.015351 0.064767 -0.163053 -0.240143
+25.698383 161.138306 6.436345 2.892162 -20.001850 -12.208860 -6.475965 -6.325407 4.848981 -20.120022 4.218717 33.639622 -0.471859 0.164892 -0.121375 0.539506 0.249544 0.620807 7.586610 5.788868 -27.347414 10.269388 -3.381520 28.162188 -0.379934 -0.012640 0.076778 0.068466 -0.149705 0.314046 11.988592 -8.701845 12.435961 3.351420 -5.639734 12.286113 0.189429 -4.091787 12.314336 -2.659556 7.639043 8.754080 -12.352654 9.730159 -14.466087 -7.064513 1.410851 -3.125251 -21.823694 -1.374560 -2.774240 10.792620 -16.393957 -2.506936 0.083639 -0.192459 0.639503 -0.083278 0.337054 0.113143 -5.042308 -11.842555 -5.062421 16.680347 -0.995635 -3.812165 -6.916070 6.431099 -0.238458 -0.312520 0.098612 -0.020152 0.058101 -0.160936 -0.261275
+25.910547 160.746063 7.528904 3.924113 -19.865732 -12.489672 -7.217910 -6.430526 4.354159 -21.375229 4.735176 34.472313 -0.499915 0.194250 -0.133975 0.542332 0.238445 0.632616 7.996422 5.566041 -26.023098 9.874848 -2.810990 23.790653 -0.369057 -0.045052 0.063140 0.079297 -0.146567 0.323266 12.182547 -8.621762 10.518632 2.661422 -5.556366 12.418596 -0.555461 -4.011299 13.401420 -2.376703 7.685660 8.586832 -12.654561 10.033906 -13.944119 -6.880316 2.327541 -2.986557 -19.112417 -0.204298 -2.457000 11.087448 -18.449564 -2.716679 0.058582 -0.170983 0.632414 -0.063287 0.314534 0.098669 -4.668498 -12.376065 -4.947219 13.996045 -1.585193 -3.327476 -7.717884 7.298539 -0.326011 -0.331249 0.070305 -0.030487 0.039385 -0.151176 -0.279891
+26.052021 160.273605 8.584429 4.806239 -19.632235 -13.064582 -7.715621 -6.342493 4.432799 -22.586929 5.274814 34.970837 -0.489861 0.185404 -0.143962 0.552735 0.251568 0.656764 8.671461 5.407711 -24.186220 8.888281 -2.175031 19.701267 -0.375103 -0.054682 0.048656 0.082436 -0.172786 0.338558 11.768655 -8.262827 9.238684 2.377448 -5.469508 12.582779 -0.662310 -3.947859 14.229674 -1.736867 7.117267 8.668033 -13.515453 10.301500 -14.036817 -6.721479 2.992761 -2.866513 -16.485685 0.725539 -2.119512 11.011719 -19.122166 -2.659690 0.055014 -0.146449 0.618094 -0.061560 0.326148 0.087453 -5.208820 -12.966419 -4.296618 11.950583 -2.782593 -2.860738 -7.771271 10.034022 -0.503808 -0.323195 0.049335 -0.010854 0.009566 -0.161316 -0.285744
+26.153206 159.678543 9.662126 5.672128 -18.970856 -13.546414 -8.245645 -6.402678 4.487336 -23.962164 5.919540 35.867405 -0.500612 0.185703 -0.158949 0.570092 0.266128 0.686847 9.002768 5.130283 -22.726898 7.715869 -1.720452 16.748243 -0.381572 -0.063968 0.036125 0.094156 -0.196960 0.349873 10.852424 -7.770256 7.820620 2.277093 -5.488703 12.662539 -0.247948 -3.966291 15.092892 -1.069332 6.490489 9.018487 -14.107321 10.396463 -14.210186 -6.334041 3.310056 -2.894783 -14.495990 0.994944 -1.739919 10.128114 -18.132761 -2.339853 0.050780 -0.135380 0.618027 -0.060182 0.335982 0.076359 -5.528442 -13.431081 -3.641950 9.321138 -4.092422 -2.240047 -7.630692 11.321389 -0.535636 -0.327795 0.033850 -0.002989 -0.009905 -0.170114 -0.299785
+26.242157 159.056427 10.724662 6.239224 -18.439138 -13.832105 -8.276051 -6.393949 4.521906 -25.458183 6.643927 36.547966 -0.496688 0.175647 -0.160750 0.577563 0.277503 0.699962 9.444031 4.985506 -21.522278 6.333249 -1.344602 14.636082 -0.385986 -0.062631 0.034807 0.097818 -0.211049 0.349949 10.432845 -7.430657 6.505866 2.204266 -5.445946 12.615464 -0.008785 -3.937363 15.670188 -0.808022 5.748035 9.652847 -14.600969 10.175768 -14.012423 -6.143517 2.936904 -2.591632 -12.561704 1.405478 -1.361714 8.655087 -15.916533 -1.840423 0.055462 -0.137581 0.613813 -0.062066 0.345170 0.075847 -5.586308 -13.156336 -2.825740 7.037210 -5.722049 -1.792325 -8.625985 11.727399 -0.570697 -0.324443 0.029863 0.004498 -0.014347 -0.180219 -0.300817
+26.399019 158.383530 11.562453 6.533475 -17.922400 -14.316073 -7.979004 -6.343099 4.786395 -27.093172 7.461286 37.119217 -0.493312 0.173595 -0.156623 0.559692 0.264990 0.673086 9.796853 4.936187 -20.476849 5.442249 -1.156112 13.837215 -0.376387 -0.056508 0.047114 0.086998 -0.195152 0.339814 10.242302 -7.191998 6.184825 2.204404 -5.354572 12.535324 0.027349 -3.832601 15.604261 -0.881193 5.293744 10.168983 -14.078119 9.615062 -13.474258 -5.599453 2.358453 -2.155710 -10.843760 1.645387 -0.994144 7.265853 -13.519618 -1.419459 0.052831 -0.154183 0.611387 -0.058915 0.335555 0.077141 -5.829693 -12.584954 -2.257865 5.677421 -6.869461 -1.663387 -10.191896 10.472950 -0.491181 -0.326507 0.047627 0.001029 -0.000401 -0.167178 -0.291572
+26.556192 157.718582 12.271540 6.380319 -17.821911 -14.912741 -7.214255 -6.308482 5.186727 -28.627035 8.357115 37.895264 -0.502947 0.189029 -0.148456 0.539859 0.231104 0.662457 10.433414 5.125310 -19.600311 4.987060 -1.078429 14.101810 -0.372256 -0.046240 0.052173 0.071082 -0.183588 0.332093 10.780457 -7.219910 6.421147 2.165573 -5.227078 12.534270 -0.395986 -3.628470 15.337234 -0.903387 4.694060 10.529661 -13.867648 9.058832 -13.140133 -5.473867 1.789398 -1.842234 -9.069353 1.955936 -0.692501 6.765570 -11.384302 -1.172269 0.053850 -0.183758 0.631207 -0.062547 0.330982 0.076491 -6.667338 -12.042867 -1.616639 5.184549 -7.902985 -1.719086 -11.263196 10.000395 -0.429110 -0.327843 0.070151 -0.018191 0.016333 -0.155435 -0.295633
+26.731493 156.977783 12.911215 5.749510 -17.947865 -14.876196 -5.851326 -6.331138 5.040051 -29.888397 9.278985 38.921448 -0.474540 0.157612 -0.148240 0.569026 0.268236 0.676936 11.234821 5.722392 -20.142626 4.913271 -1.063747 15.794083 -0.385339 -0.048800 0.049852 0.078833 -0.207793 0.343647 11.758659 -7.348148 6.340791 2.178893 -4.991047 12.479827 -0.749495 -3.448191 15.302140 -0.682128 4.096339 10.429544 -13.748868 8.698037 -13.057429 -5.074018 1.774790 -1.874582 -7.806669 1.625470 -0.471274 5.780463 -9.237125 -0.904145 0.077873 -0.146096 0.616830 -0.073632 0.348433 0.089247 -7.607245 -12.092249 -1.168332 4.679462 -8.638221 -1.543763 -11.696060 10.721169 -0.482377 -0.313834 0.042196 0.013536 -0.010936 -0.183904 -0.284186
+26.891027 156.377167 13.327655 5.102214 -18.261744 -14.989128 -4.493482 -6.281982 4.900490 -31.179941 10.266704 39.922405 -0.422486 0.141373 -0.125782 0.568139 0.268646 0.660581 11.452759 6.226135 -20.913805 5.716265 -1.264047 17.816898 -0.393678 -0.046054 0.063594 0.051667 -0.198186 0.366875 12.710560 -7.537663 7.008316 2.244766 -4.738725 12.402573 -1.175083 -3.204752 14.764139 -0.712356 3.531544 10.237663 -13.413303 8.135630 -12.556401 -4.845258 1.259388 -1.474052 -7.046921 1.925379 -0.417065 5.304293 -7.158357 -0.725759 0.087746 -0.122387 0.600189 -0.073734 0.360527 0.110370 -8.791560 -11.651553 -0.099968 4.421490 -9.981215 -1.359460 -10.710456 12.106461 -0.460870 -0.293659 0.037225 0.048437 -0.027140 -0.194823 -0.255111
+27.101107 156.043045 13.694946 4.697536 -18.423611 -15.267931 -3.937472 -6.205709 5.060474 -31.456608 10.751298 40.701042 -0.399266 0.143924 -0.117422 0.520904 0.218609 0.623662 10.952353 6.396293 -21.324078 7.208697 -1.647410 19.398800 -0.376667 -0.046153 0.068833 0.013533 -0.184599 0.366184 12.932963 -7.529281 8.156934 2.585635 -4.603326 12.251548 -1.017434 -3.043784 13.895927 -0.493754 3.309174 10.327525 -13.491726 8.260924 -11.463746 -4.908482 0.669472 -1.020941 -7.123051 2.385113 -0.504608 5.168424 -5.807739 -0.632258 0.076307 -0.125171 0.589326 -0.064653 0.347131 0.100362 -10.074076 -10.977517 0.428025 4.954909 -10.342515 -1.620351 -11.143819 11.153753 -0.333773 -0.279048 0.050680 0.047705 -0.038492 -0.172133 -0.248216
+27.194288 155.846420 13.936865 4.701903 -18.551880 -15.282547 -4.043174 -6.009355 4.924394 -30.971451 10.876100 41.320034 -0.432705 0.161970 -0.126431 0.499012 0.195372 0.622888 10.194672 6.491040 -21.727839 8.407451 -1.928726 20.240858 -0.370883 -0.039833 0.072352 0.009404 -0.178451 0.355870 12.588210 -7.230810 8.310842 2.648266 -4.500310 12.434989 -0.794833 -2.930981 14.160366 0.025211 3.324046 10.314309 -14.083448 8.724505 -12.161400 -5.362034 0.395737 -0.855348 -6.332723 2.787757 -0.322037 4.268990 -5.250574 -0.593896 0.054698 -0.168896 0.609935 -0.056865 0.342853 0.082302 -9.795193 -10.363143 0.388712 4.674984 -9.632312 -1.531737 -10.542274 10.957416 -0.288951 -0.296860 0.082814 0.021042 -0.015547 -0.149623 -0.267156
+27.134975 155.743454 14.119104 4.866178 -18.754177 -14.911173 -4.413141 -5.829868 4.291426 -30.403328 10.966003 42.058308 -0.443076 0.162847 -0.135465 0.496240 0.209208 0.629194 9.746473 6.590886 -21.979713 8.958549 -1.952113 20.073042 -0.368603 -0.040893 0.070331 0.021396 -0.177149 0.351628 11.625760 -6.701251 7.977545 2.728663 -4.390416 12.595148 -0.174122 -2.894235 14.726892 0.475400 3.593171 10.128131 -14.531621 9.306484 -12.766029 -5.640609 0.840139 -0.923499 -6.266956 3.086096 -0.221611 3.600195 -5.750442 -0.585954 0.034334 -0.180985 0.599332 -0.045491 0.343424 0.071668 -8.850672 -10.132401 -0.220471 3.726614 -7.886056 -1.196005 -9.602070 9.824903 -0.204288 -0.304721 0.090413 0.018053 -0.004247 -0.143547 -0.270982
+27.062412 155.897614 14.185462 4.702141 -19.053236 -14.384278 -4.415975 -5.643900 3.719175 -29.743181 10.891949 42.371990 -0.467203 0.202572 -0.131737 0.477178 0.180415 0.614331 9.676705 6.627028 -21.723570 9.503357 -1.894399 18.747835 -0.350951 -0.057369 0.070556 0.023243 -0.141812 0.347057 11.220742 -6.430196 7.645423 2.674302 -4.319846 12.615208 -0.026985 -2.858220 14.937925 0.489133 3.992332 10.205354 -13.973082 9.419083 -11.967360 -5.423677 1.658094 -0.831925 -6.988938 3.735090 -0.181672 3.191122 -7.736469 -0.655280 0.002146 -0.193190 0.595066 -0.021536 0.313398 0.066251 -8.299221 -9.855960 -1.085185 3.824841 -5.498709 -1.199955 -9.165343 8.670361 -0.180918 -0.323850 0.091876 -0.007959 0.012804 -0.121144 -0.277245
+26.992191 156.161606 14.099715 4.555770 -19.342144 -14.047582 -4.414412 -5.385990 3.318237 -29.494419 10.859699 42.231865 -0.492666 0.209197 -0.137513 0.494581 0.188470 0.623404 10.090039 6.664544 -21.057207 9.166448 -1.611408 16.985708 -0.349878 -0.065192 0.065160 0.044501 -0.145483 0.336497 10.774750 -6.179006 7.997629 2.765304 -4.189679 12.617057 0.178246 -2.758378 14.784556 0.270554 4.443264 10.026545 -13.477418 9.427879 -11.957512 -5.108586 2.557919 -1.056708 -8.722729 3.730608 -0.403459 3.220789 -9.435929 -0.753071 0.013643 -0.185955 0.608641 -0.027546 0.303895 0.070405 -8.267813 -9.953661 -2.072025 5.138704 -3.423807 -1.551119 -10.128530 8.562395 -0.314663 -0.335373 0.075550 -0.025827 0.014133 -0.128854 -0.289766
+26.987343 156.460098 13.970010 4.490609 -19.488827 -13.573097 -4.599210 -5.061740 2.984394 -28.941542 10.625731 41.845757 -0.471325 0.195291 -0.129447 0.502002 0.202721 0.628204 10.613971 6.722864 -20.567158 8.240331 -1.278735 15.357640 -0.356053 -0.074055 0.072337 0.041762 -0.152517 0.348630 9.903635 -5.862104 8.455859 3.012755 -4.150947 12.518068 0.777431 -2.790006 14.417215 0.442027 4.229431 9.528186 -14.437084 9.750953 -12.091187 -5.485703 3.754303 -1.016181 -10.247355 4.713041 -0.688243 3.366843 -13.604311 -0.925722 0.015632 -0.167266 0.593708 -0.021514 0.313167 0.081685 -8.639348 -10.035387 -2.757028 6.858379 -1.634200 -1.842050 -10.581150 9.948848 -0.556240 -0.329964 0.059227 -0.008103 -0.000885 -0.144429 -0.282356
+27.042225 156.783188 13.806610 4.659094 -19.197525 -13.044544 -5.068776 -4.902409 2.437808 -28.315224 10.283175 41.516159 -0.474125 0.171340 -0.140275 0.529055 0.236669 0.654004 10.537061 6.465377 -20.141174 7.708049 -1.064868 13.489205 -0.368797 -0.052746 0.065490 0.060202 -0.180087 0.338810 9.260909 -5.600124 8.508336 2.984706 -4.083634 12.421692 0.997052 -2.794501 14.303719 0.456483 4.345447 9.565057 -14.154104 9.709458 -13.109565 -5.049250 4.453298 -1.191234 -12.520348 4.535635 -1.130031 3.057467 -15.342595 -1.053553 0.040708 -0.168739 0.605905 -0.045994 0.332512 0.080146 -8.760953 -10.089581 -3.432847 8.951596 -0.166791 -2.195595 -10.796643 11.474017 -0.817903 -0.323014 0.062987 -0.002441 0.002310 -0.161951 -0.287229
+27.070889 157.234970 13.528239 4.903712 -18.720329 -12.927723 -5.512418 -4.715675 2.360307 -27.731236 9.908867 41.028164 -0.477246 0.156903 -0.135797 0.543174 0.249506 0.661473 10.562078 6.176329 -19.512178 6.723522 -0.852359 11.850883 -0.373618 -0.028442 0.074022 0.066938 -0.187156 0.320934 8.727835 -5.533699 9.303082 3.017570 -4.114739 12.357384 1.063477 -2.808567 13.785796 -0.230280 4.581351 9.294343 -13.841100 9.295181 -13.909553 -5.128854 4.818499 -1.252134 -15.042760 4.622199 -1.686208 3.063397 -16.986532 -1.240066 0.067187 -0.186711 0.623804 -0.067853 0.339453 0.088623 -8.651815 -9.830698 -3.828869 10.705467 0.940320 -2.467958 -10.391334 13.223785 -1.037322 -0.319277 0.078133 -0.009016 0.022561 -0.173202 -0.286916
+26.986586 157.590607 13.186358 5.012701 -18.067570 -12.930072 -5.372014 -4.466617 2.459729 -27.557915 9.784141 40.590881 -0.471680 0.123901 -0.138377 0.574212 0.291438 0.664764 10.969322 6.010783 -18.855867 5.319505 -0.622480 10.490996 -0.391638 0.001657 0.076048 0.083402 -0.204681 0.308211 8.584237 -5.565907 9.963150 2.858659 -4.056869 12.347676 0.719612 -2.744308 13.410662 -1.246601 4.708414 9.410886 -13.012686 8.383268 -15.060739 -4.918186 5.557430 -1.442591 -17.879261 4.507411 -2.341301 2.711143 -20.059032 -1.497263 0.110704 -0.189878 0.641546 -0.104537 0.361338 0.103874 -8.360275 -9.815798 -4.342082 13.306748 1.874758 -2.877626 -9.748920 15.809143 -1.339157 -0.310267 0.090705 0.002475 0.039870 -0.190156 -0.273932
+26.906708 157.760803 12.829111 4.854756 -17.224089 -12.678609 -4.929375 -4.249716 2.338118 -27.427681 9.810705 40.501656 -0.510225 0.125282 -0.146793 0.588786 0.301252 0.661127 11.230856 5.995492 -18.778353 4.613470 -0.515085 9.511367 -0.387786 0.020918 0.085521 0.104535 -0.200386 0.278312 8.805017 -5.612277 10.296252 2.588215 -3.922820 12.294346 0.189282 -2.574376 13.151801 -2.070658 5.127629 9.181087 -11.833127 7.709471 -16.023748 -4.859659 6.526140 -1.717043 -20.353580 4.569479 -2.956875 1.867328 -24.672789 -1.792726 0.130983 -0.216984 0.673472 -0.124453 0.351242 0.108111 -7.566781 -9.982410 -4.962242 15.302258 2.886967 -3.070437 -7.576477 17.814629 -1.349365 -0.329445 0.111982 -0.025851 0.075409 -0.186052 -0.283825
+26.815115 157.864319 12.497855 4.924721 -16.216825 -12.316346 -4.654912 -4.099193 2.081384 -27.293919 9.813270 40.508087 -0.518692 0.121333 -0.146329 0.612912 0.322181 0.662344 11.254688 5.856118 -18.849113 3.853991 -0.424935 8.387758 -0.391993 0.027134 0.079190 0.125100 -0.199861 0.266143 9.296464 -5.855909 10.270830 2.076872 -3.821786 12.133689 -0.715761 -2.497265 12.911652 -3.107941 5.499163 9.035397 -10.670680 6.946041 -16.242304 -5.356088 7.391653 -2.020617 -22.447056 4.581450 -3.540382 0.937092 -29.087660 -2.009561 0.155863 -0.205404 0.681187 -0.143718 0.346435 0.119327 -5.987111 -9.926026 -5.926064 17.180820 4.220630 -3.234891 -5.696939 19.242548 -1.326080 -0.329774 0.102066 -0.029986 0.086474 -0.194954 -0.278788
+26.659124 157.943207 12.169959 4.859987 -15.116076 -11.892836 -4.337543 -3.943635 1.862045 -26.815838 9.700011 40.556553 -0.550309 0.137075 -0.154518 0.616718 0.314161 0.663701 11.290402 5.702821 -18.866014 3.467953 -0.388343 6.996898 -0.385153 0.036794 0.063159 0.140074 -0.196789 0.244390 9.748339 -5.940992 10.234177 1.713615 -3.667295 11.879894 -1.411407 -2.315864 12.557143 -4.324069 5.610637 8.939877 -9.744225 5.958096 -16.518559 -6.014820 8.367314 -2.558960 -24.833706 4.231818 -4.135959 -1.290569 -33.533619 -1.890175 0.168390 -0.217421 0.698695 -0.162414 0.330731 0.109340 -4.295988 -9.792051 -7.065080 19.297012 5.752541 -3.388582 -3.293059 19.013685 -1.064755 -0.333000 0.109641 -0.054212 0.107591 -0.183210 -0.286600
+26.515316 157.901016 11.759671 4.807269 -13.484087 -11.489164 -4.137255 -3.910171 1.484195 -26.640656 9.700407 40.882957 -0.524699 0.123896 -0.152201 0.611788 0.313108 0.634553 11.033256 5.473466 -19.081562 3.073832 -0.392885 5.774340 -0.383263 0.045491 0.065881 0.128239 -0.191084 0.247199 10.058475 -6.178772 10.699552 1.380789 -3.634420 11.328674 -2.047322 -2.317542 11.489108 -5.245039 5.890705 9.065252 -8.738092 5.379755 -16.304274 -6.554654 9.050294 -2.446669 -27.858294 4.502713 -5.078484 -2.840371 -38.116318 -1.847121 0.183287 -0.197429 0.691635 -0.174104 0.329862 0.116615 -3.358305 -9.287728 -7.815396 22.462214 6.949452 -3.673169 -0.902472 17.718649 -0.758431 -0.319374 0.112783 -0.037015 0.100534 -0.177346 -0.266515
+26.306656 157.776184 11.267117 4.839050 -11.727406 -11.001966 -3.834506 -3.868490 1.047179 -26.601889 9.774189 41.098186 -0.555251 0.145967 -0.167107 0.601194 0.280988 0.630159 10.576476 5.318708 -19.630301 2.764632 -0.406107 4.771560 -0.373656 0.059760 0.056095 0.120614 -0.189217 0.236221 9.857733 -6.068625 10.935959 1.167104 -3.554060 10.888759 -2.255041 -2.191351 10.775484 -6.065399 5.740546 9.245204 -7.850909 4.512421 -16.660528 -7.384904 9.359608 -2.757970 -30.861374 3.993416 -5.845351 -4.789071 -41.530552 -1.607389 0.185243 -0.212717 0.718226 -0.190144 0.314913 0.095968 -1.855538 -8.743054 -8.532251 25.217468 7.756401 -3.927855 1.596913 16.263815 -0.455132 -0.326537 0.136692 -0.056528 0.111847 -0.149478 -0.281023
+26.114286 157.597610 10.723449 4.716276 -9.624189 -10.479853 -3.739584 -4.021657 0.548557 -26.112980 9.656566 41.748707 -0.577937 0.177641 -0.168691 0.592469 0.254534 0.604110 10.067262 5.205142 -20.363268 2.529005 -0.425975 4.069306 -0.367860 0.063679 0.055492 0.114634 -0.160620 0.236597 9.802147 -5.967939 10.979726 1.028962 -3.471475 10.523513 -2.402449 -2.058527 10.217140 -7.130763 5.573710 9.386131 -6.328254 3.203214 -16.783506 -8.484742 8.957127 -3.029775 -33.953762 3.292509 -6.626560 -7.017308 -44.012741 -1.226701 0.182797 -0.223873 0.739750 -0.195965 0.298846 0.097647 0.458223 -7.724097 -9.000288 27.013821 8.032151 -4.087436 4.054659 14.477692 -0.181294 -0.339967 0.156815 -0.072456 0.133511 -0.122512 -0.276555
+25.916487 157.455811 10.199613 4.670084 -7.338297 -10.300797 -3.895435 -4.159964 0.582911 -25.178894 9.282801 42.194668 -0.574634 0.164542 -0.163019 0.595336 0.262054 0.593679 9.369881 4.891112 -20.577894 2.434323 -0.441372 3.148265 -0.371523 0.090557 0.064148 0.115273 -0.154506 0.219829 9.431767 -5.738033 11.215042 0.952251 -3.324126 10.186142 -2.411686 -1.925531 9.619166 -7.584638 5.099226 10.090036 -4.995748 2.242509 -17.106539 -10.570612 7.410359 -3.246912 -36.271412 2.644565 -7.413864 -8.593998 -45.261997 -1.018589 0.203851 -0.247843 0.754265 -0.214596 0.305387 0.107132 3.029017 -5.952456 -8.946297 28.792797 7.620810 -4.380876 5.840284 12.691720 -0.065811 -0.335193 0.182003 -0.076656 0.159745 -0.125077 -0.265792
+25.745251 157.297531 9.693662 4.423495 -4.274629 -10.228219 -3.893450 -4.529612 0.806820 -24.042398 8.784903 42.971752 -0.602301 0.173217 -0.169910 0.604564 0.269073 0.592192 8.490770 4.424596 -20.520472 2.333200 -0.479128 1.894250 -0.373120 0.099132 0.068494 0.129599 -0.148509 0.208769 9.601429 -5.766817 11.069847 0.767838 -3.276084 9.994817 -2.749448 -1.874221 9.415981 -7.590339 4.250040 10.665347 -4.116496 1.322327 -17.491209 -13.358111 5.516834 -4.044376 -37.003029 1.573470 -7.682173 -11.342407 -45.520077 -0.242328 0.208400 -0.270839 0.774051 -0.221445 0.304286 0.111403 6.133065 -4.313951 -9.096095 30.607971 7.255584 -4.688371 7.064330 11.090743 -0.062798 -0.352996 0.198008 -0.092206 0.185160 -0.120486 -0.270013
+25.531706 157.166061 9.101324 4.161376 -0.834290 -10.446733 -3.975892 -4.945456 1.404327 -22.585575 8.050953 43.591694 -0.598067 0.133688 -0.180868 0.637798 0.322711 0.592698 7.473336 3.811609 -20.074999 2.251366 -0.496543 0.502736 -0.388241 0.113412 0.065960 0.156185 -0.169070 0.196699 9.818007 -5.846576 11.486664 0.534102 -3.122881 9.775263 -3.278131 -1.817143 8.961064 -7.373227 3.353601 11.186131 -2.572386 0.401389 -18.192921 -16.107353 3.484877 -5.033530 -36.699684 0.031289 -7.538526 -15.536052 -45.114285 1.264453 0.244420 -0.255367 0.777872 -0.247589 0.321157 0.124479 9.469285 -2.864840 -9.128163 32.647564 6.604574 -5.104352 7.752701 10.238572 -0.132748 -0.350924 0.191467 -0.076953 0.187508 -0.140899 -0.258916
+25.209158 156.818207 8.386859 3.828655 2.023537 -10.117173 -3.468967 -5.236921 1.043330 -21.544348 7.663456 44.343750 -0.570909 0.120236 -0.179599 0.641667 0.328595 0.586454 6.861521 3.596713 -20.530397 1.824625 -0.504063 -0.356226 -0.391018 0.111424 0.060805 0.149690 -0.173360 0.206386 9.599277 -5.563447 11.689716 0.498821 -2.836181 9.123884 -3.280163 -1.643335 7.986537 -6.808116 2.327319 12.055702 -1.516734 -0.287329 -17.221106 -18.193110 1.999612 -5.655128 -37.793228 -1.652143 -7.366753 -18.318998 -44.206226 2.192696 0.253549 -0.227260 0.763649 -0.250796 0.325911 0.129709 11.832187 -1.481771 -8.924092 35.450375 6.280396 -5.441105 8.288719 9.165815 -0.190472 -0.337215 0.176245 -0.055525 0.165307 -0.149095 -0.246122
+24.847097 156.383591 7.533623 3.721751 4.879978 -9.477643 -3.042947 -5.589835 -0.035472 -20.616989 7.408252 45.445644 -0.569450 0.122345 -0.178182 0.636411 0.314559 0.583278 5.886562 3.440506 -21.692240 1.394545 -0.511669 -0.788263 -0.385715 0.113102 0.061480 0.142489 -0.169409 0.200891 8.678166 -5.064479 11.722814 0.517921 -2.636893 8.438732 -2.811278 -1.523808 7.031809 -6.231205 1.407000 12.914324 -0.570672 -0.875652 -16.285509 -19.611526 0.930178 -6.256313 -40.387711 -3.769873 -7.148487 -19.535673 -43.007294 2.421836 0.257133 -0.225797 0.766129 -0.251670 0.318736 0.129937 13.758798 -0.240966 -8.900966 38.669701 6.552589 -5.696430 8.528685 8.375411 -0.248222 -0.335611 0.175233 -0.060468 0.161823 -0.148666 -0.248106
+24.535866 155.949326 6.433429 3.802368 7.748441 -8.602230 -3.077964 -6.018642 -1.701371 -19.535862 7.034848 46.534950 -0.585153 0.133042 -0.183780 0.639225 0.302339 0.601442 4.462458 3.274096 -23.445269 1.319420 -0.507568 -0.766699 -0.391103 0.122348 0.046915 0.143838 -0.178774 0.197510 7.590504 -4.562126 11.586148 0.471536 -2.526878 7.937625 -2.249391 -1.468629 6.394088 -5.641346 0.345929 13.352772 0.160228 -1.450039 -16.353872 -20.509108 0.026955 -6.960819 -43.833282 -6.510883 -6.700148 -19.920439 -41.955315 2.320637 0.264619 -0.233541 0.786740 -0.264726 0.323732 0.122255 15.006690 1.179326 -9.170542 42.392532 7.808506 -5.653571 8.531593 7.388583 -0.286677 -0.334315 0.180338 -0.073642 0.163719 -0.148938 -0.261412
+24.124430 155.570068 5.179022 3.836435 10.442585 -7.864359 -2.965987 -6.365535 -3.638305 -18.362511 6.733033 47.964172 -0.580414 0.108383 -0.186810 0.656527 0.329477 0.615084 3.173679 3.271018 -25.314598 0.993819 -0.473843 -0.018452 -0.403016 0.140582 0.047083 0.152491 -0.197651 0.190691 6.377074 -4.030612 11.631017 0.527748 -2.412762 7.654690 -1.498821 -1.430330 5.981479 -5.577111 -1.031725 13.792198 0.455371 -2.338925 -17.048454 -21.250620 -0.795422 -7.357775 -47.492542 -9.091974 -6.239094 -20.852167 -42.617462 2.610243 0.285258 -0.242645 0.793194 -0.282571 0.342326 0.124836 15.980021 3.321923 -9.372711 45.732521 9.482300 -5.338425 8.587959 7.091434 -0.304551 -0.328837 0.188460 -0.063272 0.170002 -0.163722 -0.257812
+23.753006 155.345917 3.945578 3.863834 14.059731 -7.228943 -3.319113 -6.905756 -5.304638 -16.388081 5.875019 49.268200 -0.583609 0.089593 -0.195664 0.671628 0.358817 0.611225 0.932183 2.946592 -26.931299 1.248913 -0.446963 1.034098 -0.412388 0.143520 0.052484 0.164705 -0.208289 0.192006 5.306148 -3.734197 11.501960 0.565875 -2.536134 7.531897 -0.809094 -1.623996 5.838099 -5.223068 -2.808840 14.069006 0.850660 -3.432649 -17.701313 -22.089006 -2.057857 -7.494957 -50.515770 -11.524740 -5.521890 -23.292805 -43.900520 3.624616 0.296318 -0.244097 0.797204 -0.289495 0.356175 0.132081 16.767611 5.999707 -9.231911 48.348701 11.014623 -5.011138 8.688776 8.261131 -0.349238 -0.337626 0.191589 -0.051924 0.172442 -0.171174 -0.251248
+23.309441 155.264282 2.826828 4.111592 17.674257 -6.881403 -3.913498 -7.288972 -6.164492 -14.497955 4.975121 49.818653 -0.587333 0.066806 -0.206933 0.707021 0.402999 0.615155 -1.893774 2.377265 -27.814182 2.409767 -0.408580 2.047779 -0.431174 0.151502 0.051649 0.186766 -0.222262 0.192969 4.145580 -3.496328 11.304860 0.424542 -2.723857 7.577475 -0.401002 -1.913743 5.976470 -4.913081 -4.037910 14.807783 2.343868 -4.454819 -18.385695 -22.553858 -4.045407 -7.175439 -52.633076 -13.663358 -4.702799 -26.666391 -45.610611 5.192018 0.324264 -0.229451 0.810790 -0.309627 0.374565 0.148554 17.999743 9.289962 -8.921168 50.278049 12.624461 -4.646735 8.624006 9.929495 -0.432258 -0.344826 0.185796 -0.038409 0.173140 -0.187924 -0.244040
+22.793024 155.210022 1.698605 4.493822 20.482740 -6.421607 -4.431934 -7.307833 -7.189582 -12.660108 4.311404 50.303913 -0.582762 0.060059 -0.201322 0.736502 0.447602 0.617016 -4.645497 2.134581 -29.104486 3.654890 -0.372033 4.280870 -0.440022 0.144040 0.054767 0.213628 -0.210173 0.195853 3.239133 -3.146387 10.831362 0.068052 -2.666142 7.790592 -0.441883 -2.004601 6.464919 -4.315325 -5.160226 14.898944 3.344346 -5.289037 -18.472836 -22.831137 -6.664237 -6.995344 -53.339500 -16.099321 -3.346295 -31.606388 -46.503654 7.625729 0.327833 -0.218572 0.795719 -0.304830 0.378268 0.170042 18.901545 13.133191 -8.883245 51.624283 15.097320 -3.595460 9.410044 10.908044 -0.404377 -0.352693 0.169015 -0.026174 0.184938 -0.205841 -0.226138
+22.153725 155.534195 0.445792 4.496091 22.709753 -6.216164 -4.626124 -7.051406 -8.234066 -10.608727 3.632791 50.479397 -0.592794 0.066681 -0.199819 0.755584 0.478782 0.607219 -6.835126 2.310300 -30.303844 4.845688 -0.384654 7.111731 -0.445872 0.146122 0.056126 0.238134 -0.189865 0.193352 2.958538 -2.705926 10.555647 -0.013030 -2.428483 8.196683 -0.412132 -1.842441 7.171907 -4.772450 -5.995138 15.109875 4.325140 -6.467134 -19.196730 -22.196098 -9.665896 -6.501179 -54.681339 -18.796181 -1.929911 -35.664619 -49.075684 10.145767 0.329286 -0.227890 0.792700 -0.306229 0.378902 0.186276 18.804504 17.298859 -8.714624 51.821636 17.645992 -2.570530 10.939686 13.409426 -0.257283 -0.364106 0.174324 -0.024961 0.216003 -0.206128 -0.207712
+21.437477 156.033264 -0.661024 4.388953 25.229528 -6.303065 -4.968287 -6.776238 -8.790914 -8.046519 2.649043 50.264370 -0.620825 0.089464 -0.200700 0.761881 0.493157 0.587970 -9.254323 2.494391 -30.850775 6.880153 -0.524728 10.084287 -0.442769 0.144983 0.056740 0.264186 -0.159252 0.181764 2.615285 -2.370515 10.146715 0.022019 -2.400139 8.804703 -0.219228 -1.864779 8.246807 -5.459122 -6.702700 15.540776 5.175652 -7.626729 -19.747723 -21.068577 -12.517859 -5.891361 -55.731277 -21.532248 -0.432078 -40.251881 -53.597481 13.876031 0.321620 -0.250991 0.794432 -0.302493 0.367082 0.197824 18.277132 21.315578 -8.726027 51.008251 20.431128 -1.553502 12.897674 16.670612 0.064321 -0.383831 0.186821 -0.042208 0.259246 -0.193301 -0.195523
+20.721432 156.807175 -1.581186 3.795110 27.435413 -7.085177 -4.961713 -6.300267 -8.407109 -5.199611 1.480661 49.303040 -0.648547 0.088877 -0.212747 0.788091 0.538566 0.576575 -11.169778 2.999451 -30.760841 9.694053 -0.864509 13.432578 -0.454299 0.155687 0.055076 0.301472 -0.144436 0.170218 3.110669 -2.302642 9.941418 -0.014270 -2.320063 9.602319 -0.633501 -1.807837 9.560841 -5.843490 -7.381454 16.392851 6.797629 -8.557486 -21.156933 -20.214958 -15.906149 -5.384365 -55.917622 -24.649147 1.190591 -43.778782 -58.914532 18.013430 0.332103 -0.269568 0.808841 -0.314670 0.374599 0.212889 16.941525 25.085981 -8.888502 50.174759 23.270790 -0.771669 14.531515 21.109221 0.447366 -0.402182 0.203533 -0.049644 0.300854 -0.191208 -0.181571
+20.031929 157.662140 -2.400096 2.777732 29.538780 -7.823514 -4.448115 -5.747032 -8.073668 -2.505160 0.433191 47.928043 -0.641914 0.066350 -0.202172 0.841373 0.616117 0.589978 -13.172125 3.668555 -30.902479 13.909971 -1.518764 16.762117 -0.471343 0.164712 0.058421 0.349494 -0.137658 0.156724 3.932424 -2.384698 9.243716 0.012733 -2.247405 10.462512 -1.067577 -1.825832 11.188011 -6.011738 -8.375024 16.675428 8.037700 -9.531872 -22.222546 -18.911068 -18.861050 -5.272528 -56.358997 -28.444658 3.424997 -44.977745 -63.592274 21.113293 0.357964 -0.261906 0.793259 -0.327232 0.385135 0.247121 14.562156 28.035074 -9.719762 49.200481 26.549614 0.265991 15.455927 25.518578 0.823556 -0.404551 0.186554 -0.036497 0.333780 -0.225720 -0.156246
+19.422081 158.708893 -3.271727 1.710253 31.497774 -8.516628 -3.840318 -5.346277 -8.012822 -0.299954 -0.397873 46.392822 -0.672334 0.075173 -0.212277 0.864550 0.650575 0.582955 -15.094209 4.347300 -31.262259 18.669193 -2.664842 20.526146 -0.469444 0.159128 0.057306 0.387004 -0.122239 0.144876 4.911663 -2.389993 8.773745 0.135144 -2.136640 11.232418 -1.453451 -1.708559 12.642705 -5.961019 -9.412144 16.473419 9.266899 -10.405655 -23.407852 -17.493361 -21.887951 -5.568738 -56.963165 -32.855019 6.266396 -41.238132 -67.341003 20.685965 0.358680 -0.265110 0.793117 -0.327811 0.374620 0.256940 12.068085 29.912214 -10.582129 47.820347 29.429298 0.875161 16.201103 31.620316 1.321605 -0.426427 0.183564 -0.047305 0.362284 -0.223986 -0.149524
+18.758335 159.839401 -3.967716 0.733870 33.511097 -9.153356 -3.084331 -4.985604 -7.702051 1.610186 -1.105956 44.294090 -0.701760 0.107750 -0.213779 0.861877 0.654081 0.553341 -16.591969 4.855028 -31.064398 23.107437 -4.054433 23.645189 -0.459530 0.139094 0.059155 0.408347 -0.082537 0.142226 5.501267 -2.342492 8.116296 0.326053 -2.138457 11.951130 -1.592406 -1.691216 14.084813 -5.680015 -10.315038 16.221285 10.206091 -11.183959 -23.858860 -15.543792 -24.753969 -6.028838 -57.068516 -37.336067 9.196218 -32.151024 -70.046745 15.756139 0.335588 -0.270035 0.785632 -0.309219 0.350668 0.267028 9.700342 31.387445 -11.328193 45.932888 32.372513 1.471487 15.805153 37.733971 1.637959 -0.453894 0.182822 -0.065254 0.392543 -0.203495 -0.139394
+18.105206 161.019791 -4.658534 -0.169937 35.400925 -9.663845 -2.538609 -4.759207 -7.453774 3.514984 -1.833609 41.955551 -0.707142 0.135180 -0.201232 0.870556 0.666802 0.529003 -17.669367 5.209222 -30.869720 26.962191 -5.698649 26.863974 -0.447113 0.107116 0.069708 0.428832 -0.041499 0.149003 6.245407 -2.487264 7.390812 0.411670 -2.204336 12.628109 -1.923052 -1.790040 15.518140 -5.473561 -10.979053 15.464891 10.703759 -11.930090 -23.739332 -13.374066 -27.076847 -6.589390 -55.996731 -41.723072 11.788804 -19.079777 -72.476227 7.411460 0.314177 -0.249905 0.755919 -0.281562 0.322699 0.290543 7.427842 32.449253 -12.272974 44.017368 35.669479 2.383014 13.749253 42.179935 1.301836 -0.475039 0.156267 -0.066811 0.406735 -0.200478 -0.120483
+17.422455 162.117386 -5.215325 -0.429994 37.429478 -9.535018 -2.518772 -4.729338 -7.216983 4.934760 -2.388943 39.231010 -0.708301 0.151048 -0.192370 0.875117 0.686744 0.502157 -18.544069 5.097215 -30.500792 29.617065 -7.388950 30.038145 -0.436299 0.077574 0.071532 0.452704 -0.007588 0.150338 6.289950 -2.462613 6.344170 0.370640 -2.269462 13.183566 -2.007634 -1.936915 16.980207 -4.944070 -11.884566 14.463154 11.157345 -12.697670 -23.735731 -10.034667 -28.902767 -7.422763 -54.564869 -45.669411 13.694847 -1.036588 -72.294579 -5.575310 0.296647 -0.228568 0.720374 -0.258666 0.298935 0.308522 4.418246 33.405659 -12.823284 42.196316 38.273712 2.832731 9.709265 47.540882 -0.230787 -0.487892 0.129683 -0.065812 0.419651 -0.197592 -0.098218
+16.753540 163.191544 -5.734206 -0.766524 38.922153 -9.221552 -2.264905 -4.517166 -6.918632 5.999410 -2.678671 36.169243 -0.690242 0.170276 -0.167414 0.852778 0.689416 0.432916 -18.749798 5.160038 -30.086773 31.478643 -8.934193 32.906456 -0.400055 0.030926 0.086133 0.467867 0.056473 0.140165 6.812069 -2.283485 4.961699 0.378932 -2.029304 13.650519 -2.150700 -1.810958 18.474911 -4.829890 -12.518760 13.218391 11.477771 -13.902327 -22.622032 -6.377359 -30.391581 -8.104938 -53.222935 -49.543530 15.323508 18.399584 -69.751839 -19.170794 0.265840 -0.195103 0.646876 -0.215288 0.242330 0.333733 1.596743 33.932720 -13.299437 39.514057 40.713444 3.202540 4.352972 51.515404 -2.666320 -0.497040 0.091027 -0.065668 0.435778 -0.182720 -0.056700
+16.221933 164.221085 -6.192954 -0.817226 40.484974 -8.702502 -2.302989 -4.279409 -6.310658 6.788893 -2.818560 32.679237 -0.687663 0.198758 -0.143415 0.851882 0.703400 0.390262 -19.082367 5.061860 -29.382994 33.000816 -10.373069 35.331257 -0.371540 -0.014722 0.101521 0.494755 0.114010 0.134616 6.924529 -2.022293 3.569913 0.515867 -1.854895 14.060697 -1.921576 -1.729836 19.964748 -4.591812 -13.348774 11.752779 11.447014 -15.099760 -21.954708 -2.613687 -31.019751 -9.261097 -52.360462 -53.560795 17.272785 29.927357 -64.910141 -25.544796 0.237261 -0.169460 0.586437 -0.174395 0.192802 0.362726 -1.420432 33.781910 -13.922628 36.037041 43.099483 3.385478 -2.334826 54.551388 -6.039674 -0.515655 0.050238 -0.069348 0.457937 -0.178672 -0.024820
+15.655078 165.160690 -6.656846 -0.932292 41.850872 -8.284892 -2.005469 -4.007881 -5.551103 6.978714 -2.733078 29.034914 -0.707976 0.237623 -0.125828 0.866429 0.720326 0.379021 -18.890686 4.939996 -28.491638 33.571877 -11.709288 38.031689 -0.355075 -0.052512 0.105369 0.531491 0.158752 0.130410 7.370888 -1.884177 2.460661 0.499105 -1.656441 14.480565 -2.089760 -1.582556 21.360121 -3.895012 -14.453313 9.984084 11.453084 -16.089018 -21.944504 0.618517 -31.101831 -10.762492 -50.359234 -58.023094 19.186573 35.760273 -59.815830 -26.961369 0.213829 -0.157674 0.551682 -0.144413 0.155493 0.386023 -4.421941 33.097923 -14.526329 32.930218 45.515430 3.559974 -10.676677 57.759983 -10.877616 -0.539267 0.014678 -0.085215 0.486389 -0.180870 -0.009863
+15.172079 165.921936 -7.120212 -1.228807 42.945683 -7.674042 -1.384421 -3.596232 -5.008263 6.997127 -2.488699 25.135151 -0.744766 0.303388 -0.099993 0.816954 0.676069 0.304685 -18.586819 4.938560 -27.659491 34.164070 -12.909202 40.184898 -0.304439 -0.099671 0.124308 0.547151 0.247971 0.099840 8.399351 -1.856482 1.354432 0.279511 -1.409547 14.653395 -2.761358 -1.334362 22.294418 -3.288990 -14.837470 8.181435 11.494079 -16.975590 -20.952135 3.693878 -31.148304 -11.745128 -47.346420 -61.643314 20.054596 40.707436 -55.649750 -27.901323 0.159934 -0.177911 0.510017 -0.090085 0.076169 0.401396 -6.610831 32.223427 -14.741937 30.305374 47.920795 3.772357 -20.391186 58.728012 -16.582783 -0.575876 0.004675 -0.141257 0.542778 -0.139841 0.005509
+14.746009 166.565430 -7.560210 -1.498593 43.988770 -6.815135 -0.711396 -3.187897 -4.504516 6.695819 -2.180803 20.696096 -0.768782 0.349091 -0.092746 0.817768 0.699488 0.266654 -17.801920 4.570080 -26.598909 33.292236 -13.723327 42.428619 -0.268520 -0.154498 0.127791 0.593068 0.310591 0.092052 9.363267 -2.038183 -0.176428 -0.023613 -1.320607 14.700050 -3.336374 -1.228303 23.442545 -2.681811 -15.313403 6.131666 10.967842 -17.828402 -20.459042 6.901023 -30.088480 -13.177217 -45.270607 -64.958664 20.804037 42.543510 -49.781395 -26.288889 0.109323 -0.160439 0.441874 -0.039261 0.016395 0.413454 -9.692622 30.772814 -15.409515 28.486740 50.483730 4.426569 -29.514660 57.910091 -21.757524 -0.606906 -0.033656 -0.152327 0.576409 -0.119679 0.031851
+14.331110 167.137146 -7.833845 -1.018964 44.913437 -5.734782 -0.656269 -2.683207 -3.549790 6.586194 -1.896998 16.325548 -0.788344 0.404743 -0.069504 0.807718 0.690519 0.211853 -17.089457 4.368497 -24.683519 31.823704 -13.856279 44.013763 -0.244250 -0.203064 0.137892 0.617792 0.387344 0.089147 8.927692 -1.869438 -1.513067 -0.241486 -1.261811 14.758851 -3.354580 -1.167326 24.305511 -2.080103 -15.138094 5.291570 11.544012 -18.311682 -19.590296 10.742352 -29.177095 -14.289844 -43.815407 -67.432449 21.324484 43.927773 -44.544197 -24.902868 0.074827 -0.142320 0.407322 0.002023 -0.037589 0.447332 -11.811888 29.618423 -15.626767 26.345934 52.538223 4.644286 -35.202942 55.660599 -24.161993 -0.636790 -0.065185 -0.180114 0.611419 -0.100336 0.056201
+13.885376 167.529358 -8.048647 -0.482630 45.431965 -4.537291 -0.339754 -2.180312 -2.827226 5.794690 -1.531284 12.804880 -0.764533 0.415231 -0.048522 0.802000 0.703182 0.173800 -15.933917 4.276096 -22.689014 29.678133 -13.277908 44.719940 -0.221824 -0.236136 0.146749 0.630602 0.429216 0.089359 8.744745 -1.738192 -2.640304 -0.559519 -1.083892 14.675805 -3.702135 -0.980965 24.784090 -1.789838 -15.569306 4.680195 11.493908 -19.090755 -18.789513 13.560601 -28.396606 -15.121990 -41.001778 -69.709290 20.738363 43.747368 -39.183022 -22.528307 0.054596 -0.112516 0.347903 0.032581 -0.071916 0.467023 -13.853784 29.051785 -15.733978 24.564468 54.460114 4.761767 -39.383476 52.361546 -25.161339 -0.636036 -0.098886 -0.168575 0.617409 -0.098787 0.090564
+13.448483 167.663147 -8.263962 0.195717 45.231274 -3.128685 -0.011186 -1.658668 -2.221748 4.826827 -1.168970 9.436467 -0.749783 0.439417 -0.015549 0.787245 0.703784 0.113216 -14.568318 4.369922 -20.656429 26.746553 -11.856483 44.400692 -0.191816 -0.279148 0.165609 0.645942 0.497640 0.078831 8.297199 -1.259358 -3.759178 -0.798297 -0.624896 14.550812 -3.848387 -0.549422 25.172953 -1.183136 -15.715086 3.919689 11.901684 -19.744865 -17.656733 16.391243 -27.028820 -16.111454 -38.907597 -72.513435 21.067381 42.426201 -33.731606 -19.780941 0.029960 -0.082909 0.288493 0.072443 -0.126040 0.501692 -14.964015 27.849743 -15.640100 22.269495 56.370136 4.798512 -42.100193 49.376343 -25.172220 -0.647315 -0.137282 -0.177014 0.639869 -0.091549 0.127237
+13.007328 167.637421 -8.454124 0.767569 44.928761 -1.782283 0.509134 -1.221781 -1.911390 3.412644 -0.829386 6.636091 -0.758993 0.492438 -0.001979 0.754094 0.659401 0.071364 -12.815981 4.407954 -18.125818 23.272379 -9.826630 42.483952 -0.159064 -0.321423 0.170573 0.637418 0.551604 0.087760 7.943984 -0.852346 -4.734510 -1.020349 -0.285872 14.316947 -4.005085 -0.130775 25.251595 -0.868558 -15.892940 3.365562 11.685101 -20.308231 -16.669403 18.799007 -25.586620 -16.688164 -34.908241 -74.762756 19.751120 41.601349 -29.191996 -17.742386 -0.014654 -0.070588 0.256102 0.113673 -0.175328 0.502797 -16.054989 26.912159 -15.420857 19.690828 58.074780 4.447591 -44.031979 46.105930 -24.506008 -0.663059 -0.155037 -0.193317 0.644462 -0.060307 0.138163
+12.420537 167.398560 -8.625968 1.967225 43.764427 0.202303 0.504705 -0.859863 -1.929529 1.945452 -0.545212 4.169034 -0.762333 0.543554 0.022784 0.690453 0.590349 0.009558 -11.169040 4.519945 -15.637813 18.981491 -7.193574 39.306675 -0.118138 -0.358126 0.178990 0.616272 0.617879 0.078567 6.847950 -0.120638 -5.636936 -1.336518 0.329786 13.978885 -4.052551 0.560723 25.026461 -0.386074 -15.576569 2.864381 11.446191 -20.448399 -15.114246 20.869890 -24.428535 -17.067520 -29.271109 -76.415794 16.808975 39.941898 -25.100555 -15.637975 -0.064683 -0.073615 0.219950 0.159141 -0.234351 0.501691 -16.502871 26.487867 -15.007523 16.682652 59.630512 3.696869 -44.426018 42.656334 -22.918911 -0.672870 -0.161228 -0.226947 0.661385 -0.019779 0.148838
+11.780876 167.072342 -8.880464 3.448924 42.885639 2.210522 0.141660 -0.648863 -2.357196 0.520956 -0.344025 2.251959 -0.768953 0.594289 0.045223 0.632013 0.526932 -0.037802 -10.092422 4.117255 -12.452794 14.830821 -4.812202 34.507946 -0.077818 -0.391207 0.184329 0.599858 0.675685 0.068405 5.933909 0.405359 -6.374796 -1.785075 0.850545 13.808910 -4.429502 1.257895 24.924658 -0.013854 -15.575856 1.977893 10.785868 -20.744312 -13.798529 21.957529 -23.667435 -17.448750 -20.105944 -77.514778 10.777072 37.615070 -22.265532 -13.733365 -0.115279 -0.084654 0.182735 0.202864 -0.288960 0.494822 -16.886011 26.492393 -14.660309 12.204076 60.558693 1.668747 -44.748600 39.188293 -21.343992 -0.681110 -0.165429 -0.259252 0.680324 0.016723 0.156164
+11.227678 166.680374 -9.086118 4.620787 41.402538 3.698118 -0.286626 -0.442885 -2.379221 -0.296352 -0.241916 0.429926 -0.769058 0.634095 0.057668 0.622495 0.518155 -0.069037 -9.352085 3.693133 -9.311338 11.043532 -2.895259 29.523508 -0.051834 -0.439227 0.185082 0.610616 0.721879 0.081057 4.758600 0.927456 -7.249749 -2.077712 1.348227 13.840073 -4.450324 1.909000 25.318718 0.310471 -15.499961 0.829487 10.410777 -21.069214 -13.001333 23.017033 -22.512407 -17.712187 -14.018231 -77.859108 6.454906 37.030121 -20.466269 -12.947874 -0.153964 -0.050286 0.134281 0.242683 -0.333068 0.503079 -17.590157 26.656893 -14.675323 8.037049 61.179928 -0.561792 -45.052948 35.573811 -19.879066 -0.694358 -0.203448 -0.259499 0.678581 0.032797 0.174567
+10.621062 166.444778 -9.312825 5.261193 39.040073 4.449441 -0.352671 -0.188311 -2.051232 -1.078750 -0.167498 -1.218452 -0.777754 0.663959 0.070799 0.616743 0.514688 -0.113247 -8.420516 3.445328 -6.752825 7.082187 -1.279330 25.117249 -0.038604 -0.478872 0.192347 0.624364 0.767513 0.085820 4.282636 1.596659 -7.755801 -2.379991 2.097527 14.099246 -4.830224 2.851779 25.788324 0.202419 -14.896953 0.053566 10.577357 -21.147591 -12.533170 23.910519 -21.962946 -18.070442 -7.380886 -77.556740 1.343654 36.276272 -18.760559 -12.161076 -0.172370 -0.022229 0.111240 0.268745 -0.367205 0.528178 -17.678221 26.862728 -14.862659 3.101145 61.723366 -3.145608 -43.651379 33.226028 -18.178875 -0.714337 -0.232760 -0.270911 0.688809 0.045430 0.192257
+9.950531 166.382294 -9.580123 5.455435 37.154781 4.644238 -0.402416 -0.025748 -1.772301 -1.016685 -0.138610 -2.438679 -0.757992 0.662718 0.089419 0.595243 0.508698 -0.146290 -7.426170 3.136102 -4.473663 3.952729 -0.209896 20.902784 -0.025871 -0.481140 0.199171 0.621075 0.794388 0.073606 4.312849 2.315561 -7.894930 -2.497273 2.906760 14.517030 -5.136310 3.777774 26.250202 -0.159372 -14.889859 -0.343930 10.712523 -21.506483 -12.412816 24.332123 -21.721045 -18.506142 -0.129292 -77.292854 -4.122736 34.700958 -17.894260 -11.333456 -0.178325 -0.025789 0.084454 0.278048 -0.382818 0.537295 -16.980810 27.381304 -14.754991 -2.094314 61.330296 -6.117772 -42.635696 31.602150 -16.905416 -0.704379 -0.231069 -0.273044 0.706330 0.051655 0.214697
+9.280651 166.360245 -9.857265 5.211547 35.087025 4.684586 -0.184278 -0.044609 -2.079165 -0.858331 -0.142753 -2.841350 -0.777921 0.670625 0.084950 0.605498 0.523687 -0.148342 -6.566237 2.882733 -3.341674 1.942742 0.332822 17.679333 -0.027756 -0.485999 0.198132 0.639198 0.803720 0.068719 5.011559 2.857304 -7.863353 -2.785936 3.625932 14.726908 -5.907342 4.651711 26.532146 -0.373554 -14.466948 -0.621476 10.872719 -21.329311 -12.795491 24.202517 -21.236774 -18.827250 2.790069 -76.905296 -6.039688 33.688625 -18.252241 -11.020083 -0.180736 -0.031376 0.089304 0.279787 -0.387206 0.542364 -16.987125 27.242277 -15.192152 -3.880207 61.844578 -7.118716 -41.363770 30.655727 -16.077665 -0.717463 -0.231448 -0.282872 0.723002 0.054444 0.214632
+8.693721 166.342102 -10.037588 4.831928 33.538353 4.941697 0.158729 -0.239598 -3.075771 -0.683784 -0.171888 -2.380670 -0.813354 0.730170 0.081609 0.608570 0.528031 -0.181476 -6.025341 2.779716 -3.324180 1.261428 0.492542 15.758355 -0.013733 -0.534744 0.191867 0.670189 0.856857 0.086009 6.017321 3.364200 -7.929292 -3.029213 4.315345 14.687223 -6.735345 5.502752 26.782696 -0.327290 -14.347259 -1.368294 10.789804 -21.599205 -12.693804 23.901497 -19.977432 -19.416935 2.272611 -78.419380 -5.367332 32.757080 -18.064423 -10.824881 -0.224632 -0.010287 0.064272 0.316471 -0.423982 0.555081 -17.001711 26.078747 -15.855872 -3.526985 63.092155 -6.654686 -40.548397 30.509621 -15.823312 -0.753414 -0.257017 -0.296162 0.743583 0.082580 0.228449
+8.147728 166.256927 -10.123615 4.090908 32.946072 5.377330 0.823818 -0.483727 -4.586555 -0.229213 -0.221832 -1.648501 -0.863706 0.782214 0.053037 0.620970 0.541519 -0.194590 -5.338080 2.811177 -4.091404 1.497100 0.430727 14.954982 0.000841 -0.583773 0.183775 0.703402 0.884149 0.111408 7.154171 3.659247 -8.068837 -3.092623 4.718558 14.222916 -7.268971 6.067945 26.617887 -0.193863 -14.446340 -1.762977 10.273693 -21.747290 -12.772013 23.019650 -18.810026 -19.752174 -4.497456 -81.214943 0.289883 32.559399 -17.086882 -10.854053 -0.272812 0.006697 0.048296 0.352954 -0.450772 0.547974 -17.606268 24.344473 -16.548855 0.018092 64.941002 -4.002574 -40.092724 30.982365 -16.004272 -0.797053 -0.277354 -0.300430 0.745589 0.112109 0.227132
+7.563061 166.260620 -10.074532 3.460313 32.976471 5.710641 1.651751 -0.598342 -5.862648 -0.220353 -0.229545 -1.193220 -0.924313 0.852111 0.031840 0.608909 0.507222 -0.193184 -4.589757 2.812429 -4.654297 1.586486 0.375017 14.338484 0.012426 -0.597335 0.169291 0.712591 0.912611 0.123434 7.424440 3.845426 -8.311149 -3.011508 4.804329 13.762800 -7.142565 6.292909 26.404932 -0.122025 -14.670962 -1.414737 10.276059 -21.916969 -13.140939 22.433922 -17.528334 -19.910950 -27.151760 -83.391960 20.414181 32.921360 -16.879583 -11.344308 -0.315939 -0.025322 0.070809 0.371862 -0.467816 0.528272 -18.030359 22.724833 -16.860800 6.800633 66.340378 0.729718 -40.609013 33.137920 -17.157066 -0.828607 -0.254875 -0.334881 0.771931 0.151767 0.209647
+6.774364 166.301926 -10.015993 2.750137 32.451008 5.964579 2.709828 -0.654018 -7.029812 -0.114215 -0.240247 -0.610304 -0.930584 0.864305 0.032429 0.609857 0.508663 -0.197719 -3.674926 2.945854 -5.614472 1.624561 0.393651 14.123142 0.018196 -0.609623 0.169756 0.719909 0.924489 0.125479 6.925022 4.113745 -8.470967 -2.708726 4.964619 13.365863 -6.311509 6.434574 26.121767 -0.087647 -14.617156 -1.313665 10.179727 -21.897840 -12.920235 21.621241 -16.789473 -19.702494 -55.289963 -83.062332 45.417103 33.694054 -18.238564 -12.221183 -0.328209 -0.018812 0.060631 0.383174 -0.479172 0.530283 -17.603447 22.193762 -16.885450 12.234296 67.057144 4.719404 -40.514904 35.660309 -18.112703 -0.837186 -0.264026 -0.337863 0.774821 0.155843 0.211070
+6.045072 166.323853 -9.917975 1.937882 32.343819 5.958369 3.803444 -0.623412 -7.813339 0.243347 -0.258939 -0.337957 -0.931584 0.849311 0.020650 0.625676 0.531819 -0.167987 -2.776719 2.871157 -5.914401 1.981815 0.313143 13.251905 0.004562 -0.600031 0.164373 0.727190 0.900327 0.131984 6.693370 4.130381 -8.602763 -2.492925 4.878021 13.085575 -5.623110 6.248312 25.914974 0.026765 -14.322717 -0.993933 9.866907 -21.264786 -13.101703 20.605280 -16.762232 -19.441797 -69.444542 -81.344215 56.811363 33.558720 -20.169079 -12.845671 -0.327240 -0.026446 0.068682 0.378528 -0.455873 0.520965 -16.992315 22.335329 -16.871490 19.327330 67.236977 9.520151 -39.864265 38.640488 -19.115461 -0.836243 -0.259119 -0.327297 0.766715 0.143850 0.201078
+5.289488 166.324463 -9.806248 1.322211 31.782982 6.073307 4.770546 -0.606652 -8.541510 0.440738 -0.270776 0.067088 -0.946148 0.846498 0.018886 0.636753 0.539766 -0.140044 -2.060540 2.844466 -6.400616 2.237840 0.249050 12.528689 -0.009189 -0.584895 0.170410 0.730516 0.888239 0.129532 6.422508 4.134879 -8.697432 -2.410754 4.796368 12.828496 -5.160326 6.120498 25.663195 -0.058329 -14.074247 -0.515942 9.547147 -20.743080 -13.313732 19.289627 -16.371893 -19.119247 -77.490204 -78.407585 61.343708 32.973049 -23.363062 -13.643740 -0.326028 -0.056824 0.093424 0.374472 -0.437565 0.520119 -16.234922 22.454899 -16.763935 28.269604 66.825409 15.260168 -39.315926 42.380127 -20.557898 -0.846430 -0.241830 -0.335911 0.779489 0.134141 0.184590
+4.603719 166.270309 -9.628306 0.787367 30.777323 6.156832 5.514717 -0.599568 -8.969502 0.851362 -0.302157 0.421786 -0.949322 0.835268 0.015171 0.670398 0.577169 -0.101702 -1.576798 2.885718 -6.904355 2.616249 0.196066 12.201994 -0.030733 -0.580131 0.166903 0.748952 0.868787 0.138336 6.046391 4.173681 -8.953986 -2.359094 4.779506 12.608792 -4.672663 6.045753 25.626432 -0.169140 -13.511759 -0.112721 9.216455 -20.021311 -13.482525 17.449570 -15.208226 -18.445559 -84.397644 -74.431297 63.724461 32.583523 -28.703791 -15.143194 -0.319589 -0.056320 0.103005 0.369467 -0.413696 0.525590 -15.929209 22.354614 -17.222151 39.593220 66.615494 22.832735 -36.562370 45.757362 -20.921675 -0.851164 -0.249906 -0.326012 0.776898 0.110530 0.175946
+3.998624 166.124008 -9.425032 0.268377 29.780293 6.220406 6.298190 -0.564981 -9.349019 0.998647 -0.311890 0.877572 -0.933065 0.800760 0.008394 0.679123 0.579550 -0.065802 -1.058189 2.943848 -7.337451 3.144549 0.100472 12.102241 -0.051450 -0.548698 0.166443 0.728923 0.824585 0.143160 5.764920 4.117283 -9.040600 -2.385677 4.656163 12.352559 -4.369051 5.882736 25.184273 -0.646732 -13.006015 0.784969 9.144421 -19.396803 -13.731958 15.495880 -14.966761 -17.312281 -85.709503 -69.846359 59.936234 31.575283 -34.764702 -16.622219 -0.293988 -0.068191 0.133468 0.344056 -0.375884 0.513981 -14.899734 23.063726 -17.113855 49.787735 64.896858 28.465288 -33.056538 49.319580 -20.803890 -0.833715 -0.231214 -0.311077 0.754286 0.091641 0.159334
+3.397810 165.981445 -9.153444 -0.302558 29.064325 6.142828 7.322985 -0.437458 -9.538744 0.848280 -0.305337 1.118544 -0.866625 0.702229 0.007516 0.707805 0.610742 -0.013836 -0.160860 3.001503 -7.586288 3.062507 0.123911 11.990170 -0.100697 -0.482750 0.163399 0.695277 0.734926 0.146518 5.599644 4.083576 -8.875501 -2.442043 4.600804 12.146664 -4.164323 5.635550 24.392145 -1.014126 -12.510187 2.059135 9.851705 -18.615873 -14.412713 13.283307 -15.468011 -16.367182 -83.872742 -65.445190 53.785103 26.602276 -40.988811 -16.044506 -0.213428 -0.055911 0.174528 0.277061 -0.297394 0.513203 -12.405194 24.297611 -16.526840 57.423985 61.840282 31.015785 -26.612154 53.179672 -18.892153 -0.779497 -0.214809 -0.261756 0.703918 0.038142 0.151123
+2.881973 165.802383 -8.892565 -0.746657 28.167524 6.127325 8.064070 -0.379529 -9.955431 0.907637 -0.290271 1.757425 -0.863072 0.682274 -0.021868 0.666808 0.526805 0.029060 0.478978 3.230084 -8.036625 3.128987 0.096436 12.437164 -0.114635 -0.420108 0.138320 0.623208 0.658848 0.151542 5.547206 4.232161 -8.374828 -2.461287 4.608712 11.943456 -4.066922 5.601864 23.144876 -1.775282 -12.153822 3.146666 9.957205 -18.016468 -14.850808 11.300803 -17.004930 -15.459740 -80.482262 -60.903999 46.393951 19.054178 -46.859386 -13.795204 -0.182508 -0.096380 0.253326 0.224151 -0.248860 0.452766 -9.225326 26.157406 -15.612331 60.147099 57.151772 28.553387 -15.392452 56.765541 -13.648410 -0.738761 -0.149773 -0.266975 0.657665 0.053602 0.102323
+2.425914 165.646896 -8.576248 -1.114040 27.719856 6.093285 8.523989 -0.430282 -10.678864 1.398656 -0.310160 3.087777 -0.846434 0.638121 -0.033779 0.648257 0.451581 0.105528 1.106315 3.339919 -8.165560 3.134204 0.068032 12.561898 -0.143586 -0.330029 0.129613 0.543585 0.565688 0.144133 5.384788 4.208803 -7.622181 -2.479476 4.468927 11.626424 -3.963840 5.386047 21.362310 -2.538534 -11.799301 4.994083 10.342610 -17.223997 -15.281015 9.602264 -18.411757 -14.489587 -77.448097 -55.665230 39.080826 6.912807 -52.168674 -8.421310 -0.118701 -0.149964 0.355887 0.150352 -0.183869 0.407708 -6.191836 27.530190 -14.616426 62.100391 51.022358 24.285908 1.487765 58.231964 -4.515537 -0.689516 -0.079265 -0.272603 0.616457 0.037388 0.043850
+1.892877 165.527222 -8.307420 -1.320157 27.438904 6.024343 8.804043 -0.520952 -11.724448 2.009363 -0.351595 5.107023 -0.821493 0.577180 -0.043184 0.633540 0.417549 0.156606 1.545581 3.443554 -8.345448 3.594228 -0.016706 12.732988 -0.175229 -0.243758 0.126685 0.486679 0.488302 0.130215 5.240254 3.885373 -6.604835 -2.608207 4.173019 11.420531 -4.110647 5.116705 19.652153 -3.248586 -11.309921 6.543055 10.628420 -16.363821 -15.987360 6.680974 -19.585842 -13.844151 -74.320900 -50.182953 31.355860 -7.711515 -52.438782 -0.885073 -0.059364 -0.209896 0.435250 0.084899 -0.115409 0.376087 -3.225844 29.060011 -13.800301 62.489117 45.105511 18.976837 16.208967 54.689651 3.029758 -0.642904 -0.006721 -0.268939 0.597875 0.019412 0.010474
+1.503293 165.241867 -8.062940 -1.872544 27.256689 5.607562 9.173531 -0.578054 -12.846951 2.860530 -0.454417 7.441465 -0.788694 0.480980 -0.074902 0.689558 0.468411 0.255373 2.273404 3.650125 -8.432840 3.960526 -0.066124 13.463724 -0.241096 -0.160799 0.110128 0.466335 0.363913 0.143251 5.612366 3.288752 -5.623464 -2.656493 3.701338 11.200472 -4.344469 4.696045 18.251329 -3.845389 -10.786163 8.410403 10.468436 -15.161457 -17.444098 3.094943 -19.395794 -13.516047 -73.244728 -45.120861 25.429760 -18.212690 -46.996372 3.674936 0.025590 -0.224607 0.512006 0.000911 -0.008011 0.353825 -1.161697 29.294413 -13.281642 64.009697 39.762363 14.683785 22.268076 46.992287 4.549775 -0.596414 0.031837 -0.218076 0.548583 -0.035363 -0.020596
+1.163953 164.898224 -7.719171 -2.245581 27.119728 5.125892 9.064021 -0.807862 -14.144335 4.062254 -0.661653 10.636581 -0.745959 0.377733 -0.093884 0.720589 0.512561 0.308761 2.603768 3.693428 -8.156476 4.766854 -0.200310 13.924015 -0.292988 -0.075202 0.109002 0.443478 0.266891 0.134219 6.102139 2.769947 -4.489749 -2.817702 3.419485 10.893922 -4.828446 4.471055 16.777538 -4.311166 -10.366948 10.302101 10.827532 -14.326761 -18.647331 -1.315633 -19.761639 -12.828084 -70.823479 -40.584328 19.598974 -21.849625 -39.580322 4.089746 0.109032 -0.251681 0.572904 -0.076450 0.082209 0.343583 1.364328 30.279877 -12.183983 64.271088 34.851540 10.480817 21.889658 37.390999 2.871182 -0.549648 0.082061 -0.177757 0.524112 -0.079039 -0.033122
+0.643611 164.648163 -7.454764 -2.396243 26.319700 4.583327 8.914662 -1.189471 -15.442275 4.765430 -0.898953 14.346115 -0.723408 0.294975 -0.135524 0.743085 0.528034 0.373324 2.980075 3.828263 -8.064270 5.169292 -0.293313 14.740459 -0.342242 0.005466 0.091262 0.408499 0.155941 0.140283 5.703667 2.319776 -2.885660 -2.926263 3.118362 10.440119 -4.921028 4.242048 15.125410 -4.530672 -9.600414 12.492696 11.073767 -13.146041 -19.750673 -6.323945 -20.328955 -11.684490 -67.008247 -35.957207 13.765593 -21.655010 -32.839359 2.890163 0.180359 -0.271922 0.651909 -0.155295 0.171850 0.307683 5.002633 31.745455 -10.233080 63.596897 30.567308 6.877375 19.962444 29.748713 1.476035 -0.507224 0.136706 -0.141464 0.476642 -0.103063 -0.066566
+0.034367 164.298172 -7.302047 -2.904719 24.550039 4.002471 9.285649 -1.613476 -17.397533 4.939266 -1.143864 19.367868 -0.697447 0.217400 -0.168870 0.756723 0.526457 0.423855 3.587287 4.304657 -8.709493 5.652985 -0.400704 16.713232 -0.386285 0.079799 0.077989 0.364376 0.053933 0.145328 5.431520 1.962162 -0.648394 -2.911253 2.992637 9.621492 -4.957923 4.159826 12.917857 -5.287396 -8.375392 14.502936 11.358890 -12.071952 -20.585999 -11.452865 -19.708029 -10.074731 -63.529682 -30.909336 8.358694 -18.492363 -28.223272 1.091566 0.255661 -0.283423 0.731517 -0.233197 0.251245 0.278785 10.075599 31.886204 -7.699796 62.630482 26.192200 3.791089 17.663208 23.004074 0.625034 -0.463677 0.185246 -0.110898 0.425963 -0.124505 -0.097750
+-0.727353 163.896835 -7.223492 -3.008276 22.035337 3.677706 9.522751 -1.967760 -19.711714 4.694295 -1.246534 24.977421 -0.670678 0.151376 -0.195416 0.757548 0.525458 0.467222 3.970089 5.080105 -10.031467 5.631836 -0.377111 19.647587 -0.415510 0.142913 0.068845 0.326898 -0.026727 0.145717 3.924162 2.163312 1.951574 -2.670274 3.175872 8.709508 -4.227693 4.268992 10.655452 -5.574524 -7.478019 15.723668 11.241080 -10.879519 -21.340027 -15.470458 -17.810436 -9.378189 -60.964703 -27.026674 4.770772 -14.935219 -24.731766 -0.247103 0.302369 -0.302749 0.782621 -0.287427 0.313982 0.245332 14.839340 30.607428 -5.876314 60.586037 22.582407 1.804074 15.459748 16.683353 0.302390 -0.425095 0.231847 -0.085000 0.388648 -0.138982 -0.122654
+-1.276703 163.205933 -7.114695 -3.188107 20.125826 3.490277 9.567676 -2.516288 -23.157537 4.592924 -1.440678 32.002728 -0.626222 0.103103 -0.206375 0.751699 0.518213 0.477906 4.004121 5.862217 -11.714152 6.379379 -0.572347 23.018656 -0.430698 0.163487 0.059324 0.290569 -0.077932 0.162258 2.812906 2.184469 4.341192 -2.370742 3.204790 7.776482 -3.547487 4.181605 8.470813 -5.922029 -6.688453 15.734831 10.983440 -10.183174 -21.245098 -17.941589 -14.558348 -9.286791 -59.890591 -23.472286 2.041696 -11.116385 -21.778189 -1.341169 0.333187 -0.271548 0.793085 -0.315946 0.347390 0.228498 17.773335 27.986938 -5.341005 58.811947 19.628033 0.867582 13.436264 9.585812 0.273600 -0.388544 0.233265 -0.048803 0.331934 -0.149897 -0.126763
+-1.740516 162.326385 -6.962516 -3.763556 18.597235 3.088673 9.740908 -3.066433 -27.092962 4.828552 -1.805309 39.742638 -0.596579 0.085221 -0.193604 0.736575 0.486607 0.477354 4.233627 6.701496 -13.441511 7.622811 -0.982310 26.802177 -0.432961 0.173024 0.066673 0.254320 -0.093286 0.166765 2.684459 1.835391 6.730634 -2.192938 3.169391 6.868375 -3.495774 4.099107 6.328510 -6.301057 -5.814495 15.146177 10.791109 -9.730202 -20.768696 -19.510109 -11.365467 -9.245909 -58.665051 -19.894918 -0.162634 -8.531816 -19.381807 -1.890725 0.352819 -0.256297 0.803771 -0.328059 0.353822 0.229448 18.986029 24.900455 -5.439965 57.112122 17.176193 0.052519 11.351021 3.933233 0.299241 -0.367915 0.231857 -0.041567 0.303101 -0.157904 -0.131875
+-2.247162 161.614761 -6.609315 -4.606283 16.783684 2.038433 10.257225 -3.237386 -30.051424 4.860679 -2.070026 46.780174 -0.610522 0.061044 -0.204255 0.718773 0.467486 0.504439 5.313603 7.236397 -13.443831 7.945229 -1.112726 29.058994 -0.441672 0.214755 0.068919 0.236123 -0.130152 0.144288 2.724490 1.566288 9.486620 -2.050978 3.328049 6.083529 -3.622650 4.284473 4.461007 -6.048547 -5.272292 15.347760 10.143270 -8.627272 -21.611727 -21.036156 -8.525801 -9.344939 -56.316929 -16.534935 -1.850828 -6.523263 -16.867512 -2.104004 0.366587 -0.310249 0.846832 -0.352342 0.379628 0.203147 18.836288 21.985016 -5.754991 55.359642 15.102925 -0.912700 8.728246 -0.011556 0.353473 -0.360199 0.279839 -0.061794 0.312966 -0.157242 -0.163019
+-2.860375 161.271774 -6.154327 -5.205863 14.780851 0.184086 10.481403 -3.321495 -31.716125 4.762765 -2.255331 53.005367 -0.608191 0.027894 -0.229788 0.735862 0.478802 0.550138 6.409328 7.461229 -11.889744 8.249804 -1.161624 30.333080 -0.477710 0.252686 0.055904 0.219036 -0.188509 0.163519 2.189550 1.555688 13.131711 -1.949141 3.727525 5.295633 -3.683510 4.680171 2.536283 -5.645040 -5.248861 16.697853 10.199049 -7.850960 -22.905785 -22.588839 -6.642550 -9.222620 -52.489914 -13.294887 -3.059737 -4.999961 -14.308742 -2.081709 0.393287 -0.323604 0.898454 -0.389480 0.437701 0.182589 19.141649 19.729973 -5.567057 51.953823 12.876890 -2.060239 6.453767 -2.555665 0.451266 -0.346359 0.311769 -0.041931 0.287430 -0.169046 -0.185381
+-3.346518 161.154312 -5.731280 -5.288341 12.923439 -2.078186 9.747585 -3.666156 -32.410072 4.921432 -2.548815 58.253490 -0.615517 -0.012988 -0.252891 0.765817 0.502750 0.614105 6.882721 7.336810 -9.424691 8.648570 -1.214429 30.933720 -0.517838 0.305340 0.039539 0.217254 -0.255142 0.161152 1.377738 1.673654 16.938850 -1.885749 4.143285 4.763104 -3.648863 5.081563 0.997109 -5.403621 -5.038651 18.570427 10.438336 -6.968575 -24.290100 -23.327129 -5.456102 -8.691787 -49.202919 -10.225882 -3.913328 -3.029912 -12.153958 -2.069226 0.436552 -0.352176 0.959725 -0.440223 0.498335 0.164844 18.800640 18.027386 -5.097826 47.701511 10.585001 -3.161278 4.930471 -3.219490 0.474945 -0.329705 0.346126 -0.035995 0.279390 -0.193889 -0.215205
+-3.700055 161.089981 -5.304625 -5.459035 11.417397 -4.370905 8.919687 -3.990988 -32.892670 4.719621 -2.631299 62.414093 -0.621527 -0.032382 -0.253748 0.772318 0.510506 0.637159 7.178439 7.141113 -6.887559 9.413719 -1.396781 31.385492 -0.533739 0.338407 0.046544 0.215893 -0.274104 0.146453 1.183635 1.560423 20.112841 -1.946585 4.516106 4.633256 -3.969219 5.446738 0.062529 -5.270811 -4.611331 19.771185 10.590975 -6.358570 -24.764013 -23.337696 -4.727475 -7.933431 -46.059875 -7.455133 -4.352599 -1.121212 -10.099092 -1.953547 0.454304 -0.390862 0.992206 -0.459425 0.523939 0.164508 17.932812 16.644169 -4.852449 43.475632 8.879509 -3.809905 3.719316 -3.919387 0.493247 -0.327533 0.376892 -0.046392 0.297838 -0.206166 -0.228980
+-4.230170 161.009979 -4.908067 -5.391903 9.911004 -6.324331 8.141214 -4.015886 -33.465736 3.902835 -2.138607 65.653336 -0.618434 -0.059633 -0.262143 0.784273 0.531671 0.657152 7.362815 7.137530 -4.857063 10.020396 -1.511466 32.175289 -0.546387 0.353239 0.049146 0.217707 -0.301873 0.146027 0.480422 1.964811 22.227631 -1.941046 4.897775 5.094965 -3.796236 5.802814 0.099601 -5.052799 -4.603489 19.660629 10.209729 -5.799301 -25.733595 -22.133482 -3.793023 -7.513168 -44.155209 -5.861660 -4.444392 1.045169 -7.803169 -1.774016 0.467210 -0.396980 1.004365 -0.472255 0.546696 0.159212 15.947800 15.561639 -4.604399 39.730682 7.417494 -4.274111 2.618038 -3.673816 0.461445 -0.324058 0.385768 -0.036964 0.290964 -0.219299 -0.237070
+-4.649909 160.982407 -4.456345 -4.897097 8.044132 -7.759527 7.129580 -3.701488 -33.950520 2.434736 -0.905148 68.046700 -0.567278 -0.109690 -0.251736 0.791232 0.558504 0.656296 6.894688 7.341344 -3.339985 10.693041 -1.602174 33.169521 -0.550341 0.356923 0.053911 0.209904 -0.321924 0.146254 -0.180039 2.533565 23.303581 -2.283835 5.312343 5.754400 -4.028460 6.098253 0.544943 -4.827488 -4.434423 18.788912 10.298202 -5.464774 -25.856817 -20.136738 -2.228923 -6.826283 -42.542194 -4.035356 -4.797617 2.826261 -7.419703 -1.665038 0.488975 -0.357993 0.975026 -0.480038 0.556512 0.165826 13.555342 14.611179 -4.277354 36.701172 6.347998 -4.459073 1.805836 -3.291048 0.420920 -0.296834 0.362327 -0.003108 0.260032 -0.244870 -0.220737
+-5.136848 160.980515 -3.908926 -4.729520 5.262616 -9.072851 7.009119 -2.416961 -33.923206 0.479808 0.948071 69.028908 -0.538666 -0.111515 -0.231386 0.758328 0.530239 0.627724 7.340661 7.830291 -1.892002 10.257276 -1.192133 34.147629 -0.540927 0.352997 0.060729 0.184976 -0.303629 0.147970 -0.553872 3.476938 23.967199 -2.540746 6.006273 6.481787 -4.276760 6.742264 1.088838 -4.740468 -4.220420 17.433125 10.389961 -5.287320 -25.893085 -17.643950 -0.260914 -6.279697 -41.360966 -2.508306 -5.087936 4.177069 -7.586514 -1.621331 0.480496 -0.350431 0.957908 -0.470131 0.547013 0.168863 10.696718 13.640912 -3.638309 33.917938 5.195716 -4.513232 1.852453 -2.401143 0.371252 -0.282587 0.362839 -0.002393 0.254553 -0.238057 -0.207730
+-5.673102 160.968918 -3.179827 -4.488407 2.199222 -9.961704 6.761600 -0.874082 -33.753017 -1.260345 2.780887 68.746666 -0.499820 -0.121450 -0.192676 0.722658 0.497435 0.586983 7.735133 8.368250 -0.669134 9.878084 -0.718180 34.887722 -0.511474 0.341385 0.082580 0.163110 -0.270551 0.124350 -1.171180 4.802898 23.820547 -2.737865 6.803915 7.112964 -4.354832 7.428541 1.673593 -4.726437 -3.751820 15.659914 10.995532 -5.321371 -24.884024 -14.488888 2.454476 -5.832412 -40.615459 -1.178024 -5.458930 5.070867 -8.539602 -1.633265 0.481976 -0.333029 0.920877 -0.453265 0.508516 0.185136 8.172437 12.075585 -3.089619 31.262337 4.172236 -4.510634 1.568522 -1.391018 0.315117 -0.265113 0.341937 -0.013063 0.251946 -0.243925 -0.190034
+-6.045443 161.154938 -2.479811 -4.345602 0.264955 -11.284180 6.274473 -0.036605 -33.198147 -3.752834 4.673784 67.294670 -0.480361 -0.101782 -0.162420 0.681199 0.447092 0.548282 7.943894 8.597098 1.079643 9.849933 -0.493284 35.296005 -0.489628 0.329359 0.096662 0.134069 -0.230963 0.121538 -1.291891 5.575139 24.090136 -2.811716 7.291533 7.981347 -4.524038 7.883126 2.367414 -4.924322 -3.425659 14.103881 11.398785 -5.455873 -24.535128 -12.019752 4.652412 -5.502891 -39.678032 0.003667 -5.805753 7.218094 -9.860481 -1.791672 0.465212 -0.330656 0.903789 -0.433754 0.478217 0.192308 5.731482 10.316743 -2.458726 28.315857 3.008001 -4.513628 1.214985 0.744363 0.264369 -0.259341 0.340508 -0.027417 0.255682 -0.229515 -0.178362
+-6.375471 161.469376 -1.775160 -4.304479 -0.941565 -12.486661 5.513461 0.377790 -32.600277 -5.867639 5.965476 64.767662 -0.458755 -0.070563 -0.131322 0.624120 0.374667 0.509615 8.318394 8.705842 2.775874 9.894506 -0.329877 35.559410 -0.452123 0.309094 0.104436 0.097279 -0.189909 0.114958 -1.222909 6.178157 24.121780 -2.744253 7.680165 8.791437 -4.580501 8.260159 3.067840 -5.085841 -3.527663 12.588505 11.146073 -5.948100 -23.310976 -10.716431 5.865695 -5.068224 -37.476646 1.250844 -5.898730 9.290425 -11.227266 -1.957080 0.436431 -0.325781 0.868926 -0.405232 0.431453 0.186142 4.466258 8.685677 -1.626946 24.942867 1.430896 -4.528524 -0.582997 2.888362 0.218945 -0.247001 0.331940 -0.044248 0.251913 -0.206343 -0.169544
+-6.683355 161.830551 -0.993514 -4.271409 -1.728187 -13.761124 4.440903 0.464509 -31.423830 -7.689936 6.672837 60.742199 -0.495195 -0.005116 -0.120670 0.554363 0.285538 0.458506 8.833310 8.657389 4.785453 10.033473 -0.234974 35.574581 -0.406920 0.301080 0.104227 0.077810 -0.130853 0.086522 -0.575349 6.261177 23.886868 -2.979573 7.890209 9.879624 -5.202965 8.540730 4.265458 -5.753566 -3.037740 11.241445 11.695488 -6.384079 -23.090385 -9.103849 6.938199 -4.883404 -35.290504 2.090719 -5.796532 11.265144 -12.689768 -2.240234 0.395483 -0.366637 0.867585 -0.382639 0.372902 0.166308 3.262946 7.174008 -1.315178 21.187616 1.068536 -4.075763 -0.351786 2.925920 0.261723 -0.258810 0.362569 -0.104326 0.293801 -0.149990 -0.175701
+-7.043891 162.098755 -0.049330 -4.160469 -1.791052 -14.417738 2.994115 0.122842 -30.840187 -8.887682 6.811105 56.824108 -0.496656 0.027183 -0.106951 0.541792 0.265790 0.420645 8.846130 8.662286 5.966333 10.838997 -0.455921 35.720875 -0.384959 0.265421 0.106791 0.080409 -0.088521 0.089626 -0.084268 6.365775 22.389635 -3.164983 8.041585 10.889608 -5.576904 8.716266 5.974546 -6.069462 -3.125971 10.091981 12.230101 -7.198275 -22.276144 -7.419556 7.690780 -4.718075 -32.664898 2.460795 -5.464011 12.799684 -13.810371 -2.472816 0.376884 -0.336484 0.838519 -0.358137 0.332176 0.180393 2.351725 5.616473 -1.170618 17.296295 0.982234 -3.428511 0.276717 1.454743 0.286641 -0.269410 0.332852 -0.112497 0.294625 -0.135123 -0.159617
+-7.422910 162.364868 0.918160 -4.123700 -2.242906 -15.092424 1.826603 0.074590 -29.423367 -9.619883 6.583418 51.775143 -0.483441 0.033626 -0.083505 0.533490 0.261007 0.391314 8.879706 8.889065 6.860559 11.753366 -0.647050 36.130367 -0.370328 0.257235 0.120622 0.081716 -0.052200 0.076185 0.452950 6.533315 21.246351 -3.406180 8.319160 11.633908 -6.080700 8.961723 7.215721 -6.468230 -2.835513 9.475590 13.120923 -7.689601 -21.768579 -5.713641 8.120588 -4.185177 -30.186108 3.302296 -5.242072 14.473454 -14.910348 -2.715931 0.374842 -0.330612 0.816061 -0.346283 0.306125 0.200743 1.718016 4.551305 -0.803679 13.974302 0.513172 -2.942636 0.756237 -0.179769 0.285791 -0.269165 0.322657 -0.119974 0.313021 -0.135265 -0.139872
+-7.895586 162.493103 2.090932 -4.333530 -2.742626 -15.129280 1.447024 0.330546 -28.100103 -11.089450 6.488171 45.802528 -0.479104 0.038896 -0.068683 0.524312 0.257081 0.363153 9.413212 9.269198 6.943058 12.501180 -0.769285 36.864906 -0.352879 0.242712 0.130685 0.088373 -0.023924 0.060189 1.294305 6.604326 19.510118 -3.770504 8.642481 11.895184 -6.832510 9.248810 8.184788 -6.554145 -2.706801 9.125379 13.703918 -8.081475 -20.992449 -3.931792 8.749782 -3.796303 -27.135714 3.872879 -4.786327 15.746517 -15.616330 -2.856759 0.371702 -0.322755 0.793702 -0.332653 0.278484 0.215741 1.016898 3.078273 -0.572713 12.038421 -0.203411 -2.654481 0.782950 -0.493135 0.264350 -0.272291 0.307191 -0.131190 0.324828 -0.134601 -0.126623
+-8.325589 162.601318 3.268969 -4.537520 -3.553150 -15.281181 1.292840 0.744865 -25.927687 -12.554935 6.178078 38.921799 -0.487318 0.079555 -0.055947 0.468658 0.195079 0.311466 9.913964 9.700968 7.122727 12.962446 -0.762768 37.477596 -0.318319 0.231444 0.139498 0.066270 0.029360 0.043972 2.342352 6.794458 17.749067 -4.053502 9.034330 12.074540 -7.597500 9.693402 8.992167 -6.849308 -2.476460 9.744621 14.074791 -8.685578 -19.323400 -2.267720 8.541321 -3.049881 -24.066637 4.820086 -4.326739 16.908501 -15.207360 -2.838797 0.335593 -0.351225 0.777400 -0.303854 0.235210 0.208854 0.295125 2.417596 0.292638 9.725731 -1.509158 -2.288901 1.440996 -0.498258 0.256831 -0.278899 0.327252 -0.161716 0.351425 -0.093769 -0.118488
+-8.709893 162.543915 4.454265 -4.879022 -3.550818 -15.363842 0.729406 0.667539 -23.566408 -13.148077 5.263333 31.820438 -0.498152 0.114442 -0.056705 0.451587 0.158480 0.297821 10.746673 10.023183 7.140649 13.338786 -0.776102 38.205318 -0.304517 0.210080 0.134912 0.055933 0.049590 0.052829 3.071229 6.932812 15.987280 -4.073936 9.171741 12.167547 -7.862047 9.902498 9.749548 -6.619665 -2.501984 10.385706 14.162013 -8.986056 -17.884083 -1.087291 8.534575 -2.592966 -21.284298 5.593383 -3.912184 18.667006 -15.473011 -3.024328 0.314754 -0.341191 0.773489 -0.286038 0.212983 0.205542 -0.518731 1.754865 0.949679 7.635855 -2.551775 -1.919943 2.011223 -0.354104 0.242023 -0.287486 0.316954 -0.173439 0.342645 -0.075311 -0.123357
+-9.090425 162.285110 5.649485 -5.405794 -3.362160 -14.824477 0.163126 0.396351 -21.957710 -12.847582 4.088204 25.156433 -0.512493 0.122933 -0.067894 0.459526 0.174108 0.284005 11.073026 10.466381 6.261765 14.638362 -1.185547 39.084148 -0.298691 0.192396 0.125199 0.076768 0.058601 0.050769 4.082524 7.049643 13.160181 -4.111020 9.359155 12.337749 -8.149163 10.249475 11.264407 -6.492524 -3.143072 10.836895 14.594754 -9.670050 -17.719236 -0.660843 8.277614 -2.550275 -17.510607 5.862931 -3.222911 20.243835 -16.140551 -3.287871 0.308926 -0.322903 0.758851 -0.280071 0.198310 0.206856 -0.527988 0.741014 1.023506 4.499062 -2.922536 -1.327293 2.958824 -1.229639 0.152621 -0.298473 0.299991 -0.173350 0.344645 -0.066927 -0.116699
+-9.481856 161.961151 6.749311 -5.928102 -2.501269 -14.513174 -0.667793 -0.155260 -20.689739 -11.678638 2.950583 19.980234 -0.546611 0.152325 -0.074074 0.464723 0.172147 0.289092 11.398046 10.681211 5.581599 16.150942 -1.806721 39.871658 -0.294526 0.177528 0.119519 0.095148 0.072382 0.047761 4.497272 6.969127 11.071962 -4.101716 9.174507 12.408237 -8.161904 10.204678 12.322958 -5.981243 -3.629343 11.007959 14.470870 -9.804289 -17.583473 -0.087978 8.411112 -2.557572 -14.237834 6.203336 -2.560209 21.779766 -17.071503 -3.602466 0.293362 -0.329949 0.763684 -0.269080 0.184615 0.207111 -1.037800 -0.035908 0.837356 2.260914 -2.695381 -0.929959 3.706935 -2.154623 0.054548 -0.319326 0.294437 -0.194493 0.360667 -0.058418 -0.126474
+-9.864823 161.544952 7.893945 -6.429725 -0.689891 -14.590741 -1.791793 -0.927324 -19.238655 -10.153143 1.988053 15.987058 -0.560850 0.163427 -0.081149 0.467508 0.173826 0.280844 11.678406 10.444448 5.446476 17.918608 -2.690297 40.274136 -0.285932 0.177088 0.120247 0.106621 0.082785 0.039348 4.902253 6.458735 9.532441 -4.223984 8.674844 12.528913 -8.378658 9.819111 13.155441 -6.139990 -3.543532 11.555869 15.155403 -10.102446 -17.464794 1.106026 8.140964 -2.268770 -11.319903 6.410719 -1.963722 22.542982 -16.883654 -3.589069 0.289758 -0.333608 0.763419 -0.267200 0.172771 0.207659 -1.278386 -0.559549 0.782265 0.024249 -2.711612 -0.594961 3.936903 -2.636563 0.006567 -0.328585 0.297146 -0.203621 0.372415 -0.050499 -0.126424
+-10.236027 160.926682 9.184352 -7.071791 1.453924 -14.736541 -2.764009 -1.457778 -17.713989 -9.014901 1.390483 13.116459 -0.590805 0.172143 -0.094154 0.493037 0.193191 0.307161 12.320220 9.984034 5.581549 19.335611 -3.506281 40.569923 -0.296159 0.176414 0.114903 0.129018 0.071098 0.039683 4.689802 6.005881 7.902266 -4.081151 7.967450 12.642797 -7.943502 9.226802 14.069006 -5.914043 -3.457068 11.850121 14.906630 -9.697120 -17.907877 2.018377 7.953105 -1.862757 -8.093374 7.126615 -1.215654 21.884457 -16.812366 -3.389329 0.293359 -0.338993 0.783288 -0.272826 0.180915 0.209022 -1.602516 -1.213488 0.670260 -1.894455 -2.772046 -0.266233 4.040524 -2.370249 -0.003042 -0.344508 0.294356 -0.213830 0.379849 -0.057685 -0.142113
+-10.576520 160.189362 10.298396 -7.475506 2.554207 -15.058746 -3.038265 -1.506967 -16.541637 -8.988110 1.246997 11.744662 -0.566054 0.077389 -0.095852 0.569936 0.315127 0.363072 12.580375 9.777960 5.806503 20.950594 -4.317551 41.111622 -0.330561 0.204935 0.124383 0.181698 0.011658 0.012631 4.339998 5.832718 6.643101 -3.928652 7.675804 12.793781 -7.478076 8.866470 14.945797 -5.388284 -3.582959 12.486918 14.711348 -8.928375 -18.849380 2.608743 7.828300 -1.661123 -5.340085 7.505740 -0.701340 22.242306 -16.825874 -3.263389 0.355096 -0.331090 0.777423 -0.306707 0.227505 0.233599 -2.128025 -1.689717 0.631834 -3.311277 -2.893536 0.072751 4.037404 -1.962477 -0.025643 -0.330064 0.270560 -0.181401 0.380369 -0.133207 -0.136969
+-11.032528 159.446243 11.193484 -7.607469 3.634754 -15.747669 -3.134311 -1.553056 -15.765891 -9.566685 1.375394 12.152218 -0.535405 0.030291 -0.098619 0.592533 0.347728 0.405280 12.620081 9.516385 6.353779 22.621572 -5.248260 41.567814 -0.351778 0.220795 0.125732 0.177200 -0.034986 0.021091 3.374327 5.782463 6.562540 -3.768897 7.341855 12.736885 -6.838039 8.423208 14.859060 -4.586175 -3.785986 13.274812 13.829673 -8.101556 -18.517960 3.129670 6.874203 -0.997113 -2.948442 8.548265 -0.354932 23.053068 -16.098471 -3.058595 0.376533 -0.325137 0.779378 -0.319449 0.266113 0.230989 -2.915638 -1.166665 1.384980 -3.977428 -3.900332 0.220550 4.057785 -1.815060 -0.014403 -0.309928 0.263900 -0.151795 0.349665 -0.169242 -0.144192
+-11.477907 158.634018 12.021916 -7.294706 3.866702 -16.411154 -2.865041 -1.395903 -15.400959 -10.996572 1.788512 13.340425 -0.535774 0.012436 -0.110394 0.592584 0.359519 0.411562 12.396415 9.513542 6.994771 23.720787 -5.925977 42.378113 -0.360968 0.227914 0.122886 0.177864 -0.053487 0.022422 2.369140 6.021291 6.628178 -3.811535 7.327988 12.753875 -6.479008 8.357909 14.825266 -3.926337 -3.957463 13.469325 13.676326 -7.555861 -18.777166 3.649189 6.354259 -0.838647 -0.453328 8.693585 0.091548 23.335814 -15.458507 -2.870138 0.377976 -0.330938 0.787290 -0.324018 0.283123 0.222324 -3.221347 -0.906817 1.711321 -4.653479 -4.566107 0.260133 3.746727 -2.333239 -0.028880 -0.309737 0.272668 -0.146323 0.342351 -0.171088 -0.150913
+-11.754618 157.874908 12.566226 -6.659654 3.815828 -17.352358 -2.966582 -1.490204 -15.250084 -12.057277 2.244631 15.386659 -0.532942 0.010417 -0.119503 0.575033 0.339235 0.401948 11.586409 9.632736 7.758195 24.762545 -6.661480 43.461388 -0.357823 0.244944 0.119760 0.160645 -0.057218 0.021373 1.668211 6.086178 7.625755 -4.124602 7.338911 12.900241 -6.647751 8.325468 14.473283 -4.114501 -3.687254 13.286473 14.529540 -7.468236 -19.317369 4.519283 5.972566 -0.655293 0.756444 8.910223 0.194656 24.363049 -15.196894 -2.902202 0.377059 -0.338005 0.798529 -0.333622 0.285687 0.206502 -3.229116 -0.433697 2.063303 -5.193028 -5.077242 0.235147 3.725788 -2.920979 -0.041102 -0.303371 0.296200 -0.146385 0.339356 -0.154236 -0.154506
+-12.004084 157.237991 12.936157 -6.305942 3.615783 -18.167765 -2.459479 -1.337810 -15.212354 -13.498231 2.791792 17.171534 -0.489782 -0.050843 -0.094904 0.603037 0.385974 0.406871 11.293916 9.692673 8.308476 25.431528 -7.210978 44.615311 -0.369310 0.265380 0.138930 0.170041 -0.069312 -0.002897 1.127866 5.955515 8.764842 -4.382669 7.334832 12.957771 -6.816120 8.136098 13.948115 -4.419566 -3.153421 13.009773 15.650078 -7.373028 -19.349434 5.438451 5.678382 -0.388690 0.913781 9.065556 0.015867 25.505732 -14.885599 -2.884380 0.430137 -0.323295 0.791334 -0.356550 0.300953 0.241294 -3.014028 0.153495 2.275024 -5.376196 -5.154175 0.194067 3.504311 -3.401726 -0.070221 -0.277609 0.279147 -0.132339 0.340039 -0.204605 -0.134652
+-12.140893 156.678543 13.231537 -6.229176 3.445084 -18.446049 -1.536514 -1.159212 -15.634907 -15.038079 3.294131 18.541788 -0.463389 -0.059730 -0.076676 0.604382 0.388259 0.389530 11.291673 9.667732 8.384093 25.887857 -7.714139 45.613132 -0.368481 0.256638 0.150165 0.161794 -0.054369 0.002377 1.364210 5.486217 9.669513 -4.779380 7.198331 12.780397 -7.464574 7.914199 13.271833 -4.824913 -2.566663 12.457442 16.054541 -7.431819 -18.840149 5.961504 5.381151 -0.254147 1.152591 8.954454 -0.044735 25.942503 -14.216311 -2.751684 0.439331 -0.300730 0.778080 -0.352244 0.295451 0.261929 -2.842363 0.548663 2.284291 -5.187572 -4.820549 0.114477 3.618735 -3.787461 -0.104767 -0.269047 0.262371 -0.121411 0.331794 -0.215339 -0.117003
+-12.163268 156.325226 13.313647 -6.207879 2.716420 -18.530725 -0.798228 -0.952371 -15.733153 -15.976245 3.521087 18.726164 -0.451276 -0.060329 -0.062844 0.566421 0.359079 0.338161 11.524342 9.766999 8.315435 25.639431 -7.772152 46.547638 -0.343655 0.253816 0.164740 0.146837 -0.021867 -0.019739 1.977451 4.988690 10.728998 -5.274837 7.147072 12.504950 -8.386013 7.781594 12.364853 -5.290700 -1.732056 11.745614 16.866001 -7.538753 -18.161772 6.321446 5.139113 -0.095538 0.651253 9.072498 -0.247198 26.910023 -14.317163 -2.854932 0.433777 -0.305133 0.760922 -0.341527 0.265702 0.266666 -2.344515 0.992614 2.391790 -4.722337 -4.535479 0.062922 3.664660 -3.335208 -0.064310 -0.264414 0.270255 -0.136835 0.344769 -0.197493 -0.102238
+-12.189753 156.204514 13.209477 -6.296937 2.237329 -18.538651 -0.196385 -0.842635 -15.620030 -16.648272 3.532489 18.272446 -0.421624 -0.062168 -0.044324 0.548567 0.338759 0.306686 11.848676 9.686393 8.116293 25.149817 -7.674862 47.029305 -0.335757 0.249593 0.175524 0.125016 0.000061 -0.014687 2.419848 4.389591 11.900627 -5.707050 6.949331 12.287120 -9.131953 7.471502 11.475921 -5.680685 -1.111133 10.893270 17.812616 -7.712327 -17.820562 6.519305 4.803987 0.275100 -0.151435 9.524633 -0.458687 27.471832 -15.247224 -3.120506 0.434999 -0.286010 0.748011 -0.336069 0.253858 0.279028 -1.653504 1.503774 2.651853 -3.934599 -4.403604 0.036218 3.880179 -2.273012 0.014895 -0.253817 0.264878 -0.129494 0.336162 -0.193867 -0.084758
+-12.258320 156.320297 12.972820 -6.370316 2.379146 -18.180025 -0.111760 -1.011142 -15.512547 -16.722134 3.250673 17.135126 -0.440092 -0.007641 -0.028148 0.517641 0.298907 0.276611 12.050435 9.344055 7.730395 24.413095 -7.506826 47.093266 -0.309598 0.220128 0.180614 0.122768 0.053540 -0.014729 2.093888 4.088501 12.456456 -5.736309 6.593401 12.289157 -9.027953 7.131604 11.195807 -5.441470 -0.945093 9.397714 17.450848 -7.749553 -17.205772 6.627807 5.445283 -0.556064 -2.006414 7.137973 -0.851998 28.450481 -15.871873 -3.580874 0.388686 -0.293490 0.725561 -0.298766 0.210566 0.279196 -1.326600 1.048519 2.015600 -2.466781 -3.484174 -0.133951 3.995342 -2.012242 0.005046 -0.274097 0.260361 -0.156308 0.359528 -0.163621 -0.081235
+-12.233031 156.677017 12.600430 -6.862566 2.167047 -17.945341 0.107629 -1.063304 -14.915633 -16.067343 2.740838 15.318274 -0.466176 0.045496 -0.023798 0.488294 0.249888 0.274261 12.590283 8.930395 7.613179 23.621336 -7.181594 46.643768 -0.293799 0.218007 0.181075 0.108841 0.084267 -0.009947 2.462157 3.703882 13.238460 -5.646223 6.314587 12.249623 -9.064575 6.913510 10.781544 -5.288212 -1.016388 8.728507 17.213570 -7.698281 -17.416704 6.649496 5.805310 -1.218261 -4.689087 4.937608 -1.356343 29.498144 -17.218878 -4.320535 0.346171 -0.329679 0.732530 -0.277607 0.190315 0.260818 -1.481122 0.950674 1.551869 0.289414 -2.788719 -0.583706 3.724111 -2.041247 0.041688 -0.290575 0.286985 -0.182382 0.383343 -0.131012 -0.093848
+-12.187605 157.092422 12.134873 -7.277102 2.349147 -17.486326 -0.299998 -1.329397 -14.468218 -14.614100 2.097471 13.347012 -0.474041 0.108227 -0.019255 0.420475 0.162894 0.228699 12.924494 8.456316 7.200593 22.933365 -6.960938 46.031380 -0.267872 0.182777 0.172078 0.069147 0.126971 0.012523 2.433203 3.421620 14.182847 -5.411819 5.896744 11.808802 -8.784131 6.479448 9.729136 -4.818884 -1.033386 8.062301 16.318027 -7.672631 -15.897619 6.520482 5.928554 -1.331696 -7.374492 3.514424 -1.666415 29.705997 -19.821272 -5.242815 0.285555 -0.327840 0.716255 -0.236875 0.154716 0.239262 -1.659985 1.161210 1.459286 3.382258 -2.585826 -1.051680 3.455165 -1.741092 0.094011 -0.300304 0.291817 -0.200811 0.372951 -0.075877 -0.096976
+-12.105247 157.532501 11.632055 -7.176392 2.172981 -16.553852 -1.237175 -1.552315 -14.162011 -12.741652 1.438776 10.710757 -0.459499 0.110266 -0.010060 0.422467 0.170392 0.241272 12.404871 8.134282 6.572304 22.403255 -6.671595 44.991665 -0.269803 0.159104 0.171338 0.069817 0.126816 0.029661 1.367676 3.754752 14.370745 -4.876679 5.635292 11.436094 -7.680348 6.152471 9.166446 -3.867156 -1.165315 7.536928 14.857112 -6.968556 -15.042185 6.164510 6.532460 -1.823331 -10.642793 1.309045 -2.002665 29.405722 -22.136473 -6.036434 0.266510 -0.310068 0.691340 -0.214316 0.155742 0.241722 -2.195982 0.912099 0.883817 6.705359 -1.676299 -1.420694 3.741755 -1.833966 0.063025 -0.299391 0.265327 -0.188253 0.354361 -0.087377 -0.095894
+-11.824604 158.009827 10.992702 -7.711839 2.075364 -15.587891 -2.088654 -1.835086 -14.202435 -10.109858 0.801686 8.486234 -0.441670 0.088577 -0.027452 0.479225 0.227037 0.306912 12.040537 7.666810 5.746990 22.462009 -6.724844 43.824299 -0.295205 0.133230 0.165084 0.084466 0.069559 0.081053 0.806512 3.957070 14.487797 -3.805872 5.297740 11.191707 -6.132635 5.824849 8.921922 -2.679579 -1.973135 7.175693 12.479910 -6.068850 -15.259023 4.406346 7.096613 -2.811057 -13.778641 -1.106776 -2.268214 28.906534 -24.795628 -6.924478 0.263654 -0.253814 0.673941 -0.206272 0.191188 0.238607 -3.153684 0.288356 0.224831 10.035183 -0.926798 -1.743588 4.105676 -1.873696 0.025924 -0.303234 0.214187 -0.132173 0.288749 -0.126169 -0.109405
+-11.486158 158.456665 10.193080 -8.740442 1.905554 -14.505961 -2.350240 -1.884379 -14.665668 -7.717851 0.374252 6.604163 -0.439979 0.081357 -0.036211 0.511341 0.261599 0.356569 12.131114 7.159822 4.751263 22.863031 -6.897527 42.459049 -0.318512 0.120248 0.161797 0.093616 0.037566 0.114388 1.206626 3.983779 14.601110 -2.751334 5.130107 10.879861 -5.038743 5.701476 8.615458 -1.284028 -2.591045 7.060310 10.643373 -5.052985 -15.613962 2.561202 7.182442 -3.885128 -16.511860 -3.883932 -2.304093 27.073845 -27.518414 -7.518256 0.250585 -0.238313 0.671737 -0.196097 0.220594 0.234636 -4.112470 -0.486091 -0.340489 13.856544 -0.541222 -2.200242 4.130472 -1.385617 0.026595 -0.312973 0.194391 -0.104998 0.260935 -0.147834 -0.123990
+-11.165329 158.871689 9.294290 -9.580932 1.938409 -13.071809 -2.774422 -1.995113 -15.587181 -5.479844 0.084802 4.950943 -0.450784 0.073900 -0.059684 0.516137 0.270156 0.368477 12.051138 6.629433 3.344998 23.300184 -7.073602 40.853096 -0.325742 0.112034 0.151600 0.096996 0.010127 0.127193 2.367603 3.662552 14.544272 -2.300927 5.032442 10.374562 -4.940774 5.629103 8.166381 -0.456285 -2.840114 7.537911 9.931774 -4.497946 -15.633410 1.278644 6.299837 -4.638807 -18.993738 -6.416201 -2.319404 24.388172 -28.466503 -7.368638 0.246393 -0.226625 0.678114 -0.196447 0.234327 0.220154 -4.338342 -1.046778 -0.519125 18.322056 -0.927267 -2.912134 3.519533 0.244504 0.066412 -0.319135 0.188831 -0.095946 0.236173 -0.145618 -0.138050
+-10.768684 159.136658 8.369044 -10.365875 1.587422 -11.407109 -3.041477 -2.004628 -16.891371 -3.434665 -0.069550 3.456881 -0.468509 0.084028 -0.069495 0.529481 0.272144 0.419691 11.766008 6.263106 1.633495 24.164347 -7.413058 39.434261 -0.344595 0.114909 0.143007 0.096394 -0.017786 0.148005 3.174097 3.375661 14.198696 -1.732412 4.794790 9.791350 -4.461377 5.439648 7.734949 0.695003 -3.263393 7.727342 8.347216 -3.514747 -16.261333 -0.609418 5.460496 -5.295821 -21.369019 -7.883554 -2.388442 21.405855 -29.465984 -7.074156 0.232986 -0.244612 0.700580 -0.194923 0.261266 0.204230 -4.472658 -1.269404 -0.997553 22.855288 -0.506443 -3.657374 2.081141 1.298265 0.078064 -0.327344 0.196078 -0.094661 0.226753 -0.153219 -0.164778
+-10.362288 159.424927 7.513436 -10.676368 -0.541627 -10.126528 -2.962898 -1.659159 -17.407568 -1.695443 -0.096874 1.489791 -0.472091 0.054948 -0.101665 0.572698 0.324096 0.480299 11.640573 6.414000 0.549522 24.135914 -7.255526 38.962532 -0.374231 0.121832 0.122955 0.116367 -0.078071 0.170036 3.389520 3.627431 13.544667 -1.203354 4.916288 9.550274 -3.726349 5.574574 7.882900 1.832137 -2.895388 8.249529 7.252992 -1.913786 -17.259890 -3.327069 4.371879 -6.073265 -23.620604 -8.793082 -2.706412 19.274776 -29.980612 -6.865378 0.242340 -0.222372 0.712701 -0.211066 0.304585 0.186890 -3.192371 -1.151574 -1.539329 25.508799 0.351278 -3.907566 1.875103 2.776520 0.017741 -0.325225 0.183665 -0.065521 0.191465 -0.176826 -0.187005
+-10.015802 159.633789 6.774328 -10.743060 -4.249978 -9.004866 -2.176583 -1.023096 -17.446777 -0.428128 -0.050101 -0.618364 -0.486922 0.037035 -0.126380 0.618947 0.360951 0.545748 11.812025 6.992308 -0.135721 22.769899 -6.445992 39.025208 -0.410490 0.136140 0.103693 0.129657 -0.135156 0.191831 3.887447 3.945993 13.276469 -1.011871 5.296007 9.298170 -3.598031 5.982064 7.785995 1.855152 -1.910181 8.998516 6.085312 -0.431414 -18.625816 -5.510310 3.480265 -6.606335 -26.439394 -9.226962 -3.130168 17.302073 -29.293293 -6.484406 0.265439 -0.214550 0.751546 -0.239301 0.350855 0.175817 -1.920061 -1.061195 -1.949684 28.230600 1.015548 -4.318895 2.411154 6.408478 -0.120510 -0.323313 0.180882 -0.048902 0.166654 -0.200655 -0.213644
+-9.753320 159.763275 5.946462 -10.768269 -7.751304 -8.021132 -1.151258 -0.476258 -17.733234 0.198507 0.003402 -1.863529 -0.481496 0.011635 -0.135894 0.662701 0.404263 0.602277 11.815592 7.464859 -0.753441 21.749920 -5.827280 39.087379 -0.442300 0.152349 0.090666 0.145218 -0.180264 0.205419 3.474221 4.371689 13.129768 -0.515508 5.450000 9.112489 -2.694355 6.131138 7.655249 1.867284 -0.771943 9.392219 5.225754 0.983774 -19.677412 -7.801723 2.592673 -6.890826 -29.759911 -9.232000 -3.716399 16.027205 -28.753725 -6.338119 0.291514 -0.202986 0.771694 -0.263768 0.392568 0.177291 0.135106 -0.453572 -2.622035 29.660341 2.229525 -4.469664 2.748702 9.116249 -0.250170 -0.311327 0.171817 -0.030197 0.149583 -0.234253 -0.226408
+-9.554166 159.707367 5.080445 -10.682375 -11.093835 -7.073360 0.232117 -0.034097 -18.682926 0.234990 0.017817 -1.927449 -0.497061 0.011271 -0.154227 0.695764 0.438507 0.622805 12.035393 7.999822 -1.598497 20.276812 -5.091345 39.508476 -0.456617 0.143508 0.079380 0.168213 -0.197154 0.221194 2.834883 4.844185 12.949556 -0.078207 5.593792 9.071894 -1.730728 6.275786 7.728148 1.451176 0.621287 8.959104 4.835809 1.975133 -20.670458 -9.961541 1.764418 -7.482730 -32.615372 -9.744394 -4.036368 13.958906 -28.009691 -5.955474 0.294939 -0.177878 0.779480 -0.270012 0.403941 0.176914 3.292212 0.021180 -3.832868 29.940405 3.884016 -4.385713 3.431431 11.219625 -0.329157 -0.321903 0.155525 -0.019049 0.137339 -0.240127 -0.233515
+-9.172022 159.536179 4.287268 -10.531297 -13.868399 -6.487523 1.454017 0.080399 -19.953587 0.083305 -0.016876 -0.470651 -0.544859 0.050466 -0.173859 0.709304 0.448273 0.636417 11.873093 8.151453 -1.935811 18.922718 -4.566908 39.686890 -0.458207 0.120636 0.071339 0.193853 -0.189472 0.235707 2.585171 4.929061 12.497750 0.263597 5.477036 9.288976 -0.986578 6.209398 8.301510 1.181025 1.761880 8.599656 3.503222 2.945799 -21.269123 -12.909211 0.250549 -8.175206 -33.912518 -10.129675 -4.193420 10.952181 -27.437540 -5.363461 0.261794 -0.185990 0.787387 -0.250892 0.397778 0.167995 6.924839 0.775010 -5.268367 29.368313 5.833721 -4.142728 4.577650 12.763718 -0.318809 -0.355796 0.153093 -0.032387 0.149409 -0.222347 -0.250208
+-8.735766 159.302094 3.495360 -10.154297 -16.510944 -6.336051 2.687575 0.032264 -21.391552 -0.546176 -0.056879 2.189341 -0.582823 0.086696 -0.183261 0.734651 0.480606 0.666497 11.586700 8.275984 -2.092062 17.515150 -4.091831 40.286354 -0.461133 0.090816 0.060040 0.235942 -0.177562 0.247518 2.311195 4.932173 12.279837 0.499985 5.371855 9.665775 -0.405770 6.070732 9.070761 1.400689 2.949356 7.851189 1.935036 4.203703 -21.539318 -16.289186 -1.296401 -9.335744 -34.191463 -11.115684 -4.075907 7.255441 -26.229082 -4.458590 0.222805 -0.189869 0.773111 -0.221481 0.392052 0.166237 10.983436 1.267169 -7.181695 28.194967 8.150480 -3.735981 6.912456 14.313531 -0.148609 -0.384245 0.132853 -0.042660 0.166261 -0.222504 -0.260851
+-8.228956 159.090851 2.613524 -9.674929 -19.653587 -6.441548 4.778462 0.103319 -23.311642 -2.880351 0.039479 6.514984 -0.613003 0.109717 -0.188663 0.758729 0.502808 0.692191 11.037043 8.567432 -2.312833 16.089779 -3.593109 41.139725 -0.469174 0.095240 0.049079 0.267381 -0.170634 0.242277 2.197282 4.846527 13.150053 0.622613 5.322367 9.724824 -0.215018 6.000103 8.952825 0.588603 4.860611 7.727464 1.822828 5.147485 -22.076241 -18.109533 -2.546503 -10.031176 -35.841206 -12.272231 -3.879541 4.546419 -24.582525 -3.834703 0.216030 -0.207590 0.784267 -0.223131 0.394707 0.168411 14.176224 2.165993 -8.892341 28.154507 10.636209 -3.422447 9.278061 15.029361 0.134653 -0.396183 0.136905 -0.059782 0.196579 -0.224280 -0.268998
+-7.672782 158.921707 1.752458 -9.337086 -22.675936 -6.650127 7.111570 0.265263 -25.584240 -5.432250 0.419341 12.321162 -0.636163 0.111654 -0.204623 0.789197 0.526674 0.726981 10.958919 8.799173 -2.446165 14.123393 -2.879994 41.935795 -0.487384 0.104296 0.040392 0.285007 -0.192338 0.248215 2.081067 4.785146 14.379545 0.974503 5.271582 9.644013 0.256006 5.960065 8.507165 -0.287498 6.491506 8.313399 1.108517 6.137515 -22.766132 -19.582798 -3.797518 -10.279150 -38.393330 -13.199995 -3.839222 2.764426 -24.543068 -3.639683 0.226223 -0.216343 0.810983 -0.237401 0.415800 0.166459 16.254305 3.311919 -10.049994 29.119520 12.619970 -3.263388 10.961274 15.305230 0.368482 -0.402988 0.142162 -0.060848 0.200952 -0.232675 -0.283983
+-7.063866 158.794724 0.929292 -8.588428 -25.256002 -7.034620 9.284584 0.214736 -28.314030 -8.723649 1.278155 19.648899 -0.619495 0.064143 -0.228233 0.837040 0.585594 0.758053 10.341713 8.946970 -2.767771 12.391591 -2.348774 42.892838 -0.521324 0.120074 0.027642 0.298312 -0.245361 0.265464 1.843598 4.651171 15.952848 1.166214 5.239953 9.381445 0.535340 5.878619 7.715352 -1.167545 8.114583 9.229746 0.719982 7.116445 -23.612904 -20.519329 -5.584527 -9.936342 -40.615978 -13.899993 -3.865438 1.144542 -25.576572 -3.512211 0.267486 -0.182611 0.826508 -0.272163 0.461143 0.170335 18.022318 4.773543 -10.540502 30.964613 13.816966 -3.302941 11.883787 16.041054 0.493940 -0.387114 0.131579 -0.020390 0.169809 -0.259166 -0.282431
+-6.425145 158.786209 0.182950 -7.582339 -27.892616 -7.406356 11.398551 0.158419 -30.935560 -12.378336 2.696329 27.031349 -0.615334 0.024362 -0.251280 0.858736 0.620031 0.785345 9.368890 8.993286 -3.085620 10.803086 -1.870944 43.360626 -0.545688 0.151365 0.020230 0.302255 -0.291567 0.264251 1.344945 4.636975 17.044071 1.277169 5.192320 9.088566 0.881750 5.828482 7.038770 -1.838528 9.580663 11.048082 -0.033992 8.218720 -24.259003 -20.974840 -7.602017 -9.410316 -43.056358 -14.798287 -3.768966 -0.274711 -26.678377 -3.435072 0.295781 -0.194723 0.850567 -0.302749 0.502459 0.160458 19.080612 6.628206 -10.669480 33.482502 14.985076 -3.254134 12.418055 16.110548 0.547830 -0.373111 0.153378 -0.001379 0.163181 -0.270848 -0.289993
+-5.734099 158.856125 -0.518818 -6.809907 -30.579470 -7.550349 13.400704 0.121882 -33.016388 -15.408962 4.352577 33.676102 -0.626646 0.023545 -0.263316 0.858298 0.613667 0.795665 8.653202 9.076246 -3.766886 9.173681 -1.362657 43.767143 -0.547694 0.166566 0.016648 0.299375 -0.304079 0.257012 1.180748 4.611382 17.794598 1.416092 5.238131 8.803474 1.131272 5.921054 6.466387 -2.449370 10.721713 12.514604 -0.285077 8.840532 -23.884501 -21.824026 -9.999587 -8.896431 -45.014500 -15.913357 -3.560483 -1.642877 -28.329353 -3.389562 0.301999 -0.213824 0.869005 -0.313514 0.510015 0.150139 20.552895 8.372422 -10.289063 34.785896 15.441662 -3.345138 13.876097 18.417870 0.850852 -0.370481 0.171608 -0.008109 0.167767 -0.265264 -0.301268
+-5.080856 159.128662 -1.222585 -6.123955 -33.404877 -7.895464 15.146324 0.036083 -34.329250 -17.774126 6.158177 39.931210 -0.658255 0.021642 -0.291472 0.870189 0.615126 0.847926 8.029611 9.127069 -4.338978 7.508443 -0.824190 44.040855 -0.566306 0.185212 0.002085 0.301694 -0.349018 0.258370 0.837340 4.727928 18.217047 1.625928 5.275351 8.767420 1.628955 6.021292 6.427030 -2.078348 11.463920 14.774514 -1.915507 10.211136 -24.178553 -22.797016 -12.876400 -8.575180 -46.401260 -17.695297 -3.031675 -3.264457 -29.202883 -3.167481 0.304311 -0.247500 0.908528 -0.328271 0.541705 0.124476 21.120480 10.514746 -9.856177 36.316490 16.214890 -3.311450 15.704465 20.593342 1.256162 -0.374275 0.194726 -0.016687 0.163494 -0.266890 -0.338205
+-4.478435 159.522491 -1.854326 -5.243031 -36.308411 -8.383995 16.863348 0.024552 -35.057407 -20.436405 8.400620 45.672112 -0.705283 0.028226 -0.325621 0.902137 0.633898 0.910241 7.333644 9.236161 -5.073282 5.537334 -0.134703 44.540131 -0.595285 0.202722 -0.012282 0.316869 -0.393063 0.270928 0.219744 5.124094 18.338137 1.784375 5.417981 8.933867 2.215036 6.213049 6.807394 -1.600638 12.038110 16.592712 -3.133415 11.378983 -25.478693 -23.222706 -15.719395 -8.550082 -48.061256 -20.138439 -2.316854 -4.268013 -30.914459 -3.161460 0.305300 -0.280671 0.961503 -0.345210 0.581408 0.104103 21.850754 12.503804 -9.593614 37.586441 17.192619 -3.314294 17.168060 23.052763 1.671400 -0.392749 0.219261 -0.023702 0.165436 -0.270484 -0.377512
+-3.787992 160.187195 -2.410276 -3.944030 -38.643448 -9.156026 17.917011 -0.480206 -35.352627 -23.084803 10.693775 50.365582 -0.760832 0.039299 -0.373129 0.930771 0.653277 0.982446 6.154510 8.923654 -5.498709 3.367103 0.524818 44.249519 -0.627968 0.231209 -0.041062 0.334425 -0.446824 0.285819 -0.361312 5.279794 18.052982 1.663221 5.347169 9.327538 2.453972 6.220126 7.678231 -1.024856 12.227106 18.894524 -4.340035 12.329124 -27.314934 -23.006369 -19.134781 -8.570673 -49.065998 -22.984152 -1.486997 -3.958987 -32.332741 -3.495274 0.298242 -0.329179 1.019500 -0.367896 0.631365 0.065429 22.184492 15.048985 -9.186317 39.179314 18.316572 -3.430213 18.396908 26.191151 2.081500 -0.408578 0.261018 -0.029149 0.172290 -0.263264 -0.421354
+-3.014895 161.107498 -2.893906 -2.329648 -40.833126 -10.386823 18.169176 -1.266523 -34.731030 -25.180538 12.671412 53.777958 -0.806785 0.034349 -0.425188 0.951582 0.682212 1.029198 4.770388 8.366419 -5.484551 1.306127 1.101586 43.291843 -0.648813 0.245138 -0.060089 0.351240 -0.496251 0.298748 -1.128718 5.329763 18.030581 1.481508 5.127775 9.848531 2.584974 6.069211 8.565516 -0.546830 12.558703 20.621790 -5.885605 13.296539 -29.129614 -23.385605 -22.317192 -8.452600 -48.575809 -25.492346 -1.046355 -4.139489 -35.633602 -3.682168 0.286223 -0.359278 1.054532 -0.379544 0.669189 0.027126 22.967888 17.741011 -9.044477 39.877590 20.014585 -3.284785 20.479877 28.782412 2.791781 -0.426642 0.292744 -0.023073 0.168148 -0.250560 -0.454105
+-2.376011 161.956879 -3.285404 -1.326498 -43.010807 -10.709376 18.430225 -1.895622 -34.283737 -26.259142 14.162395 56.798191 -0.819272 0.039760 -0.437249 0.966845 0.698361 1.059230 4.112092 7.786780 -5.768792 -0.637084 1.620485 41.965118 -0.659374 0.240475 -0.067026 0.361953 -0.509176 0.310738 -1.792899 5.393530 17.076418 1.463870 4.935923 10.288431 2.979496 5.876730 9.544247 -0.114180 12.799664 21.578428 -6.735719 14.133934 -29.321909 -22.626268 -25.042858 -8.110881 -48.956902 -28.113268 -0.340618 -3.898420 -39.556431 -4.051702 0.272360 -0.363527 1.058355 -0.371989 0.683263 0.019641 23.371780 20.147465 -8.846654 40.778412 21.673870 -2.934761 22.840670 31.196224 3.653859 -0.435051 0.290253 -0.019083 0.163445 -0.255501 -0.467088
+-1.622311 162.840790 -3.643581 -0.216050 -45.438114 -11.067581 18.018665 -2.597883 -33.349453 -26.379347 15.012912 59.110443 -0.835889 0.056691 -0.438466 0.969832 0.701991 1.067346 3.373744 7.170098 -5.937366 -2.400672 2.029167 40.177803 -0.666412 0.220319 -0.066142 0.371481 -0.500474 0.322498 -2.171825 5.444689 15.962061 1.283122 4.864514 10.808869 3.004338 5.795840 10.635302 0.692456 13.137923 22.173567 -7.396810 15.286156 -29.202721 -21.606020 -27.714966 -7.596881 -48.126549 -30.798569 0.248973 -3.130774 -45.408188 -4.650240 0.251227 -0.364526 1.062479 -0.351314 0.686477 0.026679 23.310848 22.688040 -8.672698 42.126072 23.556051 -2.417055 24.519754 33.130379 4.331645 -0.453022 0.280190 -0.029984 0.164061 -0.257531 -0.477192
+-0.852601 163.804398 -3.949569 0.345234 -47.872005 -10.937167 17.421329 -3.125296 -32.033611 -25.642794 15.282559 61.087753 -0.837751 0.067096 -0.437068 0.974866 0.701410 1.089191 3.166177 6.576193 -5.947394 -4.319799 2.479144 37.531116 -0.657222 0.196616 -0.065618 0.376822 -0.502651 0.327464 -1.956878 5.400740 14.711784 1.194172 4.918184 11.425623 2.904609 5.784266 11.959918 1.117989 13.210009 21.947445 -8.610518 16.099981 -28.826668 -20.874163 -29.544418 -7.399006 -46.854317 -34.086674 1.400307 -2.687394 -50.646118 -4.816702 0.230056 -0.344587 1.039803 -0.328243 0.672071 0.022215 23.148514 24.658007 -9.095463 43.398216 26.029205 -1.486876 26.502352 34.626743 5.208508 -0.460241 0.250342 -0.029836 0.146204 -0.265386 -0.490343
+-0.093514 164.650482 -4.151788 0.539706 -50.054752 -9.855972 16.460606 -3.308074 -30.890961 -23.812643 14.871906 62.651970 -0.886891 0.138802 -0.433379 0.949382 0.664410 1.087481 2.945152 6.139464 -6.565036 -5.846557 2.695843 34.269836 -0.633040 0.144105 -0.075635 0.393932 -0.459723 0.330813 -1.115814 5.348762 11.864999 0.971613 4.946169 12.265228 2.660460 5.698934 14.396877 1.647901 13.167585 20.787241 -9.799139 16.669756 -28.166208 -18.044188 -30.541647 -7.698162 -46.300476 -37.622993 3.030749 -0.091714 -55.815071 -6.255778 0.165026 -0.352996 1.020585 -0.274671 0.629202 0.013001 21.673033 26.092312 -10.106341 45.357559 29.047106 -0.123314 27.783638 36.686089 6.012128 -0.495624 0.225790 -0.074628 0.160639 -0.241234 -0.510553
+0.525571 165.410446 -4.278963 0.180768 -51.755867 -8.524004 15.233724 -3.320123 -29.348419 -20.762964 13.701805 64.384651 -0.922192 0.206464 -0.415517 0.926679 0.639159 1.071826 3.150133 5.716417 -6.779891 -7.098650 2.763778 30.621151 -0.603276 0.075717 -0.060993 0.411713 -0.396930 0.338897 -0.248446 5.369173 8.997069 0.924284 4.954095 13.070316 2.593556 5.510279 16.858480 2.638926 13.059347 19.503614 -11.000761 17.470186 -27.056196 -14.042281 -30.683777 -8.197059 -46.377510 -41.534576 5.418648 4.556721 -60.567123 -9.093345 0.088124 -0.352478 0.981064 -0.198035 0.577001 0.023669 18.646257 26.848083 -11.631490 47.801434 32.582085 2.096767 29.180138 39.328918 7.140772 -0.542986 0.187719 -0.111771 0.175284 -0.226365 -0.519731
+1.117691 166.077911 -4.363993 -0.469235 -53.071259 -6.989410 13.761934 -3.153218 -27.470335 -17.129795 11.876129 65.177322 -0.911274 0.253083 -0.387259 0.916468 0.637943 1.050353 3.287821 5.362221 -6.796794 -7.664825 2.653923 27.192055 -0.570571 -0.010453 -0.049478 0.430593 -0.333544 0.360278 0.547004 5.408997 6.066652 1.050094 4.879773 13.713514 2.748568 5.061334 19.246479 3.534879 12.996459 18.051666 -11.654007 18.193640 -24.736010 -10.033770 -30.943958 -8.249392 -46.187489 -45.406017 7.950586 13.101711 -64.287277 -14.734966 0.016811 -0.296766 0.895948 -0.113391 0.520277 0.046639 15.871672 27.807774 -13.028104 49.537968 36.451687 4.874414 29.105736 41.918633 7.908497 -0.569591 0.107595 -0.112899 0.156810 -0.231375 -0.504004
+1.638704 166.623810 -4.484794 -0.959668 -53.882881 -5.552499 12.213819 -2.928858 -25.481783 -13.724709 9.862381 64.569145 -0.916958 0.324771 -0.356828 0.901538 0.634897 1.014652 3.142250 5.076992 -6.864185 -7.635260 2.412869 24.364468 -0.535911 -0.107094 -0.038566 0.459450 -0.241564 0.385661 1.130234 5.566401 3.170544 1.058378 4.840948 14.234748 2.809404 4.619390 21.631672 4.854272 13.062694 16.165592 -11.430703 18.843885 -22.495291 -5.166532 -30.817669 -8.758216 -46.752029 -49.712818 11.130754 25.075491 -65.071457 -22.712080 -0.075701 -0.247868 0.810599 -0.014457 0.453432 0.074521 12.475660 27.929701 -14.499917 51.519993 40.565510 8.342980 28.173979 45.857697 8.624625 -0.613121 0.031345 -0.127145 0.157953 -0.223307 -0.484167
+2.082988 167.039734 -4.628028 -1.173458 -54.036171 -4.447215 10.211468 -2.619926 -23.342306 -9.943294 7.504820 62.743015 -0.924339 0.395978 -0.316326 0.881915 0.642009 0.967881 2.867887 4.733041 -6.549827 -7.494579 2.181579 21.506014 -0.487309 -0.203339 -0.012636 0.501230 -0.130522 0.391574 1.392416 5.757218 0.467651 1.095656 4.768246 14.747674 2.965233 4.081998 24.094690 6.116565 13.032990 13.736625 -11.123012 19.097061 -20.254526 -0.352057 -30.210875 -9.411083 -46.832886 -54.058926 14.280040 37.173328 -63.409958 -30.079004 -0.177564 -0.218721 0.706202 0.097012 0.371822 0.109367 8.951498 27.810001 -15.535131 52.720387 45.184765 12.208359 22.750887 51.308090 7.374693 -0.663522 -0.039998 -0.151357 0.185855 -0.217286 -0.455523
+2.477910 167.304169 -4.694244 -1.207814 -53.699409 -3.406551 8.081964 -2.286350 -21.152769 -6.200592 5.203951 59.949688 -0.955523 0.495282 -0.271555 0.843363 0.618496 0.903873 2.424139 4.396047 -6.316773 -7.264716 1.935531 18.867821 -0.429256 -0.303297 0.012807 0.538343 0.002920 0.389868 1.364346 5.850482 -1.809862 1.178314 4.569081 14.985292 3.229892 3.523268 26.012440 6.973453 13.034779 11.015517 -10.673641 18.890011 -17.991638 3.776378 -28.534470 -9.806660 -47.814186 -58.275261 18.333158 47.887138 -61.011257 -35.994171 -0.289825 -0.209766 0.615003 0.212634 0.271673 0.140565 5.595275 26.873817 -16.162714 53.966068 49.995464 16.869511 13.628213 56.403671 3.585502 -0.725472 -0.098484 -0.201196 0.234147 -0.190314 -0.431647
+2.820475 167.423233 -4.687130 -1.731077 -53.389935 -2.209347 6.634295 -1.896335 -18.054928 -3.255263 3.346537 55.452576 -0.952764 0.580243 -0.230159 0.815210 0.607671 0.854501 2.321575 4.141191 -6.075737 -7.021814 1.742799 16.766270 -0.387872 -0.405575 0.024409 0.563725 0.112042 0.420521 1.612369 5.624309 -3.722794 1.276926 4.217242 15.137303 3.405852 2.949592 27.700352 7.629457 13.192994 8.730769 -10.962315 18.834248 -16.023176 6.578010 -26.134007 -9.956131 -48.455280 -62.111660 22.208340 55.361801 -57.581387 -38.757103 -0.396962 -0.167755 0.511097 0.321970 0.198023 0.169169 1.730402 25.434643 -16.466232 55.496189 55.334835 22.541298 -1.647177 60.404892 -4.847795 -0.765889 -0.171096 -0.211955 0.246358 -0.173759 -0.397485
+3.236367 167.411102 -4.672798 -2.256626 -52.909401 -1.212368 5.671906 -1.638146 -14.262360 -1.447922 2.107789 49.348183 -0.978126 0.660523 -0.218000 0.799541 0.601928 0.820214 2.373644 3.955387 -5.971650 -6.946975 1.612850 14.967504 -0.349134 -0.499687 0.018829 0.599420 0.192782 0.444575 1.776198 5.200869 -5.293624 1.343317 3.707423 15.260667 3.587335 2.341715 29.165981 7.954035 13.782743 6.735585 -10.919444 18.844135 -14.506988 9.238744 -24.303852 -9.831750 -47.349991 -65.011215 24.013906 62.591080 -52.897907 -40.513161 -0.491916 -0.122490 0.430504 0.411046 0.127134 0.175550 -1.964227 24.323439 -16.556448 55.734577 60.556126 27.633781 -19.343679 61.188793 -15.520700 -0.812115 -0.239581 -0.227336 0.247925 -0.148344 -0.384183
+3.662779 167.220795 -4.494472 -3.290248 -51.874744 0.218740 5.343167 -1.660143 -10.303707 -0.142126 1.052480 42.519733 -0.991421 0.721342 -0.201778 0.784318 0.588885 0.784218 2.616390 3.734074 -5.848286 -6.675889 1.426349 13.244569 -0.319236 -0.567511 0.019174 0.619432 0.260619 0.460455 2.390364 4.560790 -6.592905 1.469314 3.057482 15.107872 3.782181 1.669818 29.797119 7.957111 14.290574 5.547637 -10.542043 18.747747 -13.086506 11.997070 -22.997919 -9.590491 -46.092548 -66.755424 24.712898 66.278648 -48.393105 -39.981495 -0.555400 -0.086110 0.373948 0.473903 0.070515 0.188289 -5.343866 23.352652 -16.281370 55.876293 64.525116 31.861109 -32.759510 59.920414 -23.383692 -0.843582 -0.289677 -0.241344 0.251568 -0.128917 -0.369590
+4.067396 166.960800 -4.361309 -3.971669 -49.764397 1.110065 4.906065 -1.693422 -5.860209 1.581229 -0.038105 34.556232 -1.004003 0.768534 -0.182840 0.781436 0.604544 0.758929 2.851780 3.597019 -5.586694 -6.457114 1.328944 12.091945 -0.300859 -0.630621 0.023102 0.653213 0.322256 0.475104 2.864322 3.852616 -7.794526 1.681827 2.299321 15.162473 4.052951 0.829506 30.627407 8.214466 13.888855 4.378451 -10.685382 18.297972 -12.226327 13.817783 -21.144844 -9.592664 -44.480293 -68.980453 25.606787 68.248352 -44.624580 -38.483128 -0.613867 -0.067973 0.316851 0.535738 0.032209 0.209655 -8.763444 21.954578 -16.415827 55.347401 67.717171 34.784950 -42.139133 57.252598 -28.182941 -0.875570 -0.334535 -0.250543 0.269055 -0.124705 -0.348265
+4.636602 166.587784 -4.223289 -5.266114 -47.395664 2.447992 5.499413 -1.687430 -1.929722 2.888417 -0.734935 26.990812 -1.021686 0.821962 -0.172238 0.789213 0.629818 0.740743 3.344638 3.586419 -5.642381 -5.905100 1.213343 11.412690 -0.281618 -0.706338 0.022509 0.694830 0.380198 0.499937 4.427049 3.121125 -8.798155 1.844641 1.628747 15.129389 3.878113 0.099112 31.315825 8.514285 13.229555 3.092165 -10.868461 17.653017 -11.290122 15.057023 -19.230263 -10.093170 -43.471043 -71.199425 26.536755 67.296043 -40.778664 -35.348030 -0.682056 -0.033064 0.249698 0.604689 -0.010018 0.226973 -11.940026 19.959269 -16.712763 55.291599 69.953644 37.190300 -48.890438 54.577919 -31.261019 -0.915902 -0.393446 -0.250274 0.275328 -0.119153 -0.329358
+5.258411 166.205856 -4.252935 -6.431387 -45.600491 3.536648 6.545576 -1.448728 1.483114 3.318952 -0.881176 20.197004 -1.053736 0.890126 -0.173544 0.781340 0.633095 0.723494 3.656317 3.838358 -6.202827 -5.067804 1.155454 11.784363 -0.254432 -0.782688 0.007056 0.731455 0.436476 0.522428 5.698939 2.602547 -9.497391 2.025046 1.099972 15.120334 3.744249 -0.509495 31.891428 8.952615 12.836171 1.812229 -10.962914 17.272177 -10.331335 16.333370 -17.039124 -10.781209 -41.696667 -73.221825 27.045338 66.291214 -38.236027 -33.038532 -0.764934 -0.000685 0.185126 0.675182 -0.062096 0.221397 -14.918709 17.772314 -17.137106 55.093426 71.923866 39.101379 -53.966152 51.682739 -33.063679 -0.957524 -0.446228 -0.260021 0.277547 -0.093860 -0.323296
+5.940244 165.971054 -4.369731 -6.941912 -43.825195 4.096900 7.384290 -1.291045 3.835479 3.335922 -0.885262 14.936798 -1.070965 0.941834 -0.168678 0.763326 0.608673 0.717506 3.259534 4.009666 -6.897241 -3.953108 0.989223 12.205113 -0.233730 -0.836430 0.000128 0.737230 0.469353 0.544554 6.251256 1.813306 -9.726709 2.104901 0.305617 15.195408 3.689377 -1.289448 32.115398 9.139599 12.732682 0.892009 -11.632235 17.393703 -9.632825 15.845903 -15.424744 -10.881114 -35.908157 -73.655998 23.703051 66.948273 -38.058380 -32.749851 -0.824684 0.018171 0.148919 0.726738 -0.097002 0.212133 -17.233620 16.339539 -17.520828 53.774715 73.631668 39.765720 -57.063835 49.789803 -33.938019 -0.982580 -0.481283 -0.269793 0.264861 -0.076571 -0.329458
+6.565021 165.825562 -4.427698 -6.960798 -42.819855 4.254874 7.894347 -1.021454 5.713054 2.831353 -0.751921 10.657269 -1.093285 0.974740 -0.174080 0.777262 0.629688 0.723006 2.666457 3.954504 -7.205228 -3.366493 0.862160 11.838869 -0.224978 -0.876358 -0.012163 0.769780 0.490264 0.557184 6.221876 1.351170 -9.992504 2.197429 -0.202390 15.383808 3.802520 -1.891260 32.659401 9.215397 12.493174 -0.003385 -11.743753 17.016123 -9.390532 15.405009 -13.737053 -11.154136 -33.295506 -74.476639 22.625280 67.601135 -37.414944 -32.410606 -0.863725 0.039984 0.114554 0.759402 -0.119916 0.210162 -18.051785 15.042164 -18.000347 54.186207 75.059509 41.497402 -58.337666 48.361847 -33.912193 -1.007614 -0.516090 -0.269926 0.266493 -0.070930 -0.328159
+7.082328 165.710281 -4.391743 -6.624625 -42.166958 4.360177 8.257011 -0.711776 6.669240 1.727280 -0.532054 7.685227 -1.131355 1.010287 -0.180984 0.779319 0.629125 0.711936 2.132733 3.850815 -7.505539 -3.429740 0.796503 11.226822 -0.221321 -0.889229 -0.010573 0.786140 0.518447 0.559677 5.580051 0.903072 -10.195440 2.176279 -0.735132 15.361766 4.049510 -2.390837 32.779556 9.361556 12.301540 -0.254739 -11.477374 16.561384 -9.548285 15.325025 -12.597578 -11.071490 -34.168427 -74.630302 23.741774 69.028702 -37.350571 -33.110500 -0.888781 0.022408 0.122476 0.774981 -0.135194 0.211680 -18.965796 14.503507 -18.262161 56.813812 75.778625 44.233711 -58.781261 47.249149 -33.698475 -1.039101 -0.507392 -0.288164 0.294950 -0.049528 -0.330990
+7.768935 165.863647 -4.307055 -6.150938 -41.920200 4.456381 8.277065 -0.478351 6.700149 0.481968 -0.337764 6.213029 -1.131555 1.012600 -0.176054 0.794275 0.646771 0.697315 1.232634 3.713801 -7.990142 -3.224606 0.705244 10.715714 -0.222676 -0.893515 -0.007201 0.799883 0.533038 0.558755 5.059777 0.589834 -10.146471 2.153121 -1.048556 15.340273 4.230238 -2.765184 32.699535 9.375555 11.903297 -0.494516 -10.807954 15.824446 -9.379675 14.942574 -12.093244 -11.114971 -33.925117 -74.529976 23.870192 69.151634 -38.333408 -33.687523 -0.879296 0.033744 0.118045 0.771651 -0.141821 0.229311 -18.729731 14.625992 -18.368483 57.384201 76.129707 45.143669 -58.358936 47.403790 -33.485218 -1.044106 -0.516080 -0.284995 0.306432 -0.052185 -0.316006
+8.548353 166.192734 -4.173178 -5.664074 -42.278553 4.492303 7.746435 -0.331188 6.350278 -0.283085 -0.236999 5.495908 -1.113932 0.962798 -0.181273 0.814125 0.668730 0.716813 0.357089 3.470462 -8.216311 -3.202318 0.606696 9.835293 -0.241930 -0.852172 -0.004854 0.794553 0.488132 0.543959 5.107885 0.546471 -9.911638 2.062612 -1.049525 15.409582 3.960825 -2.791318 32.515560 9.518795 11.310336 -0.036939 -10.851774 15.532160 -10.103300 13.933469 -12.918200 -11.285889 -32.305183 -74.560608 22.812469 67.706062 -39.827080 -33.549690 -0.824694 0.024096 0.146381 0.726684 -0.107127 0.232896 -18.389204 15.134132 -18.385303 57.119015 75.494225 44.306969 -57.490253 48.662090 -33.653316 -1.019513 -0.497376 -0.270958 0.301726 -0.076522 -0.317127
+9.359624 166.420334 -4.018769 -4.980245 -42.585957 4.528403 6.748477 -0.345814 5.401388 -0.612134 -0.229382 5.507876 -1.061504 0.872676 -0.184004 0.860353 0.734717 0.752643 -0.608260 3.066938 -8.290551 -3.396968 0.495681 8.386323 -0.279327 -0.794633 0.002359 0.793846 0.420124 0.535340 4.990063 0.232380 -9.595216 1.811546 -1.217914 15.452978 3.632563 -3.002324 32.208752 9.137323 11.172256 0.456108 -11.087883 15.433730 -11.303026 13.811772 -13.750783 -11.015731 -31.568436 -72.803108 21.177378 68.638733 -41.581448 -35.130375 -0.744773 0.028673 0.165079 0.666047 -0.042311 0.250341 -18.155415 15.966803 -18.517729 58.780121 74.756401 45.004471 -56.288155 50.593178 -34.050549 -0.974973 -0.482421 -0.223742 0.287238 -0.129294 -0.301964
+10.093596 166.565506 -3.750374 -4.851494 -42.918503 4.991039 6.128959 -0.414692 4.447311 -0.730564 -0.226466 5.675186 -1.012589 0.837694 -0.165143 0.824244 0.697142 0.730515 -1.125341 2.800078 -8.398616 -3.701256 0.393578 7.181369 -0.277407 -0.768437 0.018475 0.743861 0.407759 0.529132 5.622285 0.062739 -9.338334 1.646016 -1.260815 15.273209 3.222669 -2.966510 31.482546 8.900829 11.097034 1.196562 -11.634215 15.757787 -11.096888 12.574641 -14.611901 -10.659853 -32.807045 -71.467697 21.783295 67.862419 -44.899872 -36.592525 -0.718117 0.020984 0.170223 0.648878 -0.029075 0.251782 -17.496250 16.396448 -18.462267 60.482620 73.606079 45.763588 -53.659897 53.374538 -33.807327 -0.938385 -0.459205 -0.212416 0.270893 -0.132420 -0.291465
+10.794363 166.642181 -3.541695 -4.596417 -43.395435 5.175663 5.457792 -0.496397 3.517495 -1.078575 -0.196427 6.311500 -0.974749 0.780668 -0.163388 0.820627 0.689769 0.744531 -1.642789 2.546052 -8.427622 -4.049558 0.309586 6.042753 -0.299952 -0.703966 0.026589 0.705866 0.356667 0.517156 6.046828 0.041803 -8.905970 1.527175 -1.197564 15.290967 2.845442 -2.827752 30.899927 8.216281 11.102348 2.039486 -12.221486 15.800844 -12.111193 11.664289 -16.094206 -10.256409 -33.386311 -69.210411 20.947456 67.827560 -48.146358 -38.698151 -0.657422 -0.008357 0.211921 0.593311 0.020017 0.249210 -16.078112 17.573017 -18.489208 60.644829 72.001205 44.495499 -49.511589 56.666138 -32.676971 -0.895810 -0.410989 -0.194314 0.265356 -0.149073 -0.291383
+11.397287 166.650146 -3.314070 -4.500572 -44.459019 5.589544 4.845727 -0.572288 2.760034 -1.405391 -0.158790 6.873722 -0.938904 0.720062 -0.169756 0.805515 0.658026 0.760777 -1.968096 2.420747 -8.855069 -4.587792 0.254511 5.263743 -0.316734 -0.631423 0.030523 0.650070 0.290673 0.501396 6.165148 0.031671 -8.372957 1.463254 -1.149219 15.194142 2.717439 -2.623543 29.967518 7.220787 11.423241 3.161364 -13.030349 16.043474 -13.118226 11.026108 -17.601217 -9.535933 -35.553368 -65.519913 20.492027 68.550468 -53.134136 -42.831207 -0.589981 -0.037744 0.265702 0.527175 0.065515 0.228966 -14.804384 19.207966 -18.320457 60.737556 69.818146 42.683041 -44.328365 60.766979 -31.053774 -0.846057 -0.354925 -0.178190 0.244977 -0.155759 -0.303762
+11.983794 166.418793 -3.056225 -4.421982 -45.209560 6.166308 4.473031 -0.678857 1.548273 -1.955051 -0.065309 7.805702 -0.916213 0.691242 -0.171022 0.774650 0.596437 0.775521 -2.267616 2.453084 -9.706220 -4.968254 0.199363 4.946353 -0.326653 -0.575739 0.033555 0.585762 0.241905 0.495994 6.181069 0.107803 -7.738973 1.522928 -1.077061 14.888722 2.838022 -2.415406 28.691483 6.613058 11.705554 4.125902 -14.210561 16.619797 -13.880965 9.641332 -18.575409 -8.817298 -38.789005 -62.281868 21.170906 69.500053 -59.297649 -48.146931 -0.548917 -0.071280 0.320779 0.480842 0.097408 0.203452 -13.292752 20.391663 -18.324484 62.099762 67.012436 41.241535 -34.907124 64.508705 -26.134050 -0.808710 -0.302179 -0.176434 0.223469 -0.149361 -0.326458
+12.532157 166.130295 -2.841735 -4.377361 -45.672707 6.526807 4.219688 -0.768439 0.590855 -2.410159 0.026082 8.730102 -0.891450 0.652645 -0.179821 0.748705 0.550470 0.795075 -2.341130 2.569870 -10.539226 -5.786746 0.226897 5.222316 -0.341068 -0.518091 0.030929 0.528253 0.186050 0.491540 5.754165 0.033900 -6.946912 1.606812 -1.198418 14.751355 3.033429 -2.419646 27.453598 6.516326 12.231105 5.118654 -15.293788 17.574949 -14.951193 7.721933 -19.823172 -8.838898 -41.099621 -58.811192 20.892488 65.099014 -67.298988 -50.746021 -0.508307 -0.101154 0.372155 0.432807 0.137275 0.173980 -10.801096 21.643499 -18.480904 63.152889 63.530182 38.564259 -18.909105 67.012184 -15.848239 -0.768460 -0.249448 -0.168292 0.199135 -0.145352 -0.347893
+13.101308 165.769394 -2.659800 -4.453258 -45.942970 6.991978 4.415339 -0.856235 -0.659217 -3.494602 0.243570 10.097691 -0.873301 0.613409 -0.196407 0.726417 0.503780 0.813032 -2.406764 2.942341 -12.055311 -6.285938 0.339976 6.883733 -0.351333 -0.469104 0.020538 0.474887 0.125047 0.486048 5.265535 -0.026331 -6.048739 1.705586 -1.306025 14.418541 3.359947 -2.434633 25.993261 6.661047 12.708971 6.387573 -15.911964 18.513685 -15.605532 5.632679 -21.029112 -8.941526 -44.075436 -55.430077 20.366735 51.416321 -73.424759 -44.198700 -0.463724 -0.115237 0.424151 0.382492 0.168375 0.138209 -7.638421 22.793562 -18.287312 64.739471 59.724045 35.616867 -1.782592 66.147781 -4.215763 -0.729727 -0.210127 -0.160917 0.160747 -0.139511 -0.374400
+13.696461 165.348923 -2.397422 -4.521633 -45.725830 7.388296 4.483037 -1.057476 -2.085336 -4.176654 0.403314 11.732553 -0.867445 0.592837 -0.208538 0.691294 0.435699 0.832543 -2.533491 3.337996 -13.621043 -6.774370 0.482145 8.947886 -0.359912 -0.411738 0.010253 0.416349 0.072407 0.475403 4.871581 -0.246062 -5.124758 1.836820 -1.582595 14.014394 3.768221 -2.510570 24.460619 6.810654 12.864364 7.930159 -16.746666 19.227747 -16.260281 2.965408 -22.061213 -8.680306 -48.570004 -51.732334 19.659237 27.193115 -76.521805 -26.792507 -0.426237 -0.157376 0.488585 0.332779 0.198937 0.099880 -4.904137 23.625067 -17.895819 66.220039 55.488194 31.908815 12.223148 63.248169 4.490403 -0.693902 -0.152226 -0.170990 0.141553 -0.125085 -0.406830
+14.305160 164.889618 -2.036281 -4.495141 -44.764992 7.658629 4.488468 -1.379789 -3.798103 -4.596609 0.525367 14.010952 -0.831222 0.531814 -0.217955 0.682929 0.409611 0.856343 -3.078216 3.660815 -15.151029 -6.676285 0.579731 11.220285 -0.382651 -0.351531 0.003074 0.365460 -0.001633 0.469220 4.757620 -0.595176 -3.978148 2.049545 -1.920521 13.467404 4.118104 -2.689900 22.567736 6.930366 12.380527 9.402244 -17.516674 19.528595 -16.929794 -0.012258 -22.851067 -8.408978 -52.526741 -48.008633 18.469044 -7.590754 -76.449936 0.444432 -0.357465 -0.169757 0.540488 0.267607 0.248686 0.079328 -2.011261 23.782238 -17.223866 66.824760 50.381554 26.817139 24.083410 59.091946 10.577999 -0.642315 -0.114108 -0.150107 0.104644 -0.138778 -0.421500
+14.886238 164.387512 -1.763201 -4.183511 -43.525417 7.595090 4.401174 -1.802899 -5.546171 -5.170064 0.673737 16.674118 -0.789561 0.464006 -0.230393 0.687754 0.401881 0.869909 -3.802325 3.991675 -16.874559 -6.649596 0.738451 14.440981 -0.405543 -0.287675 0.003462 0.321853 -0.069122 0.463111 4.463219 -0.795635 -2.599943 2.312649 -2.114779 12.826352 4.533935 -2.694463 20.484848 6.896309 11.852939 11.126021 -17.182184 19.496807 -17.269096 -2.752407 -23.620628 -7.963122 -55.815571 -44.499950 16.535870 -26.048658 -71.816406 13.034382 -0.282766 -0.171104 0.587890 0.199461 0.296775 0.068761 0.886948 23.275854 -16.631189 65.736572 45.030788 20.954069 33.301323 52.791771 13.676422 -0.595075 -0.076559 -0.119057 0.071439 -0.153751 -0.425724
+15.488286 163.950043 -1.434724 -3.952111 -42.859989 7.177482 4.217796 -2.165020 -6.750565 -5.872120 0.866282 19.222778 -0.753862 0.359087 -0.255454 0.728589 0.453576 0.912722 -4.427598 4.334466 -18.402655 -6.350749 0.890851 17.821808 -0.450297 -0.204934 -0.004609 0.309768 -0.171708 0.445258 4.493441 -0.795755 -0.803910 2.651134 -2.057292 12.403310 4.741822 -2.486247 18.691319 6.296203 11.196002 12.656752 -17.367382 18.993441 -18.930382 -5.976078 -23.964989 -7.841374 -57.104824 -41.319092 14.021559 -37.124447 -66.126198 18.605885 -0.178738 -0.184126 0.643282 0.106015 0.376059 0.060735 3.962199 22.460783 -16.232822 64.023254 40.227348 15.564224 37.379642 45.102654 12.936171 -0.542611 -0.035657 -0.076470 0.050171 -0.193948 -0.428257
+16.194368 163.490112 -1.175920 -3.624690 -41.216553 6.610679 3.951601 -2.668632 -8.204784 -6.136802 0.959292 21.872089 -0.759114 0.302059 -0.286162 0.749270 0.468503 0.947720 -5.367487 4.698485 -20.130106 -5.477237 0.915694 21.989759 -0.486524 -0.122276 -0.012147 0.293463 -0.247265 0.428272 4.711639 -1.034817 1.278527 2.975082 -2.259655 11.942585 4.859623 -2.419474 16.898903 5.903854 10.808914 13.883596 -17.309713 18.336639 -21.036810 -9.521943 -23.761175 -7.978493 -58.523380 -37.839813 11.367652 -43.421028 -58.994205 19.311821 -0.106374 -0.233111 0.721655 0.024953 0.440136 0.040245 6.406395 20.762794 -15.469452 62.367306 35.865894 10.767262 36.992363 39.701912 10.647602 -0.516289 0.035127 -0.064840 0.058249 -0.200613 -0.446041
+17.006392 162.912994 -0.907528 -3.444241 -39.284695 6.231213 3.829916 -3.293027 -9.879519 -6.495755 1.058800 24.725649 -0.754982 0.269786 -0.300205 0.761945 0.459902 0.973735 -6.257490 5.073783 -22.343895 -4.398115 0.820258 26.873705 -0.512405 -0.067296 -0.024008 0.270396 -0.300231 0.423904 5.269894 -1.382351 3.423795 3.371609 -2.480225 11.244256 5.033272 -2.412079 14.893768 5.392836 10.416062 14.909293 -16.869602 17.628906 -21.772068 -13.232208 -23.038097 -7.981762 -59.119865 -34.393570 8.746590 -44.601337 -51.713383 16.603939 -0.047086 -0.256108 0.782542 -0.037219 0.482518 0.027068 8.527350 18.771461 -14.726421 60.229092 31.975515 6.909196 34.578453 34.544041 8.062260 -0.488524 0.075146 -0.055864 0.049817 -0.207906 -0.458777
+17.902313 162.423233 -0.567994 -3.033178 -37.391220 5.512206 3.491205 -3.902393 -11.113439 -7.162653 1.214173 27.127600 -0.736799 0.192764 -0.323251 0.797155 0.504792 0.995987 -7.372683 5.268885 -24.478722 -3.137982 0.572447 31.934090 -0.546745 0.001534 -0.033947 0.269889 -0.373712 0.403724 5.922967 -1.927678 5.699970 3.633477 -2.782386 10.548667 4.868347 -2.539112 13.010868 4.513954 10.171990 16.265821 -16.226355 16.539724 -22.917603 -16.698685 -22.427568 -7.556205 -58.835835 -30.670757 5.690525 -42.173485 -45.785538 12.677499 0.040073 -0.271519 0.830115 -0.117784 0.540528 0.023204 9.808117 17.575054 -14.134135 58.379482 28.969801 4.067314 29.634253 29.714815 5.257321 -0.451411 0.113266 -0.026746 0.047174 -0.232385 -0.454731
+18.721773 161.868317 -0.226671 -2.605163 -34.879635 4.914313 3.046903 -4.656746 -12.478355 -7.420127 1.229704 29.546038 -0.711239 0.147343 -0.340485 0.819170 0.524886 0.997773 -8.520115 5.253216 -26.768766 -1.726469 0.054987 37.355255 -0.565195 0.036468 -0.038888 0.254604 -0.418922 0.410910 6.409304 -2.403704 7.782810 4.125042 -3.133983 9.743608 5.192228 -2.774892 11.148511 3.403871 9.677570 16.816675 -15.659340 15.222878 -23.277140 -19.632877 -21.240931 -7.260473 -58.621105 -27.510284 3.479827 -38.387852 -40.804810 9.153694 0.092385 -0.254987 0.851352 -0.166824 0.572179 0.018582 11.254871 16.041977 -13.623103 55.768978 26.235464 1.782423 24.367012 25.221102 3.116332 -0.426772 0.129361 0.013673 0.023160 -0.238685 -0.443704
+19.430500 161.399658 0.177520 -2.288307 -32.851723 3.967691 2.703844 -5.153720 -12.850134 -7.953547 1.358947 31.270790 -0.698414 0.096963 -0.356549 0.842767 0.552246 1.014011 -9.148337 5.325193 -28.786930 -0.714273 -0.404600 42.586533 -0.586495 0.076122 -0.047146 0.252922 -0.472858 0.400619 6.646039 -2.618747 9.819848 4.734432 -3.355924 9.162924 5.695049 -2.914185 9.745563 2.512045 9.177427 17.574385 -15.744227 14.253150 -24.006432 -22.228968 -19.740435 -7.085320 -57.749424 -24.582052 1.439801 -33.931557 -37.110916 6.299410 0.149845 -0.256800 0.878182 -0.219157 0.608140 0.014143 11.863873 14.548391 -13.310349 53.104740 23.895857 0.100879 19.478428 20.854410 1.608147 -0.402387 0.146677 0.036676 0.013243 -0.255005 -0.442592
+20.126310 161.011841 0.608608 -2.327027 -31.099403 2.870206 2.381796 -5.580511 -12.723948 -7.934176 1.325979 32.989853 -0.682956 0.036722 -0.358770 0.881691 0.605609 1.028350 -9.303290 5.486425 -30.532761 0.284049 -0.945813 47.793709 -0.612889 0.124015 -0.041279 0.267501 -0.512159 0.376640 7.379470 -2.905293 12.060617 5.309377 -3.435803 8.629048 5.778666 -2.915177 8.375629 1.540879 9.073153 18.691069 -15.092113 13.284627 -24.736008 -24.357878 -18.819170 -7.070393 -56.475105 -22.000605 -0.157597 -28.633747 -33.075798 3.665793 0.219429 -0.273426 0.905945 -0.273052 0.647471 0.033284 12.367572 13.094316 -12.963645 50.282692 21.702820 -1.278263 14.900525 17.145065 0.587470 -0.380792 0.167063 0.053415 0.030504 -0.288669 -0.429528
+20.770863 160.438416 1.101381 -2.353167 -29.912111 2.007099 2.284309 -5.963962 -12.845187 -8.616246 1.596230 34.956253 -0.662806 0.018555 -0.351764 0.891663 0.608407 1.029204 -9.486059 5.699275 -32.877155 1.545682 -1.761310 53.238129 -0.618997 0.143367 -0.037511 0.258957 -0.522302 0.372144 8.280876 -3.290240 13.912273 5.570117 -3.449355 8.008027 5.474157 -2.846458 6.984489 0.930497 9.203594 19.336174 -14.435527 12.795671 -24.173891 -25.812794 -17.991150 -6.952791 -55.176247 -19.268736 -1.442510 -22.778328 -28.591728 1.386261 0.250855 -0.270604 0.914900 -0.295212 0.657831 0.044205 12.353775 11.632796 -12.436190 48.206047 19.478132 -2.272755 10.966945 13.694363 -0.035486 -0.363277 0.171000 0.063997 0.027674 -0.301951 -0.420339
+21.294569 160.090195 1.500493 -2.232178 -28.943707 0.841761 2.092714 -6.125780 -12.356762 -9.351002 1.912997 36.142456 -0.640044 0.001634 -0.345737 0.884866 0.605499 1.014645 -9.142975 6.126957 -34.794361 2.505933 -2.422399 58.017353 -0.620042 0.155452 -0.031153 0.244268 -0.522474 0.369844 8.508903 -3.401925 15.757234 5.904156 -3.489964 7.582520 5.495264 -2.837539 5.880509 0.753470 9.200855 19.965719 -14.059690 12.595991 -23.599268 -26.705629 -17.333450 -6.753673 -53.189896 -16.783232 -2.378613 -17.928053 -24.805099 0.007808 0.264654 -0.270058 0.912420 -0.303977 0.663224 0.049866 12.203951 10.515841 -11.840201 45.933983 17.428593 -3.132921 6.885266 10.672898 -0.437023 -0.349242 0.179733 0.075674 0.025631 -0.303132 -0.407394
+21.761662 159.815231 1.846341 -2.422344 -28.266836 -0.213680 2.384688 -6.169274 -11.725047 -10.250439 2.309789 37.179012 -0.627467 -0.005690 -0.338040 0.880146 0.605068 1.003250 -7.957209 6.755866 -36.335049 3.045662 -2.854320 61.451057 -0.617705 0.162732 -0.022512 0.238445 -0.515040 0.364330 8.803827 -3.590994 17.310053 6.248067 -3.532067 7.518818 5.570156 -2.840569 5.360534 0.445384 9.484275 20.050589 -13.868807 12.523541 -23.320898 -26.635658 -16.416365 -6.703548 -51.207039 -14.749820 -3.010349 -13.735137 -22.040749 -0.846930 0.269768 -0.274837 0.907647 -0.305382 0.662256 0.057052 11.624216 9.373830 -11.652646 43.596210 16.136440 -3.422815 3.609488 6.572214 -0.483453 -0.343426 0.186547 0.078617 0.033054 -0.304010 -0.397660
+22.320045 159.602982 2.181905 -2.126665 -27.469275 -1.782652 1.672478 -6.275284 -10.474031 -10.499490 2.396171 37.662640 -0.616860 -0.006900 -0.331650 0.866167 0.589540 0.986558 -6.976762 7.222673 -37.534420 3.723891 -3.344597 64.431877 -0.612402 0.168087 -0.021989 0.226652 -0.508166 0.360377 8.921383 -3.723997 18.985485 6.473265 -3.605864 7.640119 5.492465 -2.842886 5.004388 0.089600 9.669833 19.598154 -13.567339 12.329703 -23.242409 -25.870852 -15.735442 -6.393273 -48.581055 -12.837318 -3.493513 -10.766448 -20.503654 -1.264581 0.274474 -0.274216 0.906299 -0.309988 0.656384 0.056406 10.560067 8.299950 -10.998531 41.179836 14.527845 -3.715440 1.601997 4.220675 -0.388568 -0.334070 0.192388 0.077697 0.033594 -0.296959 -0.390957
+22.817327 159.465469 2.627353 -1.804563 -26.249460 -3.201733 1.116353 -6.438733 -9.327925 -11.025900 2.542485 38.049370 -0.599428 -0.002646 -0.316438 0.835593 0.562387 0.957062 -5.905601 7.413191 -38.674904 4.282881 -3.907092 66.977798 -0.596452 0.164580 -0.011475 0.207418 -0.485009 0.354803 8.979470 -4.108222 19.868603 6.578048 -3.876720 7.998407 5.497869 -3.045623 5.163596 0.085632 9.592309 18.688194 -13.585629 12.303694 -22.891462 -24.372791 -14.470881 -6.077526 -46.156403 -11.102891 -3.884527 -8.626238 -20.160210 -1.482221 0.262829 -0.275212 0.888902 -0.297416 0.638990 0.058311 8.526585 6.826194 -10.426429 39.768200 13.140475 -3.864841 0.097821 2.475348 -0.271209 -0.326864 0.197372 0.072966 0.037596 -0.285126 -0.379767
+23.303511 159.441849 3.254570 -1.679562 -25.187477 -4.569133 0.649584 -6.550749 -7.753493 -11.571621 2.644225 38.114288 -0.592167 0.009912 -0.298127 0.798294 0.518295 0.923493 -4.838246 7.452619 -39.132042 5.525730 -4.913861 67.985703 -0.577268 0.164719 0.003418 0.182496 -0.458970 0.342713 9.485059 -4.720131 20.373091 6.649680 -4.108967 8.430401 5.298298 -3.126735 5.475948 -0.369367 9.422765 17.998899 -13.810413 12.008615 -22.386843 -22.625044 -13.237387 -5.419275 -44.513908 -9.355874 -4.310347 -5.695478 -20.559711 -1.872646 0.254915 -0.291378 0.884264 -0.288041 0.616524 0.060628 5.596475 5.260001 -9.416073 38.917995 11.203755 -4.222831 -1.260209 1.850868 -0.182855 -0.323587 0.211240 0.056097 0.050000 -0.268056 -0.374050
+23.753942 159.401199 4.097319 -1.369306 -23.922575 -5.858514 -0.190446 -6.753480 -6.070091 -11.693400 2.536991 38.169586 -0.557929 0.006513 -0.270935 0.758018 0.478166 0.888748 -3.834711 7.193406 -38.980324 6.743868 -5.844870 67.739456 -0.553247 0.162813 0.015484 0.154361 -0.436303 0.327568 9.717808 -5.259652 20.589069 6.750438 -4.362711 8.765852 5.287862 -3.257515 5.691108 -0.638797 9.074290 16.874151 -13.886122 11.831811 -21.495819 -20.882048 -11.357428 -4.882822 -43.165756 -7.866342 -4.637118 -3.110697 -21.031797 -2.176273 0.252341 -0.285944 0.856838 -0.277880 0.590495 0.064064 2.777769 2.966269 -8.525648 37.869495 9.267689 -4.563337 -2.013566 1.638327 -0.114193 -0.302557 0.207712 0.050126 0.047238 -0.262352 -0.359875
+24.155758 159.387039 4.988288 -1.137395 -22.644058 -7.118357 -1.082106 -6.991593 -4.388474 -11.620667 2.315094 38.246460 -0.532350 0.017920 -0.240523 0.717990 0.433369 0.850833 -2.455350 6.906177 -38.022877 7.700905 -6.476032 66.191360 -0.531317 0.145299 0.032092 0.125703 -0.401843 0.325653 10.066670 -5.855882 20.784899 6.810965 -4.592896 9.141994 5.112583 -3.339120 5.909271 -0.483722 8.501899 15.326027 -14.102504 11.753889 -20.816017 -19.446186 -8.925656 -4.786551 -40.987446 -6.825021 -4.739176 -1.446009 -21.974779 -2.326929 0.237352 -0.275945 0.833284 -0.255058 0.561620 0.073958 0.253488 0.020324 -8.014013 36.687878 7.660507 -4.946275 -3.033747 1.922114 -0.093912 -0.294967 0.197615 0.040467 0.042407 -0.254279 -0.347579
+24.532532 159.492935 5.917622 -0.992732 -21.498859 -8.308155 -1.786819 -7.143144 -2.590635 -11.733212 2.163009 38.019768 -0.519135 0.048771 -0.215020 0.658370 0.361778 0.801031 -0.939768 6.676599 -36.849350 8.720360 -6.980497 63.667435 -0.492477 0.118114 0.043373 0.093474 -0.357561 0.316849 10.578384 -6.652063 20.656233 6.704151 -4.918283 9.545127 4.670345 -3.512694 6.248835 -0.448315 8.141277 13.875668 -14.265206 11.796906 -19.359398 -18.058964 -6.696718 -4.494890 -38.188206 -5.580476 -4.696716 -0.132041 -22.873039 -2.398786 0.206586 -0.267084 0.803434 -0.221894 0.511592 0.071381 -1.599140 -2.580541 -7.574400 34.919418 6.328996 -5.193836 -3.674332 2.580867 -0.105720 -0.292031 0.186116 0.016203 0.036365 -0.228462 -0.342831
+24.927576 159.545868 6.890191 -0.752424 -21.160147 -8.835504 -2.347541 -7.187489 -1.492656 -12.235509 2.264957 37.955757 -0.503667 0.091914 -0.188338 0.594650 0.287194 0.732210 0.554019 6.769032 -36.269821 9.701848 -7.221381 60.671131 -0.444765 0.072507 0.053694 0.061815 -0.293378 0.316138 11.295139 -7.161820 19.812965 6.449951 -4.914819 9.812726 4.141172 -3.409309 6.670527 -0.860671 8.030176 12.236598 -13.923474 11.581095 -17.174906 -16.058844 -4.218153 -4.399998 -36.286671 -4.918536 -4.433996 1.328168 -22.950310 -2.469236 0.162052 -0.240848 0.756723 -0.174511 0.445003 0.070721 -2.953982 -5.473418 -7.301291 32.532204 5.066698 -5.341957 -4.687658 3.692283 -0.162840 -0.294537 0.161614 -0.002857 0.025150 -0.192444 -0.327539
+25.360332 159.598389 7.853303 -0.353159 -20.863052 -9.418110 -3.112488 -7.195996 -0.515826 -13.038367 2.441380 37.689999 -0.484368 0.137768 -0.162546 0.551024 0.227875 0.671411 1.954434 6.754713 -35.222424 10.491559 -7.133895 56.510468 -0.412410 0.024120 0.058850 0.034093 -0.231056 0.333744 12.196878 -7.741111 18.814215 5.980557 -4.902232 10.083558 3.217443 -3.337538 7.153722 -1.428625 8.099026 10.856631 -13.217525 11.193367 -15.086435 -13.838768 -1.959012 -4.134923 -34.329456 -4.112505 -4.201969 3.111566 -23.294819 -2.650537 0.122979 -0.197190 0.715563 -0.132278 0.390529 0.080014 -4.444632 -7.952677 -6.987654 30.151312 4.023106 -5.303527 -5.204040 4.299339 -0.168203 -0.299081 0.128436 -0.007568 0.007292 -0.162349 -0.306927
+25.743879 159.766647 8.795291 0.199103 -20.652004 -10.102246 -3.920231 -7.163254 0.413223 -13.601293 2.549612 37.388134 -0.479359 0.173017 -0.138925 0.506357 0.178985 0.635593 3.299662 6.747756 -33.865356 10.635223 -6.604719 52.185276 -0.377644 -0.004087 0.068466 0.020086 -0.180425 0.324222 12.686689 -8.104976 17.675224 5.507959 -4.951399 10.508345 2.472768 -3.361330 7.983298 -1.240639 8.130158 10.004673 -13.038573 11.434473 -13.516266 -12.176252 -0.193220 -4.035262 -31.750566 -3.487419 -3.874991 4.649142 -23.136652 -2.723243 0.083046 -0.198047 0.680857 -0.091826 0.344003 0.080170 -5.660131 -9.944618 -6.737962 27.548159 3.247669 -5.119371 -5.767383 4.830956 -0.187820 -0.303476 0.116337 -0.032524 0.015164 -0.142871 -0.300761
+26.125280 160.239395 9.664731 0.776359 -20.831135 -11.147813 -4.575734 -6.881484 1.836203 -14.331759 2.726639 36.564987 -0.466982 0.169822 -0.129164 0.507544 0.193566 0.644823 4.656156 6.844425 -31.854317 10.507524 -5.794252 47.216835 -0.376880 -0.006475 0.070464 0.026580 -0.176622 0.324213 12.725271 -8.135523 16.651106 5.237010 -4.970528 11.373977 2.077701 -3.349981 9.513337 -1.168206 7.798651 9.570769 -13.808531 11.459855 -13.832242 -11.750551 0.569963 -4.130961 -28.771826 -3.039447 -3.619078 6.532375 -22.596296 -2.856187 0.070913 -0.202767 0.657517 -0.080359 0.345857 0.081775 -5.820331 -10.849893 -6.253922 23.705336 2.202748 -4.659867 -6.019753 5.628711 -0.206974 -0.299128 0.111720 -0.025288 0.022816 -0.151305 -0.293108
+26.510223 160.578262 10.631166 1.509543 -20.546747 -11.941781 -5.426848 -6.834595 2.596623 -15.080201 2.882154 36.342155 -0.439381 0.155297 -0.110472 0.509255 0.223222 0.627560 5.388550 6.478948 -30.098579 10.345504 -5.109653 42.165100 -0.369353 -0.014280 0.083978 0.039218 -0.152108 0.316187 13.148519 -8.472137 15.162544 4.605397 -5.061192 11.928950 1.169580 -3.510801 10.782343 -1.216235 7.744538 9.140695 -13.484951 11.285516 -13.437781 -10.701100 1.506507 -3.970622 -25.873207 -2.326818 -3.344156 8.325457 -22.733202 -3.012520 0.062421 -0.194426 0.615338 -0.062408 0.336520 0.100752 -5.866334 -11.664648 -5.973337 20.448063 1.453238 -4.190457 -6.813042 6.217705 -0.259349 -0.294202 0.098407 -0.013473 0.037498 -0.163875 -0.265679
+26.771172 160.777542 11.501239 2.507116 -20.461100 -12.670695 -6.273822 -6.805063 2.954646 -15.928895 3.128758 36.399998 -0.441079 0.147544 -0.116088 0.541775 0.265972 0.640284 6.203708 6.307174 -28.441244 9.863848 -4.286054 37.236328 -0.377128 -0.039560 0.084529 0.066705 -0.161141 0.329236 13.001389 -8.391287 13.406409 3.984993 -5.040024 12.439559 0.595321 -3.548923 12.278625 -1.044972 7.466175 9.051798 -13.864154 11.280949 -13.441063 -9.812380 2.114730 -3.989099 -22.634626 -2.013847 -2.904276 9.932492 -21.954315 -3.042250 0.063089 -0.161804 0.598456 -0.052110 0.341347 0.116681 -5.675417 -12.203488 -5.743667 17.233034 0.692959 -3.680873 -7.530044 6.283172 -0.283310 -0.306511 0.061624 0.001928 0.021749 -0.185621 -0.262076
+26.972334 160.862076 12.383259 3.415229 -20.432686 -13.422240 -6.531923 -6.755730 3.241849 -17.213652 3.600445 36.568054 -0.435094 0.140483 -0.127908 0.578140 0.304986 0.676491 7.103052 6.117584 -26.149174 9.459355 -3.466158 31.442125 -0.394230 -0.055242 0.070113 0.084411 -0.186495 0.356628 12.805659 -8.272581 11.670363 3.390185 -5.033550 12.947404 0.031338 -3.579120 13.775165 -0.679220 7.280112 9.481005 -14.451628 11.549043 -13.697821 -8.897223 2.924107 -3.860555 -19.323626 -1.382806 -2.470083 10.623823 -22.644186 -3.106488 0.062249 -0.127346 0.587278 -0.049843 0.361036 0.116726 -5.800202 -12.774473 -5.730629 14.982851 0.286638 -3.362186 -8.968638 6.913739 -0.391247 -0.306559 0.030014 0.030572 -0.008319 -0.206609 -0.264299
+27.158152 160.817322 13.273156 4.178040 -20.401508 -13.989384 -6.728358 -6.666316 3.472641 -18.435589 4.057239 36.627659 -0.448988 0.137338 -0.134323 0.594408 0.332478 0.676378 8.150285 5.966251 -24.118416 8.591938 -2.674802 26.335051 -0.393951 -0.066596 0.071292 0.109303 -0.185483 0.349733 13.017832 -8.322638 10.027901 2.739346 -5.033140 13.218043 -0.787431 -3.596462 14.859611 -0.958070 7.543903 9.780329 -14.447697 11.533258 -13.625312 -7.711068 3.614034 -3.627153 -16.468252 -0.666111 -1.985993 10.841960 -22.122223 -2.931691 0.062805 -0.121886 0.579755 -0.044828 0.356741 0.125079 -5.805629 -13.148984 -5.854373 12.717903 0.189523 -3.025524 -10.356219 6.965841 -0.462074 -0.319137 0.016402 0.027700 -0.001117 -0.213462 -0.262797
+27.321890 160.801422 14.255095 4.946043 -20.508833 -14.940403 -6.958041 -6.559960 4.086045 -19.648905 4.556996 36.886921 -0.450139 0.123199 -0.135574 0.624946 0.364964 0.705129 9.229939 5.678442 -21.447493 7.385245 -1.915828 21.160921 -0.405331 -0.058375 0.070062 0.129015 -0.203491 0.345481 12.976206 -8.243620 8.728724 2.239534 -5.024657 13.625073 -1.424046 -3.578228 15.948986 -0.981530 7.313973 10.527342 -14.422009 11.311280 -13.748481 -6.871079 3.704405 -3.267263 -13.163970 0.135595 -1.440503 10.389285 -20.049818 -2.452715 0.082419 -0.124207 0.584684 -0.056666 0.372598 0.134666 -6.183993 -13.081244 -5.309736 10.162413 -0.671082 -2.564939 -10.699128 7.353082 -0.487681 -0.316043 0.008306 0.032860 0.002225 -0.239125 -0.264070
+27.428707 160.531082 15.294714 5.703775 -20.256701 -15.519925 -7.196785 -6.545850 4.257950 -20.927525 5.093308 37.295616 -0.500497 0.140539 -0.153777 0.629641 0.370836 0.719907 10.193837 5.346374 -19.318495 5.769405 -1.305561 16.639442 -0.409684 -0.056625 0.063502 0.150821 -0.207580 0.335314 12.797185 -7.907486 6.964044 1.761632 -4.947074 13.856715 -1.827735 -3.432480 17.138826 -0.531857 6.803260 11.213492 -14.633528 11.101587 -14.468023 -6.005608 3.623890 -3.380766 -9.705785 -0.122615 -0.731042 8.637973 -16.405525 -1.742671 0.071445 -0.164527 0.611322 -0.056107 0.376654 0.122694 -6.471622 -13.350546 -4.653766 7.661216 -2.127180 -2.048133 -10.403763 7.991581 -0.476066 -0.341601 0.028269 0.006326 0.028966 -0.228808 -0.284350
+27.493876 159.986969 16.225090 6.505923 -19.816099 -15.792547 -7.225764 -6.594086 4.017480 -22.743587 5.930781 38.025814 -0.524168 0.152893 -0.170459 0.622984 0.364369 0.725636 10.931604 5.140923 -18.166302 4.152296 -0.897252 13.644516 -0.412881 -0.051382 0.050218 0.154105 -0.213325 0.335602 12.312098 -7.396590 5.260131 1.402020 -4.795534 13.713645 -1.886873 -3.237499 17.828917 -0.183519 6.420335 12.238024 -14.572721 10.980402 -14.632392 -4.635122 3.152243 -3.321966 -7.274454 -0.893738 -0.275724 7.121032 -12.048379 -1.200795 0.059367 -0.186750 0.625442 -0.057743 0.382362 0.104220 -7.011807 -13.445061 -3.798611 5.645732 -3.947573 -1.640895 -10.607961 8.770006 -0.469666 -0.349905 0.047000 -0.002222 0.037439 -0.211954 -0.295601
+27.532330 159.363861 17.213467 7.416900 -19.494242 -15.515124 -7.424826 -6.558841 3.373274 -24.341486 6.689623 38.389465 -0.518145 0.139356 -0.193565 0.633673 0.382409 0.753107 11.013094 4.972200 -17.876244 3.351829 -0.731983 11.951494 -0.425001 -0.057061 0.041721 0.149341 -0.245427 0.360881 11.158368 -6.683503 2.925661 1.058700 -4.698024 13.332677 -1.426903 -3.248408 18.659351 1.121216 5.317670 13.745837 -15.512632 11.424509 -14.613899 -3.754623 2.911975 -2.823275 -4.038575 -0.525182 0.325413 4.316759 -9.738640 -0.771512 0.044617 -0.172640 0.617361 -0.051132 0.405158 0.085168 -7.524969 -13.032667 -3.001089 3.638146 -5.289234 -1.164997 -10.563555 8.773877 -0.409337 -0.351947 0.042364 0.028888 0.005034 -0.213377 -0.305255
+27.695181 158.627518 18.155806 7.794327 -19.313000 -15.174962 -7.297858 -6.537753 2.950397 -25.697102 7.403965 38.881237 -0.492120 0.129246 -0.203287 0.633125 0.386721 0.770137 11.229336 5.004048 -17.991112 2.874230 -0.663293 11.619857 -0.424290 -0.073812 0.033037 0.137936 -0.267916 0.386499 11.414920 -6.510054 1.247990 0.610726 -4.569388 12.911345 -1.834156 -3.198718 18.979137 1.936558 4.535670 14.316800 -16.555805 11.890673 -14.008277 -3.470664 2.829899 -2.519805 -0.606102 -0.176974 0.854123 2.670272 -8.343901 -0.529685 0.027446 -0.140962 0.587086 -0.036035 0.413880 0.069573 -8.204558 -12.842981 -2.446150 1.981864 -6.081917 -0.724465 -10.856956 9.108917 -0.407645 -0.340807 0.019659 0.062113 -0.039142 -0.218698 -0.305900
+27.910583 157.872910 18.796307 7.579402 -19.323778 -15.490830 -6.361194 -6.463493 3.213246 -27.150126 8.325544 39.662460 -0.443766 0.083952 -0.203008 0.640009 0.397184 0.786582 11.456369 5.230164 -18.043110 3.342711 -0.729393 12.733683 -0.435465 -0.061484 0.028717 0.117925 -0.311334 0.396568 12.139112 -6.629135 1.241002 0.523028 -4.460130 12.709960 -2.277727 -3.122156 18.574244 2.059748 4.103112 14.764845 -17.487783 12.194468 -13.765767 -2.983247 2.301095 -1.975176 1.602722 0.192268 1.049478 1.480643 -6.219151 -0.375063 0.059949 -0.111983 0.576696 -0.056698 0.442031 0.069010 -10.012108 -12.408910 -1.667515 1.691757 -6.802887 -0.690436 -11.437198 9.514336 -0.399485 -0.303349 0.006077 0.098906 -0.081915 -0.244688 -0.298526
+28.256033 157.243652 19.202314 6.619047 -19.515514 -16.170013 -5.049762 -6.438457 3.994563 -27.722490 8.970179 40.695061 -0.414075 0.060881 -0.196965 0.645113 0.382013 0.812867 12.207331 5.730344 -17.998344 3.794617 -0.809540 14.557367 -0.448982 -0.036615 0.027127 0.086324 -0.347967 0.407241 13.207967 -6.881624 2.611502 1.062378 -4.369789 12.824994 -2.233368 -2.979116 17.863140 1.805662 3.666406 14.254072 -18.466263 12.003782 -14.364811 -3.470206 1.145984 -1.504568 3.472540 0.628361 1.088927 1.137852 -3.970195 -0.355941 0.093388 -0.105908 0.595226 -0.086336 0.467340 0.064301 -11.256709 -11.627702 -0.682971 0.497248 -8.147976 -0.546913 -12.174492 9.683573 -0.324828 -0.273249 0.012949 0.120209 -0.108675 -0.260369 -0.302822
+28.469486 156.712158 19.476837 5.936457 -19.291494 -16.510584 -4.314813 -6.596530 4.166833 -27.716173 9.325768 41.968533 -0.394559 0.036430 -0.196829 0.638981 0.376217 0.808760 12.360656 6.107997 -18.496819 4.488555 -0.965436 16.414574 -0.452255 -0.026597 0.027710 0.070869 -0.368298 0.406355 13.689814 -7.071288 3.664774 1.392390 -4.324204 12.869937 -2.131558 -2.953768 17.327047 1.898479 3.659154 13.519573 -18.857964 12.177397 -14.835176 -3.913601 0.263147 -0.987425 5.348692 1.344064 1.236656 0.650495 -2.797549 -0.337061 0.115479 -0.094630 0.600837 -0.102653 0.478225 0.063150 -11.445036 -10.924508 -0.109233 -0.463606 -9.095818 -0.408058 -12.674798 9.739704 -0.280264 -0.255049 0.013882 0.129564 -0.127421 -0.266965 -0.301590
+28.507732 156.328735 19.608248 5.877979 -19.275055 -16.642439 -4.231072 -6.563033 3.977530 -27.651634 9.639736 42.940331 -0.356939 0.009156 -0.193326 0.623640 0.366510 0.792632 11.944232 6.402825 -19.390488 5.223431 -1.148553 18.239754 -0.453429 -0.008864 0.037452 0.041037 -0.377324 0.410700 13.449501 -6.987158 4.385611 1.450511 -4.202438 12.782251 -2.048116 -2.894012 16.811174 2.206767 3.451781 13.570646 -18.901318 12.359043 -14.885515 -4.097636 -0.487771 -0.104574 6.466041 2.751614 1.433196 0.520889 -2.941653 -0.287135 0.128721 -0.085205 0.596147 -0.113573 0.490175 0.063327 -11.562263 -9.780145 0.505087 -0.402581 -9.572149 -0.456800 -12.212416 9.738600 -0.208238 -0.232805 0.028218 0.151654 -0.142755 -0.265534 -0.288885
+28.495174 156.061432 19.592438 5.501058 -19.350945 -16.332731 -3.837939 -6.523833 3.333602 -27.364178 9.856051 43.908699 -0.339580 -0.002777 -0.172045 0.606557 0.354069 0.763989 11.635836 6.679457 -20.195469 6.269488 -1.349541 19.030222 -0.451436 0.013829 0.061649 0.020584 -0.352534 0.395421 13.789616 -6.851826 5.068429 1.554950 -3.860307 12.644027 -2.129804 -2.590947 16.209314 1.986827 3.537918 13.261209 -18.228060 12.075634 -15.078617 -3.935500 -1.102296 0.624516 6.667927 3.518052 1.607352 0.009885 -3.920501 -0.230239 0.140701 -0.109313 0.604410 -0.120620 0.487589 0.079452 -11.419358 -8.933211 1.035986 -0.023178 -10.230865 -0.564252 -11.882740 10.352825 -0.206273 -0.225986 0.058319 0.145742 -0.114051 -0.260981 -0.272093
+28.516125 156.039536 19.465685 5.674904 -19.822447 -16.197651 -4.145495 -6.207398 2.875183 -27.154366 9.923443 44.033684 -0.346207 -0.009245 -0.169459 0.605458 0.361128 0.730350 11.433462 6.782385 -20.254290 6.450199 -1.295807 18.598076 -0.457899 0.031789 0.079264 0.020780 -0.336233 0.386858 13.316810 -6.445817 5.878270 1.711433 -3.542288 12.712184 -1.883802 -2.277228 15.895347 1.282376 3.780632 12.934625 -17.386822 11.335402 -16.010757 -3.421887 -1.236075 1.136385 5.349965 4.078175 1.609992 -0.275495 -5.253672 -0.200125 0.157189 -0.128348 0.626756 -0.135326 0.493070 0.098471 -11.274018 -8.355663 1.170930 0.794309 -9.959766 -0.767251 -11.134212 10.553237 -0.177398 -0.235596 0.088233 0.139320 -0.082620 -0.251042 -0.257743
+28.419094 156.204727 19.251654 5.892371 -19.963974 -15.925244 -4.408271 -5.949177 2.377213 -27.043991 9.973926 43.967609 -0.374413 0.006644 -0.166641 0.606943 0.355931 0.732649 11.376003 6.714146 -19.852692 6.347617 -1.127597 17.053879 -0.450238 0.036726 0.080054 0.035612 -0.323032 0.366030 12.463628 -5.909529 6.296504 1.896662 -3.284564 12.838424 -1.374429 -2.048463 15.925504 0.894400 4.254560 12.223474 -16.760063 11.133621 -16.480106 -3.083818 -0.701103 1.128502 3.556656 3.962779 1.557954 -0.022438 -7.912034 -0.173670 0.155078 -0.149009 0.639582 -0.137145 0.475649 0.095825 -10.680950 -8.496921 0.640541 1.857337 -8.790471 -0.998634 -11.055090 10.886378 -0.275493 -0.249577 0.095522 0.111265 -0.056308 -0.245438 -0.269083
+28.313145 156.535706 18.844357 6.165240 -20.005770 -15.635146 -4.529255 -5.598358 1.993390 -27.011898 9.929109 43.251141 -0.386259 0.027305 -0.175337 0.592773 0.337767 0.726744 11.544346 6.617626 -19.253981 5.727003 -0.878350 15.151564 -0.439691 0.025442 0.068230 0.032976 -0.316646 0.370999 10.791121 -5.186068 6.735569 2.329285 -3.194785 13.007287 -0.173148 -1.983963 16.022852 0.677495 4.371609 11.771368 -16.974062 11.088167 -16.466160 -2.745077 0.247081 1.107432 0.963121 4.017067 1.385157 -0.171500 -12.009102 -0.173802 0.132109 -0.144011 0.630670 -0.126670 0.459860 0.076396 -10.462401 -8.816373 0.005802 3.416561 -7.173996 -1.271380 -11.018720 12.153153 -0.479636 -0.255963 0.094012 0.107897 -0.061731 -0.223382 -0.275463
+28.334148 156.812119 18.526560 6.289305 -19.746407 -14.884016 -4.902536 -5.495458 1.099663 -26.763027 9.758233 42.975407 -0.415889 0.059626 -0.185210 0.583701 0.324088 0.717177 11.583754 6.413103 -19.225742 5.001235 -0.703977 13.211629 -0.418526 -0.003871 0.055076 0.049219 -0.298876 0.367174 10.197975 -5.057222 6.696467 2.248960 -3.233037 12.986701 0.029809 -2.038419 16.098520 0.279523 4.780741 10.948934 -16.759459 11.051241 -15.972192 -2.211918 2.186041 0.787180 -2.457603 4.425470 0.989875 0.640502 -19.069113 -0.399566 0.102359 -0.130607 0.614572 -0.105141 0.424362 0.059924 -10.418701 -9.652276 -1.245412 5.683992 -4.246824 -1.551325 -10.165564 12.994842 -0.655952 -0.275387 0.073272 0.089560 -0.064554 -0.202645 -0.286362
+28.281919 157.144897 18.168497 6.217362 -19.357489 -14.474430 -4.849624 -5.331503 0.930427 -26.812569 9.613960 42.313641 -0.403308 0.078879 -0.146240 0.557345 0.301291 0.677366 12.044024 6.111474 -18.542292 3.879405 -0.524048 11.047929 -0.394174 -0.001332 0.083649 0.044970 -0.240997 0.340116 9.875425 -5.108322 7.570101 2.444498 -3.287029 12.839657 0.196800 -2.030328 15.280421 -0.938392 5.296642 10.237026 -16.154505 10.578448 -14.960071 -1.530023 3.556155 0.491242 -7.524105 4.169093 0.007737 1.661104 -24.897514 -0.924328 0.090254 -0.158742 0.591527 -0.085258 0.390342 0.085933 -10.930408 -10.264109 -2.102443 8.866497 -2.155239 -2.066560 -9.462255 14.177317 -0.841838 -0.276961 0.084889 0.064382 -0.016323 -0.197072 -0.263368
+28.145256 157.478989 17.888103 6.438879 -18.983433 -13.634878 -4.996562 -5.069914 0.448505 -26.976662 9.485672 41.312210 -0.422910 0.093854 -0.131487 0.555352 0.289601 0.655290 12.217135 5.817385 -18.419966 2.987233 -0.421200 9.006659 -0.382674 0.009685 0.098585 0.053556 -0.210113 0.311102 9.557613 -4.999937 7.469336 2.257371 -3.230847 12.454625 0.070070 -1.940069 14.706028 -2.111923 5.587919 10.418703 -14.805476 9.686121 -14.442270 -0.763843 4.530457 0.527368 -12.203588 4.299384 -0.972285 1.466293 -30.320681 -1.396747 0.101831 -0.185206 0.606704 -0.091391 0.366431 0.102442 -10.523526 -10.248473 -2.707335 11.884771 -0.730212 -2.555654 -8.184539 15.410304 -0.957671 -0.289411 0.099144 0.033561 0.024572 -0.191287 -0.259780
+27.987555 157.757355 17.597153 6.590900 -18.473894 -13.192081 -4.916700 -4.718124 0.624047 -27.230591 9.335514 40.014912 -0.463780 0.120630 -0.126881 0.559995 0.275832 0.629370 12.542315 5.505054 -17.914700 1.989046 -0.353302 7.205283 -0.378806 0.028358 0.094119 0.070591 -0.179430 0.281900 9.933933 -5.209037 7.816594 1.871777 -3.203335 12.190755 -0.783658 -1.798967 14.023971 -4.328123 6.556165 10.329533 -12.491396 8.176528 -14.687619 0.190274 5.511032 0.480901 -17.630054 4.033924 -2.144210 1.617397 -34.709877 -2.087683 0.127531 -0.214165 0.647752 -0.118627 0.345093 0.113497 -9.684559 -10.317213 -3.567543 15.014855 0.938921 -3.019521 -6.052627 15.941678 -0.893611 -0.301818 0.122427 -0.007204 0.074227 -0.173948 -0.257328
+27.929296 157.955902 17.287289 6.486798 -17.915457 -12.626208 -4.511978 -4.278030 0.804780 -28.024992 9.420947 38.596401 -0.489453 0.129820 -0.129154 0.568080 0.276546 0.608589 12.735289 5.294944 -17.750332 1.437603 -0.335111 5.804255 -0.367318 0.039235 0.085673 0.091633 -0.162829 0.251417 11.098965 -5.663876 8.365790 1.353060 -3.084488 11.893389 -2.159447 -1.653312 13.226781 -6.287505 7.422965 9.465563 -10.485162 6.895879 -15.016730 0.474856 6.809224 0.156094 -21.475296 3.574103 -2.908965 -1.135661 -38.719398 -1.769933 0.151326 -0.214316 0.661112 -0.142134 0.318277 0.116235 -8.335995 -10.673432 -4.835954 18.136326 2.821139 -3.338707 -3.690794 15.674169 -0.742449 -0.306081 0.125532 -0.031618 0.102438 -0.162563 -0.253174
+27.820786 158.063278 16.915325 6.496053 -16.799917 -11.761994 -4.164052 -3.978837 0.356744 -28.888428 9.588257 37.660709 -0.507119 0.134476 -0.129004 0.585881 0.290950 0.600550 12.797791 5.124864 -18.132662 0.542473 -0.328995 4.499585 -0.364432 0.034018 0.084952 0.113231 -0.155069 0.239447 11.851890 -5.916537 8.227574 0.933982 -2.980747 11.454706 -3.032334 -1.553424 12.648370 -7.550700 7.497711 8.998584 -9.774533 5.935246 -15.131180 -0.501927 8.176579 -0.420931 -24.914446 3.240446 -3.683295 -4.279117 -43.584110 -1.103521 0.167474 -0.206179 0.665795 -0.151180 0.304746 0.128596 -6.558388 -10.994789 -6.181376 21.090391 4.318823 -3.659433 -1.781320 14.683353 -0.619247 -0.315897 0.113235 -0.041881 0.115313 -0.166165 -0.249075
+27.651077 157.989929 16.520098 6.606724 -15.515498 -10.761499 -3.912666 -3.663511 -0.209434 -29.450039 9.703647 36.938599 -0.506894 0.146098 -0.118172 0.594446 0.297968 0.570985 12.580979 5.085282 -19.097672 -0.048135 -0.347027 3.694326 -0.359252 0.020107 0.094678 0.123812 -0.125763 0.240416 12.546407 -6.086960 7.963864 0.383093 -2.807762 10.893657 -4.044005 -1.429007 11.900754 -8.525380 7.479922 8.555558 -8.612842 4.936915 -14.725146 -1.606824 9.750141 -0.882209 -28.435911 3.098134 -4.524391 -8.374520 -49.044765 0.252092 0.171887 -0.186432 0.657627 -0.146265 0.287062 0.154063 -4.515014 -11.329265 -7.604988 24.580059 5.540813 -4.107621 -0.214454 13.408257 -0.554438 -0.327152 0.098074 -0.043467 0.125894 -0.165557 -0.230575
+27.509054 157.929886 16.061840 6.846951 -13.412206 -9.996031 -4.205574 -3.688550 -0.661251 -29.383148 9.554474 36.704128 -0.507193 0.167680 -0.100546 0.564406 0.262201 0.536705 11.579796 4.791521 -20.036314 -0.129270 -0.401878 2.908229 -0.329231 0.016390 0.100761 0.116940 -0.087856 0.215536 12.808699 -6.272559 7.860372 0.026687 -2.846469 10.349310 -4.609389 -1.489342 11.069439 -9.777775 7.490836 8.138124 -7.942896 4.006900 -13.645101 -3.247888 10.604901 -1.366510 -31.971022 2.656558 -5.334971 -14.056494 -52.754684 2.650846 0.162624 -0.198499 0.638849 -0.135547 0.247199 0.154897 -2.040987 -11.456670 -8.653467 27.142281 6.240992 -4.321498 2.422256 12.260751 -0.365779 -0.323963 0.101538 -0.066962 0.149150 -0.147834 -0.219480
+27.358770 157.782593 15.496133 6.788787 -11.134368 -9.614805 -4.261551 -3.814380 -0.808450 -29.310335 9.510910 36.974522 -0.521859 0.191249 -0.089561 0.559006 0.239795 0.532668 10.937528 4.572268 -20.635897 -0.337695 -0.445414 2.217181 -0.320929 0.033838 0.105267 0.112757 -0.065382 0.201044 12.753426 -6.405128 8.169694 0.008934 -2.971954 10.075360 -4.622120 -1.569485 10.458385 -11.021444 7.419281 7.895995 -7.173454 2.898945 -13.991714 -5.389252 10.770049 -1.971978 -35.751251 2.154402 -6.323444 -20.101421 -55.027874 5.328976 0.164766 -0.227667 0.653576 -0.144029 0.232152 0.155477 0.690645 -10.992711 -9.553598 29.057413 6.800388 -4.482231 4.684982 10.646732 -0.206501 -0.327411 0.125222 -0.086834 0.182883 -0.135296 -0.218393
+27.256611 157.571075 14.938485 6.907387 -8.808911 -9.017999 -4.747157 -3.956686 -1.112989 -28.830578 9.288108 37.203205 -0.538541 0.209651 -0.081172 0.552664 0.231140 0.507164 9.714401 4.300671 -21.690802 -0.050915 -0.481154 1.758110 -0.307726 0.027059 0.108730 0.124085 -0.035511 0.183618 12.783366 -6.612916 7.836720 -0.255752 -3.141009 9.813004 -4.893421 -1.766727 10.150003 -11.858894 7.526943 7.324223 -6.254012 2.068009 -13.801638 -8.428396 10.003999 -2.483597 -38.703457 2.293346 -7.564543 -24.192644 -55.855354 6.923777 0.164581 -0.233411 0.651674 -0.140658 0.206786 0.166690 4.469385 -9.501974 -10.452719 30.442530 7.312328 -4.552038 6.268474 8.732052 -0.183151 -0.337578 0.123945 -0.109508 0.208811 -0.125698 -0.210384
+27.127756 157.316086 14.274278 6.775599 -6.507912 -8.862823 -5.171206 -4.089110 -0.955636 -27.720991 8.876371 37.626236 -0.534073 0.188696 -0.087676 0.576613 0.266977 0.499557 8.937410 4.127944 -22.383862 -0.121529 -0.483163 1.646141 -0.317544 0.032691 0.104554 0.141972 -0.041325 0.181035 13.116732 -6.870962 8.310552 -0.555759 -3.112181 9.578821 -5.486259 -1.838255 9.563967 -12.046547 7.589824 7.081832 -4.907162 1.466473 -14.496325 -11.639562 8.751147 -3.462270 -40.203728 1.616122 -8.190225 -28.786757 -54.461182 8.540463 0.188206 -0.211507 0.652425 -0.158670 0.213600 0.177908 7.835373 -8.014629 -11.214699 32.668186 7.632522 -4.768003 7.094429 6.933567 -0.238031 -0.336093 0.115624 -0.096245 0.208993 -0.134662 -0.197264
+26.811459 157.055984 13.589232 6.633000 -3.379308 -8.963644 -5.359104 -4.458471 -0.615360 -26.219837 8.311506 38.355980 -0.506872 0.168480 -0.082647 0.590854 0.280681 0.504045 7.685139 3.786134 -22.846666 0.119188 -0.486873 1.514526 -0.322953 0.044360 0.106106 0.138804 -0.051946 0.183437 12.830571 -6.839167 9.189353 -0.610072 -2.988507 9.075729 -5.569285 -1.865801 8.469414 -11.673670 6.729028 7.838302 -3.860596 0.691865 -14.111486 -15.080119 6.766972 -4.574650 -40.491974 0.356427 -8.174877 -32.617580 -51.536537 9.515482 0.209653 -0.193560 0.646073 -0.172186 0.223482 0.187531 11.314700 -6.320184 -11.282820 35.187767 6.961077 -5.255075 6.964103 5.145133 -0.332704 -0.320729 0.107729 -0.076074 0.196459 -0.151824 -0.186032
+26.506559 156.778824 12.884620 6.195649 0.476792 -9.144032 -5.695021 -5.174690 -0.457100 -23.786228 7.350578 39.803192 -0.489150 0.136968 -0.103485 0.598728 0.284289 0.520162 6.428799 3.452326 -23.384386 -0.012477 -0.509746 1.821608 -0.340038 0.060420 0.093679 0.120103 -0.100616 0.200337 12.191336 -6.764834 10.340174 -0.289334 -3.037114 8.305818 -4.977554 -1.994376 6.976995 -10.789354 5.058816 9.340853 -3.860896 0.062813 -14.103300 -18.551046 4.631237 -5.555517 -41.698776 -1.277525 -8.032069 -33.229149 -48.064198 8.790215 0.235023 -0.176267 0.662087 -0.198794 0.255394 0.172102 13.340326 -4.712874 -10.690874 38.376675 6.124826 -5.813799 6.899889 3.997362 -0.349236 -0.303472 0.111973 -0.044822 0.156026 -0.157777 -0.192411
+26.112862 156.503250 12.168968 5.889039 4.027993 -9.381686 -6.177385 -5.733287 -0.360138 -21.145191 6.346475 41.281322 -0.480794 0.095810 -0.136325 0.635769 0.326584 0.544057 4.886581 3.243263 -24.132982 0.126773 -0.492946 3.124017 -0.375925 0.076931 0.074487 0.122696 -0.157869 0.226612 11.215116 -6.394166 11.346626 0.031668 -2.962643 7.721260 -4.228791 -2.005972 5.892842 -9.931376 3.643891 10.932244 -3.249624 -0.614939 -15.026593 -21.152819 3.001294 -6.619433 -43.263359 -3.333680 -7.552732 -34.165466 -44.198189 8.164322 0.272759 -0.146938 0.689683 -0.236841 0.305170 0.166074 15.491241 -3.360891 -10.549704 41.642200 5.898207 -6.354410 6.035789 3.544833 -0.377619 -0.293818 0.111690 -0.003321 0.117389 -0.172473 -0.194160
+25.682352 156.340729 11.418087 5.790192 7.748963 -9.290643 -6.843565 -6.347860 -0.874907 -18.338005 5.277672 42.960579 -0.489328 0.076215 -0.158331 0.639729 0.330039 0.571174 2.649520 2.890831 -25.126398 0.867230 -0.512140 4.613028 -0.392325 0.101840 0.069029 0.113425 -0.197171 0.230841 9.274328 -5.609239 11.931591 0.496533 -2.974296 7.063812 -2.776736 -2.062853 4.870038 -8.351538 1.289216 12.945567 -3.259971 -1.269555 -15.253655 -23.412178 1.997335 -7.498384 -45.566925 -5.403112 -6.880269 -35.154152 -40.903614 7.734395 0.283502 -0.174639 0.719710 -0.255564 0.339071 0.146662 16.905842 -1.801016 -10.186190 44.908562 6.075357 -6.669163 5.625559 3.377562 -0.373105 -0.292405 0.140568 0.005154 0.108520 -0.175083 -0.211244
+25.267401 156.330109 10.413910 5.444503 11.091393 -9.337664 -7.292743 -6.890935 -1.679170 -15.633410 4.239280 44.620853 -0.524525 0.069692 -0.180778 0.666439 0.346769 0.626465 0.377726 2.727043 -26.340738 2.068004 -0.556169 6.900183 -0.418630 0.133603 0.057653 0.124755 -0.241335 0.229123 7.783958 -4.982745 12.536944 1.037389 -3.030974 6.807705 -1.400781 -2.109975 4.427903 -7.269387 -0.934046 14.430367 -3.465406 -2.017185 -16.500044 -25.518169 0.690638 -8.085207 -47.981094 -7.350722 -6.314770 -36.430801 -39.605522 7.813423 0.300733 -0.217047 0.768918 -0.284452 0.377752 0.130339 18.112000 0.683629 -9.987900 47.187668 7.177171 -6.534894 5.841741 3.755847 -0.366709 -0.301735 0.171345 -0.001595 0.120323 -0.185919 -0.240601
+24.757339 156.462357 9.398056 5.140917 14.700566 -9.257553 -7.617283 -7.396221 -2.665056 -12.831518 3.093703 45.989662 -0.561137 0.056750 -0.205102 0.685723 0.363207 0.669600 -2.078820 2.491378 -27.523489 3.325748 -0.667084 9.491775 -0.435423 0.166990 0.052831 0.137159 -0.282085 0.215167 6.187521 -4.564235 12.958233 1.452019 -3.341072 6.580101 -0.106627 -2.414554 4.067213 -6.466203 -3.041080 15.888473 -3.680738 -2.808351 -17.588573 -27.122450 -0.889863 -7.959660 -50.138367 -8.858303 -5.839655 -38.189217 -39.620178 8.375214 0.317559 -0.266440 0.812265 -0.311224 0.407679 0.111665 19.045721 4.053458 -9.486546 49.144295 8.513583 -6.285137 6.160067 5.144678 -0.403840 -0.312525 0.207287 -0.012288 0.138114 -0.192091 -0.268036
+24.252823 156.548935 8.511737 4.674037 17.894131 -9.122764 -7.568373 -7.568077 -3.641251 -10.455710 2.214752 46.878716 -0.568833 0.022832 -0.221989 0.727509 0.419270 0.704310 -4.612614 2.401094 -28.861809 5.347660 -0.924410 12.816666 -0.461351 0.185382 0.046128 0.164893 -0.319433 0.213177 5.360588 -4.290269 12.378952 1.442705 -3.491658 6.765563 0.463507 -2.665859 4.571858 -5.536810 -4.904373 16.657133 -3.049927 -3.569868 -18.673468 -27.262775 -2.064705 -7.615417 -52.433380 -10.924396 -5.001574 -41.596893 -41.422283 10.258605 0.345629 -0.269561 0.830347 -0.336001 0.442730 0.115190 18.869480 7.188067 -9.061037 51.782959 10.265279 -6.012962 6.841997 8.344935 -0.568907 -0.315193 0.208405 0.002023 0.138439 -0.219836 -0.272929
+23.750124 156.894760 7.657303 4.352764 20.701208 -9.514061 -7.624806 -7.507493 -3.916563 -8.307099 1.435458 47.252907 -0.589037 -0.003764 -0.241422 0.780072 0.490548 0.729637 -7.280618 2.358363 -29.561993 7.891869 -1.388176 16.730862 -0.491534 0.211425 0.040546 0.206172 -0.341295 0.207593 4.675524 -3.995425 12.212840 1.493172 -3.606462 7.209406 0.835801 -2.859912 5.356023 -5.429156 -6.063474 17.707420 -1.559872 -4.580997 -20.432966 -27.186787 -4.661180 -7.050848 -54.059475 -13.224689 -4.012879 -44.873283 -43.280090 12.223423 0.376182 -0.283724 0.857334 -0.366426 0.477827 0.126877 19.185154 11.218606 -8.611263 52.720711 12.296453 -5.495497 7.627233 11.524870 -0.680140 -0.326706 0.222715 0.012090 0.163704 -0.240877 -0.268886
+23.076286 157.396027 6.736727 3.902190 23.131449 -9.817772 -7.091005 -7.263295 -4.586116 -6.470473 0.922654 47.406464 -0.599875 -0.023277 -0.252923 0.834138 0.569557 0.739246 -9.796522 2.663103 -30.255285 11.229040 -2.094781 20.610754 -0.515379 0.210846 0.036121 0.254810 -0.345627 0.209716 4.079899 -3.611621 11.961162 1.617828 -3.604820 7.787615 1.232804 -2.995565 6.384168 -5.370366 -7.014481 18.022215 -0.329715 -5.486229 -21.524443 -26.786692 -7.744493 -6.469048 -54.614410 -15.926503 -2.720302 -48.847843 -46.338074 15.293496 0.394347 -0.268519 0.855962 -0.377946 0.496745 0.150311 19.520689 15.817826 -8.554372 52.306324 15.267834 -4.242362 8.479193 13.175737 -0.634887 -0.342827 0.207970 0.029750 0.180711 -0.262620 -0.252554
+22.342482 158.155441 5.738756 3.340364 24.986353 -10.399273 -6.553118 -6.700752 -4.828434 -4.284128 0.304712 46.842049 -0.611254 -0.041784 -0.260557 0.896812 0.650461 0.749104 -11.787798 3.423436 -30.931515 14.524968 -3.007082 24.950720 -0.535138 0.217434 0.034414 0.308262 -0.345590 0.203098 4.307357 -3.246231 11.763131 1.693547 -3.355433 8.567758 1.115697 -2.875676 7.686456 -6.087947 -7.601295 18.446281 1.503665 -6.731266 -22.879425 -25.852041 -11.266815 -5.984095 -54.646667 -19.303923 -1.083377 -51.974373 -50.511169 18.938475 0.426271 -0.253215 0.858091 -0.398647 0.509887 0.180783 19.293089 20.227831 -8.606131 51.271729 18.473427 -3.167467 8.610084 15.805938 -0.696701 -0.355118 0.193019 0.043103 0.205915 -0.289462 -0.232204
+21.487509 159.118042 4.886203 2.574727 26.411364 -11.249447 -5.704976 -5.767097 -4.465809 -2.047333 -0.226933 45.554066 -0.629889 -0.041481 -0.267808 0.928224 0.700160 0.729131 -13.002821 4.720261 -31.158447 17.416796 -3.973168 29.132910 -0.546667 0.215335 0.031523 0.347864 -0.326138 0.198373 4.755208 -2.895724 11.626527 1.745035 -3.077947 9.427836 0.749930 -2.676699 9.038092 -6.702932 -8.187261 18.972996 3.247222 -7.902697 -23.919952 -24.892681 -14.792261 -5.269094 -53.935734 -22.475761 0.428190 -56.237373 -56.129036 24.449215 0.439075 -0.247233 0.860718 -0.407486 0.511458 0.205393 18.506235 24.502462 -8.734241 49.908413 21.849981 -2.127067 8.686869 18.662460 -0.728739 -0.373203 0.189986 0.043915 0.237030 -0.290892 -0.210483
+20.714626 160.259537 4.110352 1.084065 27.862707 -12.237287 -4.531384 -4.959218 -3.949564 0.621185 -1.050939 43.435452 -0.648016 -0.027089 -0.265759 0.939690 0.720619 0.711155 -13.544262 6.035306 -31.078773 20.601147 -5.201355 32.541603 -0.543211 0.211734 0.033525 0.373458 -0.297999 0.187902 6.174717 -2.997992 11.238691 1.889531 -2.923465 10.237421 0.114070 -2.531337 10.361115 -7.205350 -8.818517 19.124388 4.377102 -8.996162 -24.557495 -24.104315 -18.352659 -4.705760 -52.976940 -25.857395 2.054389 -57.892948 -61.063164 28.683056 0.436944 -0.255652 0.855481 -0.404871 0.498203 0.220227 16.802036 27.978418 -9.021023 48.240959 24.988777 -1.289507 9.076638 22.529875 -0.701426 -0.388458 0.192115 0.033908 0.271387 -0.285011 -0.195005
+19.973467 161.286697 3.467018 -0.157658 29.672157 -12.791768 -3.645278 -4.357064 -3.632952 3.092369 -1.792673 41.157894 -0.685380 0.008217 -0.269988 0.936455 0.717409 0.690593 -14.261652 6.967924 -31.090961 23.464724 -6.652688 35.937088 -0.528016 0.192493 0.031125 0.397189 -0.264269 0.176891 7.117581 -3.085521 10.249029 1.881544 -2.924058 11.022483 -0.383868 -2.526937 11.900953 -6.970782 -9.615442 18.835859 5.266111 -9.773144 -24.735203 -22.032505 -21.499079 -4.712995 -52.627575 -29.853632 4.281100 -56.841473 -64.996628 30.823324 0.415342 -0.263186 0.850021 -0.388351 0.468042 0.222964 13.979361 30.389048 -9.677240 46.967880 28.108070 -0.523525 8.869577 27.491089 -0.840880 -0.415441 0.188452 0.007703 0.299879 -0.265162 -0.194290
+19.270384 162.365479 2.924788 -0.737231 31.760529 -12.884562 -3.408679 -4.051496 -3.396710 4.978698 -2.371037 38.835121 -0.706923 0.073935 -0.256831 0.914537 0.678078 0.667553 -15.058596 7.311622 -30.568090 25.421272 -8.025341 38.849129 -0.507950 0.165078 0.029166 0.395852 -0.206473 0.188079 7.443910 -3.043360 9.057798 1.799011 -2.997092 11.672008 -0.711227 -2.571478 13.298458 -6.665573 -10.362669 18.288492 6.055379 -10.549313 -24.359921 -19.468855 -24.336796 -4.853502 -52.497917 -34.061764 6.764423 -51.246044 -68.780975 29.489822 0.370312 -0.269720 0.836988 -0.354585 0.431586 0.225656 11.452595 31.989756 -10.172949 45.385487 30.810452 0.092491 8.423731 32.605316 -1.004074 -0.435630 0.186024 -0.016336 0.323025 -0.235989 -0.187823
+18.489204 163.473816 2.426389 -1.132650 33.618259 -12.843373 -3.003345 -3.686340 -2.951400 6.131579 -2.600552 35.830009 -0.709885 0.099541 -0.249105 0.891214 0.668219 0.617282 -15.390014 7.580908 -29.836866 26.334887 -9.080176 41.527023 -0.483952 0.135351 0.037219 0.401409 -0.156557 0.187774 7.727562 -2.955788 7.902610 1.562106 -2.933486 12.376259 -1.237518 -2.519610 14.772305 -6.146260 -11.046305 17.343742 7.078821 -11.191075 -24.219412 -16.798454 -26.725185 -5.159769 -51.688663 -38.204365 8.997954 -40.547810 -72.454163 23.877092 0.336436 -0.258022 0.802829 -0.321951 0.394577 0.233161 9.020132 33.083729 -10.574512 43.823509 33.360817 0.529452 6.874249 38.518837 -1.641460 -0.452358 0.175818 -0.024151 0.337114 -0.211633 -0.166974
+17.818249 164.549911 1.987082 -1.669462 35.966488 -12.863760 -2.559472 -3.487328 -2.332265 7.178030 -2.834816 32.471252 -0.729256 0.151028 -0.219987 0.872741 0.654954 0.570624 -15.867421 7.378201 -28.716722 27.359146 -10.412948 44.096806 -0.458428 0.106448 0.054889 0.420764 -0.077641 0.173900 8.401584 -3.092587 6.181583 1.264567 -2.992383 13.212544 -1.919180 -2.575034 16.747463 -5.791980 -11.739221 16.280205 8.157859 -12.109204 -24.015450 -13.222481 -28.496101 -6.037446 -50.733482 -42.651997 11.294716 -21.121883 -74.588760 10.186108 0.298478 -0.274024 0.774145 -0.282015 0.346651 0.261231 5.780999 33.472885 -11.349483 42.253662 36.111099 1.044659 2.876709 43.645061 -3.439074 -0.480661 0.169581 -0.058964 0.391435 -0.193450 -0.144480
+17.118929 165.492126 1.560435 -2.363856 37.232601 -12.555926 -1.380674 -3.145419 -2.132905 7.019211 -2.561817 29.061306 -0.742413 0.212739 -0.198082 0.839089 0.621893 0.506912 -15.523519 7.535924 -28.395220 27.470814 -11.503848 47.098637 -0.416069 0.047610 0.066194 0.429589 0.000715 0.174507 9.755501 -3.024456 4.374388 0.919355 -2.623699 13.767676 -2.787028 -2.188471 18.505575 -5.478118 -12.435144 14.685334 8.432644 -13.261312 -22.895044 -9.676352 -29.617075 -6.837114 -50.237061 -46.967857 13.555501 4.105612 -73.626404 -8.817780 0.243427 -0.254196 0.719400 -0.225253 0.277913 0.276940 2.239951 33.225170 -11.838243 40.831387 38.575310 1.665223 -2.832540 49.904495 -6.576490 -0.509175 0.137014 -0.081751 0.411589 -0.160528 -0.121352
+16.425905 166.335007 1.199889 -2.609052 38.426685 -12.076783 -0.686929 -2.750493 -1.495627 7.254966 -2.379292 25.025646 -0.774158 0.270261 -0.177352 0.809937 0.595219 0.464178 -15.145264 7.698559 -27.491161 26.864889 -12.157074 49.959770 -0.376674 0.006841 0.076937 0.449703 0.068978 0.154006 10.270957 -2.727148 2.926963 0.814813 -2.322742 14.248929 -3.079625 -1.842541 20.066139 -5.208372 -13.197989 13.085619 8.233158 -14.254351 -22.296799 -6.165112 -30.107103 -7.931626 -49.386536 -51.513702 15.947107 21.838621 -69.800568 -20.796450 0.196388 -0.268825 0.680208 -0.179166 0.215795 0.287396 -1.146971 32.630714 -12.537682 37.888630 41.263901 2.404889 -8.778207 53.905449 -9.855884 -0.538860 0.121953 -0.123116 0.456289 -0.134009 -0.110284
+15.823487 166.939453 0.957338 -2.458194 39.096638 -11.085819 -0.113667 -2.426255 -1.043060 6.853725 -2.088103 21.353891 -0.770172 0.309080 -0.140322 0.811535 0.612144 0.411920 -14.523732 7.664659 -26.699749 25.181278 -12.337781 53.073620 -0.342226 -0.054531 0.096298 0.486188 0.147364 0.144993 10.486082 -2.210652 1.133899 0.656766 -1.770930 14.519561 -3.172300 -1.319613 21.613180 -4.837639 -13.836258 11.312216 8.424127 -15.531708 -21.024355 -2.186809 -29.764450 -9.434537 -49.840656 -55.719635 18.427782 30.441025 -62.633739 -24.320833 0.162637 -0.231475 0.604523 -0.125768 0.150358 0.331688 -4.162244 31.209024 -12.945097 34.833958 43.420773 3.052536 -16.312780 57.293392 -14.431362 -0.562502 0.061849 -0.133599 0.485390 -0.135037 -0.070651
+15.263407 167.397781 0.771993 -1.931368 39.525993 -9.763933 0.107907 -2.125005 -0.672897 6.383749 -1.817671 18.206617 -0.767250 0.329273 -0.107957 0.810795 0.633394 0.368567 -13.959478 7.614527 -25.785774 23.240271 -12.039417 55.526455 -0.309201 -0.111123 0.111688 0.525504 0.204671 0.123270 10.172791 -1.773887 -0.443471 0.409661 -1.348616 14.542229 -3.182944 -0.971675 22.748981 -4.490136 -14.192956 9.860512 7.893536 -16.344986 -19.524393 1.747664 -28.534069 -10.507598 -50.045864 -59.156509 20.711250 36.987701 -57.076359 -26.331371 0.139308 -0.198371 0.531335 -0.080003 0.090823 0.368534 -6.831972 29.629082 -13.198753 32.790993 45.884430 4.096642 -25.357063 58.677620 -19.937016 -0.579806 -0.000013 -0.148199 0.508312 -0.143690 -0.040736
+14.752724 167.685059 0.590487 -1.855489 39.993675 -8.534652 0.581855 -1.898165 -0.609261 6.072489 -1.618398 15.414845 -0.787126 0.387814 -0.098280 0.805649 0.638670 0.320845 -13.009922 7.475474 -24.452150 21.262867 -11.278568 56.305237 -0.269699 -0.196729 0.111687 0.563239 0.272173 0.132773 10.211312 -1.471810 -2.060840 0.113046 -1.017849 14.419915 -3.395011 -0.697476 23.777367 -3.498134 -14.639064 7.884964 7.236074 -16.955624 -17.916395 5.028893 -26.834433 -11.602651 -50.155472 -62.959286 23.695637 40.778461 -52.011105 -26.312860 0.078547 -0.141134 0.453787 -0.013559 0.018010 0.385684 -9.251797 27.824507 -13.586556 31.788395 48.672009 5.606067 -33.552673 58.065155 -24.539715 -0.616679 -0.071504 -0.157200 0.510329 -0.122149 -0.018888
+14.248546 167.855164 0.315558 -1.287819 40.650135 -7.109170 0.558041 -1.741863 -0.675211 5.791753 -1.464033 12.952365 -0.790623 0.451500 -0.069028 0.776776 0.617841 0.259159 -12.303564 7.058856 -22.429678 18.755112 -9.946091 55.874199 -0.230309 -0.259377 0.123348 0.577013 0.361300 0.138715 9.836038 -1.238977 -3.412211 -0.246978 -0.797325 14.255778 -3.648972 -0.426101 24.427528 -2.777560 -14.911052 6.580720 7.138536 -17.656530 -16.478281 8.136375 -25.788128 -12.451897 -50.526089 -66.041878 26.097467 42.857132 -46.487469 -25.181768 0.015304 -0.119410 0.386420 0.051393 -0.049064 0.407519 -11.358751 26.511700 -13.646576 30.249725 50.779602 6.367391 -40.160397 55.919910 -27.509962 -0.642141 -0.108385 -0.173704 0.536329 -0.093548 0.013469
+13.723034 167.887222 0.162565 -0.229136 40.975327 -5.397136 0.326516 -1.540542 -0.694824 5.043427 -1.231175 10.463954 -0.812217 0.517534 -0.055132 0.754188 0.581387 0.209459 -11.642634 6.754961 -19.837704 16.044327 -8.091333 53.924271 -0.196655 -0.308766 0.122851 0.586104 0.429061 0.141518 8.833982 -0.679342 -4.589886 -0.478321 -0.393616 14.082074 -3.582697 0.051444 24.868689 -2.445581 -15.071013 5.926495 7.649890 -18.425760 -15.514771 11.560550 -24.841127 -13.458413 -52.238525 -69.530991 29.758286 43.397720 -39.980606 -22.952154 -0.025506 -0.094189 0.352894 0.090917 -0.110142 0.420627 -12.530213 25.207895 -13.675694 28.082966 52.878036 6.931263 -42.668774 53.344749 -27.421837 -0.665601 -0.138593 -0.200275 0.552777 -0.061097 0.028205
+13.154796 167.765732 -0.017444 0.959566 41.104847 -3.594487 0.155735 -1.279684 -0.811514 4.171115 -0.979924 7.751913 -0.824138 0.572533 -0.040398 0.721922 0.552391 0.146740 -11.233198 6.256358 -17.111258 13.639364 -6.406019 50.908218 -0.154620 -0.365771 0.127401 0.596922 0.499197 0.139764 8.097175 -0.219603 -5.654725 -0.871037 0.053406 13.916703 -3.923025 0.583317 25.213308 -2.116305 -15.147931 4.912374 7.587058 -19.085005 -14.261256 14.231448 -24.117250 -14.527091 -51.549965 -72.897079 31.825752 42.341152 -33.660423 -20.002796 -0.074823 -0.067302 0.297338 0.141296 -0.176819 0.431586 -13.124614 24.301594 -13.621152 25.465263 55.125561 7.022866 -44.859642 50.077713 -26.820478 -0.687026 -0.172790 -0.220541 0.567529 -0.027324 0.050942
+12.652427 167.478043 -0.145238 1.830665 40.887085 -2.090642 0.203341 -0.954765 -0.745023 3.412243 -0.753820 4.873243 -0.814740 0.600247 -0.016794 0.684655 0.520836 0.093087 -10.378187 5.538208 -13.516997 10.813956 -4.532704 46.161552 -0.120794 -0.398017 0.143334 0.589635 0.552605 0.131268 7.501117 0.185551 -6.643847 -1.183736 0.461419 13.700514 -4.161107 1.097803 25.225357 -2.021372 -15.178529 4.577046 7.414250 -19.561419 -13.088565 16.812534 -23.516056 -15.387744 -48.947865 -75.615837 32.031956 40.235561 -27.932566 -17.082621 -0.107736 -0.059401 0.252675 0.179024 -0.224679 0.442622 -13.820351 23.767580 -13.328532 21.956116 56.987392 6.513611 -45.908699 47.053776 -25.580280 -0.694409 -0.188261 -0.233888 0.581082 -0.006072 0.071746
+12.110833 167.092346 -0.138848 3.214448 39.995869 -0.400861 -0.172369 -0.706984 -0.704552 2.465333 -0.578901 2.867577 -0.784245 0.603264 0.001498 0.668136 0.519923 0.044827 -9.935522 5.001680 -9.852243 8.032180 -2.723483 40.627617 -0.100701 -0.429270 0.152086 0.587611 0.590374 0.135726 6.053524 0.832766 -7.594070 -1.472706 1.063311 13.561659 -4.107346 1.763380 25.276775 -1.713637 -15.009738 4.171632 7.770448 -19.833454 -12.257958 18.805857 -22.693398 -16.168581 -45.025600 -78.042137 31.089230 37.399231 -23.531763 -14.552328 -0.123626 -0.021353 0.203154 0.205293 -0.255328 0.459199 -13.979415 23.608257 -13.260382 17.644209 58.995838 5.293576 -44.641987 43.057518 -22.753746 -0.689299 -0.218243 -0.220942 0.573001 0.000448 0.103300
+11.541359 166.711639 -0.186912 4.041986 38.260788 0.594429 -0.001946 -0.393636 -0.289911 1.297697 -0.416093 1.081805 -0.765974 0.607201 0.024447 0.670154 0.529064 0.026175 -9.254503 4.691311 -6.477743 4.992439 -1.036441 35.051476 -0.097320 -0.446263 0.162433 0.592240 0.618592 0.138083 5.467309 1.606624 -8.325973 -1.702718 1.867656 13.662179 -4.398946 2.648496 25.536352 -1.452954 -14.958820 3.692956 7.889690 -19.984180 -11.892357 19.756786 -22.420794 -16.740669 -36.328949 -79.980850 25.520666 34.929585 -20.203608 -12.623283 -0.128426 -0.004274 0.177889 0.220466 -0.269024 0.482984 -14.112598 24.032343 -13.301061 13.245157 60.299522 3.252534 -43.238102 39.019749 -20.197981 -0.689144 -0.238971 -0.216283 0.580505 -0.007443 0.123910
+10.863702 166.350510 -0.373708 5.104290 37.222961 1.615566 -0.240683 -0.185450 -0.144335 0.592479 -0.316342 -0.405420 -0.736195 0.618846 0.038954 0.636596 0.503462 -0.030630 -9.081887 4.134128 -3.473577 2.565075 -0.024397 29.616327 -0.081818 -0.457703 0.163048 0.572104 0.659229 0.146194 5.097970 2.293075 -8.704230 -2.106709 2.635574 13.919961 -5.069269 3.550424 25.750603 -1.375894 -14.946222 3.327837 8.987719 -20.545603 -11.755752 20.987288 -22.442354 -17.527714 -22.815420 -81.186272 14.998302 32.264179 -17.207109 -10.897923 -0.142293 0.015493 0.149503 0.233261 -0.289754 0.489851 -13.741647 24.259371 -13.205703 8.258407 60.593971 0.634206 -41.903019 36.643791 -18.400705 -0.675251 -0.238598 -0.207686 0.580802 0.016713 0.156652
+10.141197 166.161774 -0.587359 5.852717 36.023449 2.215918 -0.185361 -0.036818 -0.171264 -0.349911 -0.229349 -1.285258 -0.734838 0.602443 0.031015 0.624536 0.507131 -0.056659 -8.748388 3.513398 -0.655237 0.248337 0.668614 24.423582 -0.078985 -0.441205 0.166362 0.570012 0.663036 0.132547 5.001862 2.743685 -8.852294 -2.554771 3.222870 14.288876 -5.795392 4.371886 26.114792 -1.622642 -14.624389 3.388548 9.966020 -20.587978 -12.521220 21.675379 -22.483337 -17.954811 -10.330646 -81.106750 4.553654 31.120750 -15.683968 -10.084130 -0.132992 0.000772 0.155983 0.222329 -0.287111 0.486711 -13.817961 24.514492 -13.282081 3.933015 60.883949 -1.739448 -41.091583 34.993103 -17.245577 -0.670386 -0.214035 -0.209511 0.594442 0.028626 0.166587
+9.369382 165.964890 -0.762876 6.131881 35.297848 2.557128 0.140792 -0.076288 -0.700369 -0.945605 -0.195595 -1.348137 -0.735919 0.615639 0.039135 0.623030 0.509823 -0.064835 -8.137462 2.948272 1.566549 -1.656938 1.063582 20.056902 -0.078516 -0.436332 0.170880 0.573877 0.685527 0.132780 5.203964 3.027670 -8.987067 -2.935827 3.644809 14.544716 -6.430330 4.970622 26.468714 -1.715857 -14.595074 3.133125 10.391131 -20.751883 -13.027472 22.307554 -22.069473 -18.394569 -3.464134 -80.831306 -1.070836 30.342783 -14.991481 -9.655028 -0.143049 -0.016428 0.153628 0.227996 -0.289435 0.493076 -14.138993 24.599751 -13.440356 1.880020 61.035263 -2.997286 -41.170979 33.948147 -16.881983 -0.673929 -0.200437 -0.213240 0.618767 0.034946 0.177534
+8.520331 165.831375 -0.949296 5.960455 34.002510 3.163736 0.682037 -0.217011 -1.864792 -1.128206 -0.188258 -1.227100 -0.763171 0.674046 0.045236 0.601561 0.487997 -0.111852 -7.494087 2.730364 1.876862 -2.839525 1.258644 17.465479 -0.051700 -0.484481 0.174603 0.586676 0.746890 0.141622 5.676180 3.298579 -9.076401 -3.282069 4.062600 14.392307 -7.085402 5.542564 26.450905 -1.872245 -14.158875 2.274806 10.132704 -20.946558 -12.466346 22.521252 -20.788273 -18.695835 -4.992489 -80.579605 0.703920 29.917797 -15.813098 -9.680202 -0.192998 -0.006835 0.124030 0.272350 -0.337309 0.500791 -14.273344 24.135994 -14.065504 1.358220 62.807419 -3.065654 -40.000774 32.790577 -16.121183 -0.705238 -0.218068 -0.234289 0.638900 0.069540 0.190551
+7.720246 165.761398 -0.991845 5.453221 33.028862 3.660711 1.641788 -0.297832 -3.050116 -1.474649 -0.163428 -1.000444 -0.771593 0.711449 0.065923 0.569237 0.444057 -0.147392 -6.791658 2.609566 1.474994 -3.132654 1.263377 16.153952 -0.028051 -0.499574 0.183984 0.575861 0.793300 0.131388 6.246250 3.485019 -9.047722 -3.525821 4.374689 14.036756 -7.661132 6.001658 26.009985 -2.389523 -13.841954 2.069211 10.304131 -21.346611 -11.900013 22.487663 -20.205582 -18.443094 -12.881796 -80.229149 7.255956 30.983335 -17.082664 -10.321006 -0.215359 -0.018506 0.113267 0.293341 -0.374778 0.507041 -13.915841 23.607002 -14.039582 3.067813 64.022621 -1.645805 -40.102722 34.100372 -16.643835 -0.713974 -0.215651 -0.262187 0.662469 0.092126 0.197328
+6.980124 165.773621 -0.957662 4.916332 32.620441 4.376898 2.315460 -0.452144 -4.469755 -1.153489 -0.179857 -0.798818 -0.775162 0.750004 0.075509 0.529064 0.385368 -0.186128 -6.208131 2.539699 0.584355 -2.812706 1.134082 15.222023 -0.000596 -0.528919 0.180524 0.555788 0.825924 0.133544 6.671027 3.718239 -9.128987 -3.618779 4.642916 13.447472 -7.950418 6.331552 25.371599 -2.808104 -13.534370 1.966437 10.238871 -21.713171 -10.781826 22.177227 -19.920835 -17.643257 -27.425217 -79.746002 19.012197 33.702026 -19.412605 -11.854951 -0.239858 0.000493 0.096109 0.315196 -0.415017 0.502440 -13.289996 22.932802 -13.565120 8.296214 64.747215 1.989123 -41.725578 37.136616 -18.509134 -0.716703 -0.230645 -0.281501 0.653199 0.120688 0.198927
+6.303924 165.845642 -0.861806 4.003965 32.788124 4.840666 3.212996 -0.618104 -6.001636 -0.504762 -0.219728 -0.282488 -0.801564 0.772736 0.073209 0.522865 0.363371 -0.172984 -5.456772 2.489627 -0.343292 -1.937934 0.914417 14.788194 0.009172 -0.538319 0.179718 0.557816 0.824922 0.126989 7.351855 3.833125 -9.183214 -3.492319 4.739820 12.859618 -7.923731 6.443955 24.833860 -2.974798 -13.731130 1.955606 9.426987 -21.815243 -10.321687 21.122181 -19.454792 -16.758776 -44.364414 -79.027069 32.739819 36.405079 -22.399908 -13.767385 -0.252362 -0.011473 0.102143 0.324003 -0.429063 0.493708 -13.294688 22.132700 -13.033670 15.881107 64.539932 6.900066 -44.752182 41.038544 -21.676315 -0.730775 -0.234082 -0.303218 0.657013 0.126173 0.178843
+5.592465 165.937042 -0.638661 3.210335 33.209690 5.070128 3.959821 -0.709801 -7.099002 0.274986 -0.267421 0.040806 -0.806341 0.780559 0.075508 0.538505 0.373692 -0.140717 -4.776027 2.418915 -0.944138 -1.029419 0.707528 14.399861 0.009676 -0.557325 0.178543 0.568182 0.814972 0.136537 7.483667 3.717680 -9.406837 -3.278350 4.567672 12.435507 -7.474792 6.227635 24.650534 -3.096117 -13.722536 1.924549 8.107860 -21.527048 -9.606344 19.553572 -18.304516 -15.632386 -59.704826 -77.050789 44.409248 39.375587 -26.958700 -16.423458 -0.267279 -0.001405 0.087542 0.340513 -0.432183 0.490210 -13.110203 21.245829 -12.729794 24.303730 64.399689 12.467034 -46.927135 45.180073 -24.919319 -0.739410 -0.260204 -0.298586 0.642587 0.111272 0.166142
+4.852282 166.008621 -0.355108 2.405284 33.847500 4.986825 4.808879 -0.743719 -7.914105 1.202046 -0.333014 0.483440 -0.807180 0.775475 0.071905 0.575853 0.433174 -0.115036 -4.165576 2.212433 -0.919981 0.230435 0.431386 13.634420 -0.003064 -0.576829 0.181055 0.601705 0.811189 0.155496 7.609995 3.478138 -9.731476 -3.102810 4.281628 12.252445 -6.982843 5.896212 24.948536 -2.947755 -13.687493 1.699193 7.137354 -21.073893 -9.711421 17.436028 -16.506262 -14.743447 -72.680977 -74.272087 53.267750 41.411968 -31.998646 -19.207521 -0.285676 0.010030 0.063321 0.360609 -0.419922 0.499057 -13.027251 20.394306 -12.891348 34.501976 64.344765 19.099611 -47.908665 49.015976 -27.805302 -0.756503 -0.283991 -0.275118 0.641048 0.091051 0.171695
+4.095486 165.900436 -0.024518 1.769227 33.683697 5.158602 5.985386 -0.606450 -8.480288 1.259977 -0.313284 0.189739 -0.865306 0.817283 0.056830 0.586940 0.437726 -0.076280 -3.764702 2.160793 -1.428794 1.191885 0.218834 13.231978 -0.008952 -0.580450 0.172351 0.627847 0.815678 0.158247 7.201216 3.339205 -10.041555 -2.972286 3.987144 11.928468 -6.350002 5.627696 24.860329 -2.910725 -13.472461 1.538499 6.097837 -20.417250 -10.162145 16.063993 -14.072212 -14.076571 -81.620674 -70.282127 57.399010 42.221367 -37.094517 -21.832954 -0.320447 -0.038487 0.086913 0.376605 -0.415515 0.483393 -13.495538 19.350491 -13.298965 45.798290 63.360043 26.231855 -46.811165 53.752232 -30.072666 -0.790140 -0.265427 -0.305028 0.673871 0.100981 0.143754
+3.438848 165.760529 0.300029 1.144738 33.025787 5.307882 7.033484 -0.448961 -8.729427 1.381562 -0.301370 -0.251613 -0.877875 0.818331 0.044097 0.596842 0.448076 -0.057899 -3.291155 2.121921 -1.888854 1.963012 0.078161 12.697372 -0.016969 -0.572665 0.162653 0.636253 0.804818 0.161538 6.976700 3.347194 -10.208448 -2.928607 3.909959 11.683503 -5.986039 5.510717 24.604748 -2.745797 -13.007541 1.366728 6.285728 -19.888689 -10.660829 14.415115 -12.292968 -13.341600 -85.224579 -66.551514 57.041687 41.779133 -42.537186 -23.895697 -0.321497 -0.045966 0.100342 0.370424 -0.403293 0.473996 -13.231837 18.825428 -13.634550 54.367344 61.988094 31.261580 -43.298069 57.807617 -30.236252 -0.792365 -0.257303 -0.306645 0.674957 0.100598 0.134627
+2.931377 165.649948 0.509723 0.669527 32.429909 5.372944 7.841229 -0.380284 -9.006553 1.467680 -0.304590 -0.109049 -0.890625 0.816625 0.032260 0.605173 0.445830 -0.034567 -2.892600 2.141472 -2.302336 2.423281 -0.002901 12.440843 -0.029012 -0.555611 0.155990 0.633152 0.785317 0.164586 6.744302 3.348310 -10.215914 -2.882294 3.829966 11.536366 -5.658938 5.414783 24.333467 -2.706018 -12.687343 1.444749 6.532473 -19.482269 -11.222239 13.231344 -11.151945 -12.730559 -86.726524 -63.624542 55.535744 40.800503 -47.029503 -25.299522 -0.311934 -0.059239 0.130391 0.354695 -0.384995 0.464434 -12.893551 18.718836 -13.714771 59.558746 60.562210 33.678078 -40.230492 60.605011 -29.822653 -0.792353 -0.241202 -0.310784 0.672523 0.098763 0.118684
+2.266824 165.460464 0.728210 0.092142 31.597691 5.424376 8.836014 -0.350310 -9.512893 1.626200 -0.317067 0.738954 -0.897748 0.795198 0.014435 0.604065 0.421635 0.001174 -2.476802 2.180535 -2.854814 3.073027 -0.122512 12.143336 -0.047730 -0.509152 0.148696 0.605717 0.736376 0.160575 6.412073 3.356744 -9.996611 -2.835008 3.732319 11.412697 -5.244916 5.289596 23.673195 -2.849306 -12.387654 1.799806 6.992700 -18.997723 -12.095221 11.217264 -10.980042 -11.968382 -85.918465 -59.576199 50.509739 36.548660 -52.498924 -25.223112 -0.278501 -0.088753 0.191059 0.313190 -0.348340 0.441471 -11.630080 19.760973 -13.522481 63.401157 57.686375 33.489197 -32.438881 64.026749 -26.379099 -0.777157 -0.200458 -0.316274 0.658965 0.095432 0.087940
+1.581632 165.189804 0.931117 -0.346052 30.225321 5.750088 9.531106 -0.300225 -10.131926 2.119071 -0.325227 1.347871 -0.878593 0.754624 0.003394 0.570500 0.358994 0.024517 -2.025930 2.525628 -4.155605 3.312904 -0.146578 12.885932 -0.056367 -0.451923 0.144641 0.543078 0.674624 0.147494 5.965568 3.657798 -9.588206 -2.725786 3.915745 11.112229 -4.736913 5.366370 22.351368 -3.014244 -12.278728 2.694350 7.286094 -18.560572 -12.151581 9.155830 -11.925589 -10.879488 -84.275963 -54.997200 43.980423 28.727808 -57.309170 -22.576441 -0.234277 -0.117662 0.250222 0.264371 -0.313926 0.406452 -10.244849 21.932104 -13.108867 65.382286 53.725140 30.628954 -18.825352 65.762871 -18.167976 -0.738716 -0.151958 -0.319804 0.623572 0.095499 0.054250
+0.876000 164.962646 1.251027 -0.999998 29.335575 5.424058 10.527983 -0.171201 -10.518970 2.311136 -0.339245 2.378149 -0.825436 0.665377 -0.006380 0.596336 0.362738 0.100848 -1.173438 2.781909 -4.656137 3.620914 -0.168552 13.683772 -0.110414 -0.373355 0.135275 0.492918 0.564564 0.156979 5.869252 3.727466 -8.864503 -2.668628 3.966125 11.067311 -4.468282 5.249524 21.111616 -3.081929 -12.207443 3.958512 7.653275 -17.707989 -12.922266 5.672904 -13.086706 -10.138650 -80.174736 -50.558403 36.178272 14.291852 -61.110950 -14.655278 -0.146614 -0.120485 0.323428 0.184229 -0.223386 0.391120 -7.790674 24.402287 -12.775517 65.683685 49.101234 25.930243 1.063916 64.972542 -5.279998 -0.680986 -0.120330 -0.279121 0.562519 0.044203 0.024809
+0.234245 164.796951 1.590622 -1.545002 28.503132 4.917855 11.255604 -0.112813 -11.187887 2.554923 -0.356537 4.445276 -0.768865 0.547068 -0.029979 0.592443 0.356620 0.158759 -0.336017 2.999358 -4.896440 3.812555 -0.206337 14.648819 -0.159455 -0.259794 0.131750 0.424873 0.443809 0.144621 6.138334 3.888362 -7.623950 -2.718828 4.163181 10.921990 -4.609787 5.295933 19.414034 -3.299735 -12.379153 6.243906 8.549666 -16.876646 -14.212322 2.163591 -14.333405 -9.709208 -75.590454 -45.950649 28.556053 -5.795544 -61.292072 -2.159915 -0.054062 -0.168231 0.410493 0.090287 -0.120858 0.352537 -4.063213 26.283182 -11.405672 66.063904 43.012012 19.783836 18.945408 61.808441 5.129745 -0.612648 -0.037668 -0.241363 0.516014 0.010772 -0.004653
+-0.403436 164.440872 1.904445 -2.046311 27.653175 4.539516 11.724346 -0.073588 -12.399853 3.162879 -0.415166 7.392632 -0.672674 0.418927 -0.035707 0.608762 0.372285 0.222884 0.397444 3.299001 -5.284660 4.084406 -0.221023 15.640098 -0.218023 -0.160060 0.132093 0.354525 0.324163 0.157174 6.143893 3.934645 -6.121440 -2.699832 4.324343 10.455042 -4.652387 5.300210 17.206573 -3.460623 -12.583629 8.459460 9.184999 -16.207094 -14.927953 -1.505674 -15.215812 -8.888121 -71.796814 -40.839802 21.651861 -23.209408 -57.960960 7.782998 0.042970 -0.176965 0.470766 0.003347 -0.010367 0.334550 -0.510126 27.831076 -9.719409 65.360329 37.274128 13.784561 27.870729 55.404690 8.450658 -0.531611 0.012753 -0.169966 0.445913 -0.045909 -0.014322
+-1.049809 164.093292 2.234870 -2.233043 27.238579 3.961143 11.760059 -0.163287 -13.844517 3.857262 -0.544328 11.236992 -0.609022 0.298193 -0.070127 0.655837 0.422302 0.289971 0.990264 3.529787 -5.217776 4.242348 -0.228390 16.699554 -0.288210 -0.073266 0.122675 0.313232 0.196006 0.182494 5.940618 3.663647 -4.339733 -2.750357 4.217844 9.962990 -4.756522 5.125760 15.130462 -3.696817 -12.523713 10.992363 9.895925 -15.424960 -16.279505 -5.669021 -16.076023 -8.397373 -67.712822 -36.101723 15.293859 -30.137659 -50.419628 9.602019 0.141062 -0.167769 0.544226 -0.088092 0.106709 0.319358 3.041803 29.458523 -8.241609 64.120483 32.167873 8.529281 27.684877 45.489082 5.932588 -0.474296 0.054013 -0.093745 0.374274 -0.096529 -0.028182
+-1.792906 163.759460 2.473819 -2.526578 26.390026 3.281994 11.859721 -0.398713 -15.907858 4.322669 -0.720167 16.379829 -0.576837 0.201797 -0.107915 0.706499 0.483274 0.362983 1.691269 3.903660 -5.586570 4.314372 -0.212810 18.413666 -0.347105 0.000672 0.105034 0.303264 0.083556 0.191757 5.669950 3.361036 -2.416411 -2.743640 4.133983 9.466788 -4.766204 5.008610 13.434272 -3.972103 -12.054435 12.986801 9.888752 -14.380226 -17.601641 -9.669702 -15.824588 -8.754024 -64.464470 -32.356384 10.911187 -30.276041 -40.833458 7.347875 0.219656 -0.172996 0.604624 -0.165769 0.204699 0.300488 6.769095 29.729076 -6.881930 63.583786 27.953762 4.900280 24.332163 36.803856 3.119418 -0.431472 0.088738 -0.041413 0.331128 -0.141005 -0.046751
+-2.590592 163.491791 2.530944 -2.978992 24.742067 2.354896 12.045663 -0.707246 -17.998175 4.633310 -0.932183 22.216169 -0.580952 0.124310 -0.156029 0.754247 0.531115 0.438724 2.318411 4.542555 -6.405538 4.740817 -0.267876 21.177885 -0.401851 0.084192 0.084814 0.300761 -0.022304 0.185894 5.319794 3.151179 0.003651 -2.663121 4.167975 8.904583 -4.675383 5.063518 11.740530 -4.406235 -11.455246 15.146665 10.427155 -13.344041 -19.584890 -13.915477 -14.979415 -8.975922 -61.607368 -28.843891 7.250041 -27.536211 -33.652313 4.740300 0.295767 -0.204325 0.690821 -0.249960 0.294306 0.273039 10.796494 29.657585 -5.520434 62.738575 24.077337 2.029039 20.597664 28.916431 1.261694 -0.403661 0.144232 -0.017180 0.312105 -0.170763 -0.080729
+-3.360403 163.146057 2.629056 -2.938291 23.196104 1.665060 11.743255 -1.365583 -20.472963 4.670496 -1.176808 28.744678 -0.593355 0.094028 -0.184494 0.759990 0.528423 0.452361 2.454143 4.989292 -7.128467 5.086215 -0.372964 23.673584 -0.425461 0.140258 0.071171 0.288516 -0.060632 0.171416 4.127890 3.104728 2.044532 -2.478197 4.114188 8.424778 -4.044780 5.023692 10.357756 -5.493556 -10.132643 16.806961 12.063702 -12.761723 -20.664846 -15.978810 -13.230397 -9.054479 -61.277134 -26.025434 4.431917 -21.489691 -30.057558 1.932083 0.343104 -0.232048 0.758958 -0.305309 0.333233 0.257443 14.737449 28.680328 -4.591903 60.852917 20.876347 0.473342 17.325766 20.632584 0.450206 -0.386390 0.195444 -0.025037 0.315633 -0.166996 -0.097865
+-4.031923 162.546143 2.692072 -3.139272 21.789230 1.088092 11.549229 -2.144103 -23.743189 4.734555 -1.493840 35.868851 -0.587350 0.067222 -0.196489 0.758475 0.518299 0.470893 2.479411 5.563029 -8.446764 6.035028 -0.702205 26.933628 -0.440072 0.178666 0.061357 0.271258 -0.097874 0.161634 2.955367 2.870569 4.298859 -2.124471 3.861637 7.741437 -3.255532 4.744660 8.609985 -6.378093 -9.075284 17.438549 12.287344 -12.162248 -21.043112 -18.055866 -10.573992 -9.369792 -60.906883 -23.154047 1.943765 -16.244444 -26.982914 -0.032990 0.376918 -0.243729 0.795665 -0.343021 0.360711 0.243796 17.573069 26.370966 -4.479882 58.671471 18.371773 -0.064664 14.899653 12.588306 0.298212 -0.364035 0.222130 -0.025561 0.306315 -0.171456 -0.112915
+-4.530951 161.683258 2.857551 -3.721910 20.571373 0.405763 11.584590 -2.809723 -27.204296 4.597153 -1.777532 42.993851 -0.596537 0.064302 -0.204855 0.740473 0.484392 0.472920 2.781845 6.112828 -9.514110 7.276214 -1.195430 30.066996 -0.437875 0.197874 0.062607 0.248340 -0.114336 0.153702 2.887526 2.501115 6.548411 -1.863120 3.751830 6.986165 -3.113288 4.678326 6.820383 -6.980174 -8.374520 17.448805 12.196870 -11.864803 -21.240942 -19.825966 -8.055820 -9.822625 -59.771877 -20.386696 0.043366 -12.204634 -23.521408 -1.211346 0.388413 -0.262002 0.826478 -0.359661 0.365460 0.228310 18.780666 23.616423 -4.681273 56.686462 16.278784 -0.600133 12.053510 6.484162 0.243022 -0.358833 0.247507 -0.038983 0.301182 -0.160750 -0.131050
+-5.038999 160.985016 3.152823 -4.164714 18.779064 -0.571429 11.651412 -3.189358 -29.927025 3.951278 -1.723227 49.565891 -0.585724 0.046345 -0.199193 0.727997 0.464540 0.485919 3.089249 6.575175 -9.795017 8.262147 -1.562730 32.450603 -0.447486 0.230806 0.058465 0.227480 -0.131548 0.140561 2.905967 2.278013 9.153730 -1.862588 3.990889 6.227502 -3.481675 4.923924 5.023766 -7.037124 -7.792000 17.676662 12.762646 -11.455729 -21.567152 -20.872562 -6.144718 -9.970915 -57.116722 -17.528547 -1.568299 -9.404504 -20.669231 -1.741714 0.410909 -0.283389 0.853394 -0.384777 0.383264 0.220238 19.181568 20.903532 -4.870619 54.449150 14.406320 -1.301590 9.243716 2.090031 0.278573 -0.337335 0.272931 -0.047898 0.303888 -0.166358 -0.140697
+-5.721070 160.578217 3.626643 -4.612236 16.427341 -2.135710 11.820450 -3.107033 -31.206917 3.091653 -1.322016 54.947258 -0.626754 0.048919 -0.216443 0.718806 0.443222 0.517402 4.185810 6.984067 -8.841696 8.102322 -1.426917 33.979382 -0.460147 0.266863 0.053371 0.220950 -0.153298 0.122410 2.427021 2.401033 11.749820 -1.927197 4.383028 5.716813 -3.726162 5.376480 3.741900 -6.367495 -7.498810 18.583605 13.039213 -10.518732 -22.383707 -21.309656 -4.651912 -10.035110 -53.589840 -14.920925 -2.754882 -7.078250 -18.959539 -2.059306 0.415850 -0.343465 0.913075 -0.405832 0.405266 0.196802 18.751753 18.903433 -4.866766 51.884148 12.727719 -2.065844 6.672866 -0.804184 0.376527 -0.345897 0.323400 -0.083478 0.327273 -0.157800 -0.177928
+-6.412808 160.304092 4.112237 -4.742250 14.785318 -3.866420 11.541334 -3.234601 -32.209484 2.247242 -0.883049 59.591805 -0.645862 0.057845 -0.233904 0.700061 0.416020 0.543019 5.047765 7.111754 -7.223330 8.218668 -1.401028 34.957157 -0.463283 0.285419 0.046263 0.203705 -0.170998 0.126565 1.404873 2.644516 14.223445 -1.885231 4.638927 5.455352 -3.553349 5.662379 2.828120 -5.478572 -7.589102 19.147963 12.737132 -9.688244 -22.674809 -21.496178 -3.338287 -9.826394 -49.896580 -12.431218 -3.733506 -5.174586 -18.959841 -2.288249 0.397207 -0.381450 0.942090 -0.406944 0.421878 0.164374 18.211502 17.283218 -4.631820 48.264683 11.044409 -2.834854 4.661848 -2.397516 0.448268 -0.348293 0.359857 -0.096127 0.325584 -0.143053 -0.205678
+-6.928055 160.086761 4.571081 -5.080117 13.542512 -5.808462 11.198509 -3.444896 -32.859943 0.999826 -0.218608 63.356174 -0.663429 0.060625 -0.245815 0.696588 0.411216 0.562385 5.840366 7.123978 -5.370850 8.698271 -1.541639 35.842030 -0.474441 0.292967 0.043815 0.198753 -0.183775 0.134869 1.130462 2.583256 16.295437 -1.830120 4.790107 5.639744 -3.595851 5.847186 2.595757 -4.652845 -7.310275 19.085495 12.422848 -8.621764 -23.338688 -20.916506 -2.140730 -9.444902 -46.766697 -10.292544 -4.396543 -3.669480 -19.995323 -2.481628 0.384241 -0.401387 0.966884 -0.406327 0.438743 0.148852 16.610487 15.358989 -4.852176 44.734409 10.001855 -3.376023 3.274905 -2.787215 0.446029 -0.358763 0.379680 -0.103430 0.324597 -0.137116 -0.226226
+-7.445780 159.876572 5.082046 -4.873990 13.022504 -7.250898 10.048257 -3.977962 -33.546955 -0.350746 0.582151 65.759186 -0.655742 0.068646 -0.232701 0.684207 0.395246 0.565436 5.888405 7.001862 -3.791795 9.446332 -1.827027 36.441429 -0.471601 0.287115 0.052007 0.186085 -0.173529 0.141450 0.411803 2.723772 17.395706 -1.855618 4.776449 6.162052 -3.440972 5.829131 2.923939 -4.101944 -7.133761 18.307856 11.991088 -8.035526 -23.165541 -19.417786 -0.824710 -8.871023 -44.519711 -8.417058 -4.978661 -1.524055 -21.865860 -2.850051 0.367466 -0.405771 0.961909 -0.391070 0.435149 0.148666 14.722197 13.643157 -4.894085 41.189999 9.011080 -3.776797 2.086179 -2.738231 0.412427 -0.360218 0.379198 -0.106974 0.322193 -0.137707 -0.229997
+-7.978439 159.790924 5.635437 -4.809546 12.073950 -8.736429 9.394713 -3.925914 -33.527271 -2.189096 1.901391 66.879860 -0.654295 0.069118 -0.219790 0.659468 0.379724 0.552277 6.313759 7.036048 -2.154211 9.629060 -1.800329 36.975513 -0.459036 0.281753 0.066804 0.178455 -0.158759 0.129122 -0.323338 3.194349 18.095259 -1.827985 4.958994 6.899821 -3.158443 6.019390 3.627603 -3.309435 -7.412144 17.305094 11.513452 -7.628661 -23.046267 -17.866680 0.381365 -8.430048 -42.091728 -6.959424 -5.241391 0.621886 -23.314865 -3.173356 0.347769 -0.422449 0.949155 -0.371875 0.420659 0.146335 12.663950 12.007515 -4.618950 37.429699 7.834501 -4.095014 1.314404 -1.346673 0.306888 -0.367366 0.384559 -0.120845 0.332854 -0.132252 -0.233317
+-8.498578 159.830307 6.232878 -4.905817 10.690448 -10.232709 8.813299 -3.516993 -32.624908 -4.000945 3.209200 66.177353 -0.628822 0.058627 -0.204224 0.642016 0.366629 0.535934 7.012474 7.160951 -0.450217 9.502440 -1.554054 37.370792 -0.447925 0.280693 0.073057 0.165153 -0.149896 0.122007 -0.181530 3.576280 18.614855 -1.929441 5.403606 7.652115 -3.457149 6.456235 4.370292 -3.180257 -7.459258 16.531399 11.955357 -7.746142 -22.854734 -16.217678 1.189944 -7.740199 -39.297939 -5.592618 -5.362935 2.573493 -25.246054 -3.504770 0.349338 -0.411427 0.929805 -0.367434 0.409310 0.149344 11.004084 10.558630 -3.919111 33.727859 6.368999 -4.323321 0.380682 0.369494 0.223897 -0.353273 0.377183 -0.118240 0.325865 -0.135512 -0.223299
+-9.004461 159.945602 6.838213 -4.764175 9.472632 -11.389778 8.194818 -3.203891 -32.080097 -6.308816 4.726672 64.876518 -0.594184 0.045811 -0.180859 0.635236 0.366382 0.513613 7.542616 7.199426 1.087874 9.245399 -1.267772 37.488579 -0.435391 0.260886 0.083774 0.159656 -0.134604 0.119195 -0.259709 4.182143 18.623560 -2.098221 5.970319 8.501646 -3.703206 6.969938 5.385630 -2.635448 -7.721590 15.207582 12.445002 -7.977115 -22.183935 -14.880594 1.646604 -7.528221 -35.811028 -5.224490 -5.009884 4.472164 -26.187166 -3.699622 0.350936 -0.371288 0.891654 -0.353397 0.387704 0.166744 10.114367 8.734211 -3.147747 30.044931 4.500038 -4.546605 -1.424486 2.797348 0.078395 -0.344060 0.341090 -0.107309 0.308501 -0.148347 -0.206307
+-9.464327 160.107834 7.399134 -4.638529 8.865036 -12.056458 7.228813 -3.230319 -32.151878 -8.541168 5.885347 62.703785 -0.555931 0.053639 -0.153522 0.609414 0.348818 0.467438 7.763189 7.193855 2.031472 9.502087 -1.262183 37.493080 -0.408380 0.224220 0.093881 0.148360 -0.095332 0.124063 -0.292985 4.645823 18.018602 -2.202692 6.297347 9.379336 -3.796278 7.270170 6.604698 -2.245090 -7.906760 13.372962 12.713310 -8.492113 -21.010517 -13.608711 1.922604 -7.252903 -32.840405 -4.936044 -4.726596 7.798020 -27.078276 -4.277680 0.330077 -0.326625 0.833062 -0.320507 0.348671 0.181711 9.330679 7.079579 -2.544061 25.858721 3.136989 -4.277082 -2.185851 3.598872 0.036887 -0.335863 0.301582 -0.096241 0.291781 -0.144004 -0.177700
+-9.850870 160.419327 8.055057 -4.668190 8.392828 -12.915040 6.143889 -3.214820 -31.367960 -10.638514 6.606496 58.815426 -0.540175 0.060363 -0.146239 0.596673 0.333300 0.454337 8.259864 7.206565 3.228472 9.769401 -1.242452 37.568943 -0.395849 0.203685 0.091858 0.138729 -0.085013 0.131284 0.298186 4.796818 17.381380 -2.475327 6.585726 10.201623 -4.377612 7.573607 7.831286 -1.571793 -8.462477 12.707538 12.794375 -8.827060 -20.202139 -12.766110 1.656136 -6.799743 -29.322397 -4.287319 -4.482095 11.376641 -27.964632 -5.002304 0.317255 -0.298695 0.806718 -0.304854 0.330211 0.180226 7.995950 6.170955 -1.583618 22.531973 1.801779 -3.888522 -2.336093 3.534618 0.079791 -0.331641 0.278165 -0.088712 0.271598 -0.139880 -0.171659
+-10.258888 160.899261 8.780128 -4.515129 8.508290 -14.171170 4.724641 -3.417014 -29.568516 -12.679696 6.892889 53.679901 -0.542896 0.079948 -0.150197 0.576519 0.307418 0.444044 8.547130 6.856709 5.327373 10.324254 -1.367736 36.719761 -0.389933 0.207023 0.087851 0.123648 -0.071947 0.140988 0.205218 5.100698 17.009731 -2.506179 6.642416 11.258969 -4.329958 7.734841 9.163054 -1.460240 -8.582478 12.430688 13.390949 -8.933520 -20.630688 -11.434558 1.256941 -6.365737 -26.768579 -3.896862 -4.375902 15.567303 -28.356167 -5.987316 0.298042 -0.308146 0.810638 -0.299096 0.326829 0.166893 6.794379 5.634328 -0.460415 18.499191 0.520377 -3.301985 -1.353282 2.821591 0.201188 -0.332234 0.297272 -0.091726 0.273853 -0.118369 -0.171647
+-10.613203 161.235306 9.647246 -4.647935 8.156320 -15.108036 3.612535 -3.238226 -27.646391 -14.134160 6.781410 48.175400 -0.587231 0.127416 -0.160943 0.540394 0.254167 0.424194 9.165415 6.904548 6.592752 10.859378 -1.441973 36.782459 -0.369400 0.208376 0.081467 0.115114 -0.043592 0.129077 0.849933 5.252676 16.002842 -2.686818 6.808344 12.135622 -4.747991 8.073049 10.572889 -1.661015 -8.504340 12.417289 14.038247 -9.160443 -20.928003 -10.109330 1.281690 -6.068034 -24.055748 -3.332074 -4.221080 19.610655 -29.577295 -7.185842 0.270424 -0.346844 0.833003 -0.290987 0.301251 0.144569 5.606927 4.894911 0.205645 14.801491 -0.173862 -2.729801 -0.228601 1.499159 0.287694 -0.349434 0.331402 -0.133159 0.302040 -0.075991 -0.186777
+-10.971545 161.485229 10.616828 -4.666320 8.091014 -15.454363 2.215467 -3.202193 -26.107677 -14.568086 6.133189 42.664192 -0.640263 0.188589 -0.171176 0.506537 0.205565 0.380487 9.456243 7.161919 6.923061 11.556711 -1.607391 37.258102 -0.340074 0.188872 0.077757 0.120177 0.004275 0.116288 1.205187 5.488316 14.241652 -2.874127 6.890341 12.829988 -4.989864 8.338240 12.124058 -2.303243 -8.041579 12.304311 14.657230 -9.638011 -20.747490 -8.696290 1.593258 -6.027452 -21.449450 -3.081878 -3.912217 23.158499 -29.773090 -8.086489 0.238096 -0.369093 0.842276 -0.272110 0.257303 0.136079 5.142882 3.800783 0.207637 10.800345 -0.143235 -2.115229 0.981255 0.112588 0.285438 -0.377984 0.348321 -0.179623 0.335737 -0.027293 -0.191795
+-11.274673 161.662460 11.509485 -4.990741 8.164786 -15.865658 1.043461 -3.087590 -24.173313 -14.748280 5.222101 36.373734 -0.683668 0.250060 -0.168607 0.465346 0.141514 0.348504 9.717762 7.497554 6.983899 12.795793 -2.025599 38.039116 -0.318883 0.179148 0.078920 0.107374 0.051464 0.109039 2.012276 5.423952 13.253212 -3.071696 6.888405 13.184701 -5.539055 8.461892 12.861990 -2.746953 -7.700154 12.335080 14.982339 -9.958453 -20.515394 -7.200118 1.981705 -5.887343 -18.871796 -2.684505 -3.586296 26.492111 -28.849470 -8.599340 0.206723 -0.408235 0.863617 -0.254611 0.225739 0.129634 4.042210 3.053280 0.576295 8.387979 -0.728333 -1.799165 1.430843 -0.014770 0.295403 -0.399283 0.377449 -0.227601 0.371532 0.015396 -0.199687
+-11.546304 161.685944 12.419944 -5.450464 8.495954 -15.980325 -0.082884 -3.123311 -22.469206 -14.564780 4.167786 30.123472 -0.689176 0.276901 -0.158702 0.423207 0.082733 0.319910 10.045534 7.669461 6.689302 14.109858 -2.541101 38.632874 -0.294464 0.182988 0.081005 0.083759 0.081419 0.089145 2.597516 5.272849 12.169952 -3.216062 6.739087 13.135448 -5.925075 8.380306 13.078330 -3.344894 -6.949200 13.024004 15.546537 -10.218468 -19.273079 -5.055687 2.270844 -5.061776 -17.396822 -1.643019 -3.473819 29.611986 -28.293369 -9.116992 0.196602 -0.430118 0.866134 -0.248265 0.196712 0.122852 2.710117 2.595574 1.058337 6.394696 -1.610484 -1.632326 1.544837 -1.646039 0.288008 -0.392895 0.396230 -0.258273 0.388419 0.041031 -0.200705
+-11.785805 161.486267 13.405548 -6.061451 9.195331 -15.831934 -1.501298 -3.426906 -21.074863 -13.357212 2.985122 24.702532 -0.692994 0.303578 -0.143693 0.389224 0.033678 0.299776 10.340446 7.637849 6.225935 15.497364 -3.190669 39.035683 -0.274082 0.177473 0.089672 0.063842 0.109614 0.076712 2.998128 5.011083 10.540645 -3.275383 6.376997 12.872963 -6.085165 8.089252 13.292309 -3.519217 -6.618376 13.792407 15.296922 -10.437434 -17.670822 -3.321713 2.294897 -4.212504 -15.451892 -0.475142 -3.209919 31.677366 -27.372871 -9.164584 0.180383 -0.451834 0.862879 -0.231886 0.171063 0.122296 1.352678 2.111200 1.626733 4.355453 -2.467059 -1.297570 2.130320 -1.259604 0.279247 -0.393655 0.405323 -0.283223 0.402052 0.057760 -0.202901
+-12.051274 161.253021 14.408487 -6.603261 9.545199 -15.825659 -2.758981 -3.560180 -19.574232 -11.625344 1.991087 20.069298 -0.665384 0.288755 -0.130584 0.387868 0.038364 0.282512 10.582731 7.690639 5.792287 16.742950 -3.754691 39.623516 -0.274453 0.182917 0.097448 0.055862 0.121235 0.073051 3.591081 4.775169 9.176961 -3.424733 6.216575 12.704245 -6.480902 7.936376 13.571879 -4.004970 -5.928668 14.800937 15.995433 -10.609320 -16.790525 -1.665542 1.946813 -3.410395 -13.143541 0.400385 -2.866153 32.169460 -25.569466 -8.505278 0.191705 -0.443357 0.851276 -0.233687 0.170198 0.137078 0.621885 1.823771 1.944118 1.827471 -3.001677 -0.957822 2.640047 -2.206958 0.227907 -0.380538 0.402652 -0.271961 0.402752 0.051237 -0.184742
+-12.322012 160.850052 15.339103 -7.189845 9.813557 -15.963759 -3.706390 -3.512677 -18.148531 -9.916778 1.270711 16.204428 -0.637864 0.259861 -0.124064 0.398722 0.075254 0.257444 11.109981 7.739640 5.467600 17.587557 -4.148072 40.342140 -0.276966 0.172983 0.105461 0.068731 0.128764 0.070546 4.055035 4.415062 8.204596 -3.618448 5.985120 12.616246 -6.899271 7.640937 13.838318 -3.975210 -5.029077 15.042229 16.410110 -10.256472 -16.080297 -0.136868 2.209439 -3.057927 -10.736804 0.844927 -2.434971 32.167191 -23.359604 -7.573365 0.201447 -0.413948 0.823907 -0.228574 0.169179 0.158222 -0.264165 1.500163 1.611749 -0.304248 -2.315142 -0.683312 3.107346 -3.377892 0.129038 -0.375496 0.380101 -0.252288 0.396436 0.037889 -0.161639
+-12.538857 160.330368 16.155071 -7.762503 9.759625 -16.367041 -4.034342 -3.274439 -16.713995 -8.999638 0.903693 13.275191 -0.662607 0.286004 -0.145914 0.390860 0.053399 0.256722 11.935142 7.936140 5.336325 18.010324 -4.393959 41.526081 -0.267515 0.164279 0.089025 0.069417 0.126679 0.077573 4.779641 4.019969 7.819373 -3.762131 5.749017 12.606022 -7.364584 7.474751 13.956902 -4.216215 -4.234599 14.905465 16.374588 -9.882743 -16.095068 1.578741 2.796022 -2.966520 -9.473142 0.768060 -2.114720 32.032555 -21.322016 -6.828822 0.190352 -0.406092 0.834044 -0.228533 0.160055 0.140082 -1.883126 1.124859 1.292994 -1.650442 -1.648684 -0.590864 3.239905 -3.963721 0.092462 -0.380052 0.381701 -0.263474 0.386230 0.059140 -0.173989
+-12.769197 159.662827 16.990501 -8.287926 9.927526 -16.833183 -4.033185 -3.067184 -15.561388 -8.623568 0.755996 11.709300 -0.673577 0.305737 -0.146311 0.389679 0.038754 0.268602 12.661439 7.976710 5.375806 18.591475 -4.774434 42.587254 -0.262180 0.156926 0.082958 0.070027 0.129305 0.080348 5.197240 3.631244 7.733939 -3.852854 5.487174 12.597133 -7.647515 7.222457 13.924252 -4.091022 -3.659539 14.312510 16.001905 -9.378504 -15.880338 2.847676 3.333412 -2.945452 -7.813217 0.838075 -1.802546 32.203983 -19.784925 -6.276993 0.181334 -0.402622 0.836016 -0.223418 0.151377 0.134456 -3.128233 0.662186 1.185500 -2.829223 -1.517295 -0.430593 3.348774 -3.719612 0.078712 -0.382202 0.374753 -0.274060 0.383173 0.062286 -0.184350
+-13.008210 158.888672 17.714485 -8.330001 9.957185 -17.164865 -3.891643 -3.021239 -15.265197 -9.403909 0.900846 11.950698 -0.647356 0.275239 -0.131935 0.390185 0.059145 0.270892 12.436865 8.089232 5.304255 19.960138 -5.633677 43.946957 -0.261032 0.171944 0.096977 0.070410 0.127425 0.064011 5.324252 3.333356 7.641685 -4.170708 5.342016 12.541788 -8.132067 6.992322 13.855093 -4.123245 -2.979521 14.180596 15.774145 -8.761547 -15.667060 3.951105 3.313497 -2.394172 -5.163102 1.918368 -1.360538 31.343094 -18.887360 -5.635419 0.187795 -0.414962 0.818552 -0.222999 0.155543 0.139012 -3.774750 0.417719 1.397858 -4.096479 -1.912895 -0.166186 3.689137 -3.036293 0.077865 -0.369428 0.379664 -0.265328 0.392554 0.046167 -0.175291
+-13.338208 158.261139 18.312387 -7.826780 10.170585 -17.862226 -4.203766 -3.196898 -14.825809 -10.091387 1.055095 12.835079 -0.616163 0.214050 -0.131929 0.444946 0.141572 0.282222 11.478287 8.016389 5.764610 21.524401 -6.641990 44.930347 -0.284557 0.168425 0.106538 0.100806 0.095701 0.067029 4.610313 3.198848 8.023445 -4.533473 5.237597 12.838604 -8.313654 6.720548 14.093591 -4.039423 -2.456700 13.694516 15.934319 -8.169155 -16.077951 4.854856 3.296032 -2.243026 -2.315151 2.106153 -0.906347 29.448811 -17.323748 -4.749540 0.228575 -0.363391 0.802308 -0.238617 0.179106 0.169733 -3.731920 0.233858 1.292859 -5.112161 -2.066021 -0.036885 3.336510 -3.255187 0.040207 -0.364527 0.337668 -0.225992 0.367532 -0.000662 -0.160436
+-13.723080 157.632706 18.793112 -7.121253 10.531985 -18.186544 -4.260695 -3.446183 -15.352843 -11.534386 1.446088 14.706898 -0.570227 0.165423 -0.105773 0.470611 0.198730 0.283171 10.551448 7.893314 5.902022 22.302813 -7.336543 45.840302 -0.297606 0.173449 0.123018 0.116589 0.094797 0.057875 3.073220 3.358293 8.209476 -4.744444 5.136832 12.972291 -7.971725 6.424567 14.194328 -3.737944 -2.164491 13.171371 16.108210 -7.749840 -15.899817 5.731382 3.020430 -1.954063 0.465151 2.154952 -0.428763 27.217068 -16.087132 -3.961681 0.250958 -0.345510 0.771507 -0.239812 0.191843 0.200815 -3.211960 0.240280 1.175716 -6.022431 -2.161690 0.025215 3.156392 -4.088842 -0.047712 -0.349228 0.314280 -0.200142 0.370574 -0.041112 -0.134898
+-14.030610 157.259918 19.143858 -6.592206 10.240909 -19.057102 -3.434460 -3.264237 -15.230490 -13.532403 2.045304 16.499632 -0.551856 0.139127 -0.092752 0.491966 0.235377 0.289152 9.931205 7.788028 6.900056 23.022402 -7.871183 46.414806 -0.307767 0.174311 0.133989 0.129016 0.091692 0.055088 2.064168 3.528348 9.150163 -4.910594 5.235661 13.378220 -7.797083 6.389178 14.276160 -3.419210 -2.299507 12.188269 16.229305 -7.511631 -16.391148 5.789742 3.068403 -2.031269 2.835380 2.154497 -0.023702 26.051004 -16.586554 -3.816801 0.264727 -0.332984 0.760163 -0.241807 0.200023 0.219618 -2.497242 0.398254 1.184679 -6.591057 -2.424860 0.055855 3.158596 -4.734885 -0.128560 -0.347283 0.299110 -0.186866 0.372044 -0.065951 -0.124609
+-14.171595 156.933487 19.540659 -6.353044 9.415371 -19.082039 -2.199905 -2.846102 -15.510859 -15.509788 2.605154 17.334547 -0.538553 0.108959 -0.086098 0.525088 0.280027 0.303491 9.947392 7.863386 7.057430 23.056442 -7.970661 47.010242 -0.319354 0.181068 0.141923 0.149293 0.081143 0.045526 1.735502 3.752327 8.963759 -5.055427 5.500407 13.345960 -7.861662 6.612251 14.374300 -3.254130 -2.108151 12.072378 16.796209 -7.275157 -16.625864 5.668366 2.969278 -2.230520 4.069798 1.680057 0.132304 26.270441 -17.528345 -4.008077 0.289562 -0.316038 0.754805 -0.252802 0.208970 0.239755 -1.705533 0.194707 1.183935 -6.843164 -2.626917 0.219491 3.792644 -4.511384 -0.184095 -0.344831 0.281109 -0.175595 0.373390 -0.095911 -0.118615
+-14.310120 156.854355 19.641788 -6.376348 8.893342 -19.057211 -1.229423 -2.522139 -15.357548 -16.606953 2.785415 17.004843 -0.558100 0.148736 -0.103374 0.491119 0.225618 0.285350 10.435431 7.811507 7.003367 22.413446 -7.748784 47.337887 -0.314780 0.175398 0.123969 0.123129 0.088886 0.068763 1.815699 3.812340 9.163201 -5.085547 5.553216 13.219941 -7.927145 6.780885 14.084849 -3.655902 -2.285224 12.369410 16.903236 -7.623636 -16.768309 5.900065 2.361028 -2.219217 3.477397 0.895341 -0.016064 26.504028 -18.293598 -4.334065 0.266281 -0.324072 0.776435 -0.249641 0.207721 0.216053 -1.628961 0.383049 1.647285 -5.465694 -3.566809 0.060792 3.674902 -3.976267 -0.093138 -0.348287 0.304610 -0.185130 0.363247 -0.055847 -0.126876
+-14.375191 156.995682 19.562551 -6.484953 8.266230 -19.135204 -0.690552 -2.263261 -14.517349 -16.955652 2.631006 15.561074 -0.589233 0.190014 -0.115982 0.459007 0.166414 0.289427 11.040097 7.663756 7.134979 21.777348 -7.467365 47.370899 -0.304290 0.192719 0.107907 0.101133 0.093824 0.067390 2.112092 3.630659 9.536168 -5.167405 5.459273 13.233742 -8.115698 6.837215 13.866920 -4.260360 -2.236377 12.409307 17.142771 -7.847057 -17.424526 6.202000 1.857190 -2.381680 1.555007 -0.287408 -0.432220 26.827141 -18.519663 -4.659024 0.248269 -0.362111 0.807142 -0.256908 0.200660 0.182979 -1.685102 0.562694 2.063397 -3.754040 -4.032571 -0.064484 4.200025 -2.719692 0.010411 -0.349034 0.345750 -0.212681 0.377489 -0.018700 -0.147145
+-14.398546 157.302170 19.289284 -6.793901 7.878791 -19.172327 -0.803406 -2.253219 -13.635481 -15.883826 2.152753 13.820489 -0.614937 0.243773 -0.114223 0.415279 0.103309 0.258889 11.517089 7.314377 7.338673 21.419472 -7.320105 46.954151 -0.270968 0.168336 0.109150 0.085642 0.135478 0.063689 2.311306 3.393768 10.115484 -5.090553 5.254531 13.245630 -8.110356 6.662442 13.521987 -4.201078 -1.637134 11.857196 16.948696 -7.744476 -16.186363 6.481126 1.807885 -2.691044 -1.026267 -1.925356 -0.799904 26.896662 -19.123970 -5.044866 0.207140 -0.373712 0.800068 -0.226061 0.157184 0.169163 -1.534479 0.603735 1.959674 -1.537172 -3.777610 -0.342273 3.933936 -2.019085 0.079294 -0.363879 0.351008 -0.247020 0.386809 0.019835 -0.155328
+-14.439279 157.693924 18.954605 -6.986670 7.315241 -18.699711 -0.961043 -2.208764 -13.202392 -14.564507 1.686006 11.968073 -0.606289 0.250283 -0.091712 0.400672 0.092039 0.249615 11.614175 7.103593 6.981585 21.224133 -7.227644 46.577984 -0.256939 0.160631 0.123151 0.083043 0.159910 0.049123 2.201218 3.302735 10.348373 -4.909746 5.085827 13.087318 -7.856518 6.429253 13.164340 -3.938548 -1.188530 11.354896 16.469244 -7.364497 -15.220625 6.351259 1.954167 -2.725461 -3.412626 -2.873261 -0.945976 25.997648 -21.183775 -5.495074 0.192430 -0.382679 0.778344 -0.206314 0.135676 0.177166 -1.256353 0.563632 1.626116 0.892594 -3.231622 -0.653357 3.608182 -1.686814 0.105301 -0.365417 0.344464 -0.259478 0.402062 0.017901 -0.151415
+-14.365933 158.138412 18.603601 -7.495810 6.453617 -17.765280 -0.986510 -2.028461 -12.905587 -12.970312 1.166472 9.457721 -0.602859 0.255636 -0.088477 0.409610 0.092206 0.264427 12.007066 6.980643 6.232749 20.594732 -6.836505 45.949673 -0.262479 0.144549 0.119619 0.081127 0.153874 0.064547 2.632933 3.205266 10.285327 -4.560654 4.972835 12.574561 -7.589255 6.307287 12.560180 -3.681509 -1.032625 11.141140 15.622170 -6.963575 -14.742293 5.639156 1.985555 -2.895957 -6.700336 -4.034534 -1.208667 25.352171 -23.627840 -6.154997 0.188470 -0.361756 0.773928 -0.199145 0.137143 0.180202 -1.396793 0.603253 1.190646 3.956604 -2.464126 -1.092180 3.573009 -2.528329 0.078660 -0.366740 0.322445 -0.251896 0.382938 0.009540 -0.156602
+-14.356105 158.577118 18.106121 -7.891331 5.616909 -16.707088 -1.038863 -1.802781 -12.918028 -11.334343 0.765626 7.155252 -0.563200 0.216995 -0.084229 0.447742 0.145252 0.285479 12.216041 6.825730 5.474120 20.164080 -6.483178 45.036446 -0.273089 0.111050 0.121525 0.095101 0.124934 0.087404 2.341167 3.530588 10.308640 -3.887582 5.052749 12.077816 -6.654142 6.223885 11.990242 -2.464138 -1.317241 10.427986 14.437721 -6.324741 -13.786943 4.690553 2.173807 -3.396336 -9.275579 -6.174442 -1.186380 22.296011 -25.873808 -6.119763 0.196593 -0.287739 0.729604 -0.186558 0.143773 0.195417 -1.544602 0.495562 0.648046 7.137653 -1.726215 -1.438157 3.776860 -4.089069 -0.020733 -0.361225 0.253950 -0.204654 0.326911 -0.030071 -0.149602
+-14.215321 158.958664 17.503614 -8.382668 5.219317 -15.597998 -1.532654 -1.802671 -13.185382 -9.114792 0.383747 5.110231 -0.550915 0.200093 -0.096390 0.479667 0.183914 0.326947 12.052597 6.470433 4.705566 20.159279 -6.414818 43.695225 -0.290919 0.085088 0.115604 0.107265 0.084800 0.121962 2.162014 3.718744 10.174959 -3.101935 4.942400 11.654117 -5.554317 6.049561 11.634850 -0.930983 -1.712035 10.194112 12.484281 -5.139941 -13.407394 2.641463 1.490197 -4.106717 -11.139167 -7.997139 -1.177489 18.854153 -26.704941 -5.618512 0.187962 -0.247050 0.712372 -0.173090 0.168627 0.193514 -1.719518 0.568603 0.357677 10.001715 -1.212972 -1.662145 4.643026 -5.751441 -0.138964 -0.365632 0.212493 -0.169808 0.277734 -0.057646 -0.161671
+-14.037974 159.328674 16.699490 -9.027204 4.744779 -14.548042 -1.834996 -1.733656 -13.647279 -6.889219 0.114915 3.309836 -0.524321 0.135803 -0.085273 0.553670 0.280203 0.406310 11.977673 6.048143 3.933865 20.365271 -6.431501 42.296783 -0.331244 0.085103 0.126267 0.143234 0.024844 0.131496 1.957164 3.846817 10.438134 -2.151007 4.837667 11.290313 -4.242143 5.805895 11.173327 0.496606 -2.232753 9.864738 10.426703 -3.796636 -13.983381 0.913270 1.353712 -5.223752 -14.701874 -10.597493 -1.279086 15.743221 -26.208647 -4.987829 0.222932 -0.226788 0.704068 -0.182250 0.219037 0.219655 -2.448790 -0.074496 -0.085176 14.311878 -1.080026 -2.129186 3.667845 -4.527225 -0.033735 -0.359982 0.167045 -0.132422 0.252796 -0.138133 -0.169306
+-13.840364 159.646179 15.895675 -9.776383 4.059186 -13.215046 -1.823263 -1.599085 -14.620114 -4.978984 -0.023326 1.825259 -0.529056 0.102689 -0.093614 0.604510 0.347831 0.471339 12.011581 5.687165 2.887980 20.592323 -6.407331 40.697468 -0.358858 0.087499 0.127645 0.175376 -0.020692 0.138435 2.239821 3.759958 10.046341 -1.569953 4.691078 10.848043 -3.491640 5.583406 10.962569 1.769138 -2.739426 9.969313 8.666273 -2.647504 -14.892704 -1.436027 1.036598 -6.581644 -17.266937 -12.685010 -1.299336 12.923602 -25.313492 -4.355545 0.233338 -0.229518 0.706753 -0.186229 0.256771 0.223405 -1.956451 -0.521411 -1.048034 18.555513 0.041602 -2.587674 1.968000 -3.485270 0.080998 -0.366786 0.150112 -0.113797 0.244570 -0.181793 -0.185074
+-13.659189 159.917450 15.107999 -10.123203 2.627091 -12.215950 -1.639940 -1.305538 -15.035771 -3.632050 -0.074025 0.244632 -0.534666 0.068475 -0.135518 0.653835 0.406840 0.544688 11.738663 5.458891 2.501002 20.946465 -6.356446 39.155716 -0.397137 0.095535 0.097983 0.195685 -0.101240 0.171619 1.958084 3.950155 9.993382 -0.962064 4.607348 10.527426 -2.480434 5.447578 10.744049 2.818562 -3.179649 10.169446 6.974784 -1.446680 -16.642561 -3.630328 0.799495 -7.603771 -20.407801 -13.888970 -1.456517 10.679452 -25.084690 -4.031521 0.245982 -0.205878 0.723671 -0.209876 0.315023 0.196766 -1.488651 -0.430521 -1.875865 22.543802 1.385357 -2.937092 1.078595 -2.840028 0.137294 -0.361989 0.138753 -0.073214 0.198053 -0.206707 -0.210380
+-13.508257 160.085754 14.418826 -9.921177 0.429309 -11.025945 -1.522462 -1.031967 -15.446438 -2.604009 -0.066624 -1.350608 -0.555501 0.070501 -0.159216 0.671909 0.421145 0.586737 11.004803 5.515843 1.924380 21.285566 -6.297642 38.132904 -0.417411 0.086992 0.081938 0.203967 -0.137504 0.195586 0.761206 4.727621 9.494501 -0.323004 4.765357 10.057901 -1.034976 5.567124 10.391333 4.051054 -3.483506 10.728874 5.551555 -0.387897 -17.001297 -5.892351 -0.022687 -8.610061 -23.867548 -15.246643 -1.548837 8.653895 -23.296774 -3.633492 0.236323 -0.202818 0.742190 -0.208958 0.342896 0.180671 -0.240737 -0.049205 -2.362751 25.758085 2.082410 -3.302260 -0.158863 -2.434607 0.179976 -0.372734 0.132387 -0.065850 0.173663 -0.213200 -0.236007
+-13.336955 160.173843 13.622364 -9.872581 -1.958033 -10.419094 -0.974630 -0.763192 -15.773066 -2.127169 -0.062394 -2.083020 -0.560238 0.034634 -0.186074 0.720761 0.474156 0.653326 10.591419 5.524019 1.835879 21.385736 -6.156803 37.283363 -0.453897 0.104719 0.068437 0.220656 -0.200710 0.214201 0.246868 5.133430 9.404133 0.160709 4.869890 9.934151 -0.075491 5.603343 10.382166 4.942047 -3.348382 11.450862 4.746633 0.889198 -18.371925 -8.541239 -1.717255 -8.951467 -26.295155 -15.325187 -1.916689 7.033906 -22.497637 -3.423249 0.259060 -0.195746 0.771228 -0.234239 0.395154 0.169499 1.956504 1.080357 -2.437992 27.462528 2.755091 -3.295211 1.043740 -0.479981 0.071965 -0.369953 0.129946 -0.040088 0.145705 -0.245095 -0.259321
+-13.137746 160.093826 12.730692 -9.647944 -4.717923 -9.603690 -0.181527 -0.592949 -16.732410 -1.922405 -0.060226 -2.180478 -0.573406 0.038840 -0.196856 0.735534 0.484681 0.678446 10.065540 5.806950 1.165645 21.006548 -5.907564 37.174519 -0.467924 0.109972 0.061205 0.226874 -0.214063 0.225854 0.004381 5.561260 9.440401 0.346306 5.146581 9.712429 0.378251 5.841915 10.135528 5.383222 -2.770237 11.409024 4.639002 1.752362 -19.222498 -10.953382 -3.305969 -9.397245 -28.514326 -15.637279 -2.164821 5.665021 -21.511124 -3.250450 0.255333 -0.198069 0.789267 -0.239079 0.411382 0.162711 4.930441 1.781448 -2.727591 28.419796 3.227601 -3.387752 2.119611 1.880615 -0.043422 -0.377108 0.135304 -0.039138 0.142840 -0.247318 -0.272967
+-12.888702 159.950317 11.690556 -9.435866 -8.336448 -9.044202 1.072722 -0.350759 -17.867008 -1.701352 -0.055423 -1.565981 -0.570078 0.044278 -0.202251 0.739645 0.484156 0.699613 9.642530 6.390440 0.401400 20.297215 -5.556819 37.873341 -0.471934 0.105642 0.053451 0.223669 -0.227152 0.241272 -0.511208 6.070325 9.962725 0.767912 5.388580 9.476942 1.170743 6.043721 9.625716 5.392399 -2.009586 11.325860 3.590637 2.672496 -19.259977 -13.122442 -4.297865 -9.679485 -31.407284 -15.839343 -2.294109 4.222370 -20.115103 -3.025065 0.243795 -0.190079 0.785190 -0.234021 0.419163 0.151603 6.907000 2.738156 -3.273437 29.183681 4.394856 -3.306818 3.386668 3.407023 -0.105924 -0.373941 0.129223 -0.029048 0.126487 -0.248216 -0.281648
+-12.545887 159.692703 10.750896 -9.579888 -12.482688 -8.710219 3.218583 0.164389 -18.823792 -2.294463 -0.039032 -0.200836 -0.598475 0.079064 -0.198656 0.732407 0.456978 0.723299 9.919378 7.204762 -0.242160 19.012878 -4.946747 39.071743 -0.475799 0.115121 0.048912 0.220032 -0.218750 0.240670 -0.197150 6.413641 10.692559 1.198683 5.700399 9.260411 1.581454 6.399115 9.084744 4.879220 -0.716920 11.851513 2.745705 3.679646 -19.395247 -14.985984 -5.263210 -9.868348 -34.493706 -16.091789 -2.213836 2.355788 -18.341587 -2.734648 0.228040 -0.232483 0.813469 -0.231168 0.422047 0.142613 8.582987 3.859685 -4.011241 30.194662 5.973421 -3.219791 5.035597 4.872182 -0.108568 -0.381901 0.153516 -0.057304 0.151473 -0.238224 -0.301722
+-12.277743 159.336380 9.788832 -9.621915 -16.257168 -8.492223 5.581728 0.548239 -20.448727 -3.441711 0.032108 2.765704 -0.649798 0.130821 -0.215174 0.719918 0.422466 0.749807 10.243298 7.870256 -0.881705 17.446238 -4.341547 40.453072 -0.475809 0.117225 0.036306 0.219003 -0.215250 0.248608 -0.015302 6.352480 11.665519 1.357820 5.650978 9.115265 1.721152 6.421092 8.623117 4.457086 0.846030 12.155046 1.287119 5.082987 -20.030216 -17.033148 -6.029000 -10.108616 -36.442879 -16.019316 -2.198514 0.349033 -17.851665 -2.506887 0.191687 -0.277205 0.846225 -0.221250 0.421904 0.114733 10.546683 5.033948 -5.614567 31.639616 8.637599 -3.017914 5.724503 4.252343 -0.080797 -0.403582 0.184758 -0.088853 0.172117 -0.208333 -0.334773
+-11.929791 159.047577 8.945885 -9.481879 -19.985016 -8.062796 7.796534 0.922420 -22.435055 -4.939568 0.209307 6.174063 -0.666812 0.146424 -0.223765 0.715919 0.420337 0.742581 10.370801 8.495475 -1.841652 15.481376 -3.582494 41.885983 -0.477879 0.133934 0.034691 0.222963 -0.202073 0.244527 0.551531 6.038683 12.324843 1.319908 5.570701 8.872602 1.483746 6.370450 8.112102 2.867787 3.224009 13.106088 1.354752 5.982525 -20.309654 -17.359308 -6.610505 -9.838503 -39.501263 -15.943443 -2.191265 -0.601712 -17.903221 -2.519135 0.184742 -0.308019 0.863673 -0.226122 0.426409 0.110598 12.392279 6.264670 -7.094346 34.072922 11.061261 -2.913743 5.914622 3.737904 -0.079236 -0.407806 0.217524 -0.100409 0.201589 -0.189231 -0.333620
+-11.448876 158.742737 8.197535 -9.274545 -23.175203 -7.785938 10.007998 1.131527 -24.849091 -7.023811 0.599764 11.149457 -0.670079 0.126128 -0.241967 0.755516 0.456824 0.790589 10.364804 8.819472 -2.587156 13.743673 -2.977644 42.937664 -0.504013 0.154947 0.017147 0.238442 -0.243901 0.249530 1.156577 5.539341 13.141547 1.230909 5.455766 8.570706 1.167110 6.250221 7.549374 1.922059 5.131760 14.335105 0.781624 7.218653 -20.829351 -18.412113 -7.918836 -9.608155 -42.011936 -16.222061 -2.262578 -0.726578 -18.261301 -2.653229 0.212447 -0.302836 0.886735 -0.255388 0.460646 0.105881 13.953840 7.823244 -8.118277 36.925816 13.004215 -2.746341 5.865743 3.119009 -0.091559 -0.395417 0.217486 -0.086116 0.191793 -0.209862 -0.346154
+-10.889590 158.517548 7.413692 -8.762495 -25.924629 -7.754950 12.031774 1.131276 -27.485889 -9.645499 1.328093 17.197067 -0.687709 0.119248 -0.266042 0.790041 0.496253 0.813684 9.943075 9.045139 -3.406051 12.187231 -2.537788 44.153786 -0.521947 0.165835 0.006951 0.262374 -0.262313 0.254600 1.589427 5.226251 13.705013 1.158972 5.452733 8.432469 0.979250 6.246717 7.334709 1.036815 6.983210 15.751721 0.984053 8.138221 -21.077276 -19.032856 -10.142715 -9.630461 -44.503723 -17.551111 -1.831762 -1.091477 -17.844158 -2.690248 0.223094 -0.304052 0.905518 -0.270287 0.482230 0.104549 16.070225 9.397329 -8.833432 38.891705 14.483012 -2.578414 5.835265 2.930105 -0.111479 -0.401666 0.223817 -0.077578 0.196082 -0.214703 -0.351749
+-10.229075 158.476227 6.629466 -7.816001 -28.115036 -8.147283 13.419366 0.693598 -29.869659 -12.206682 2.305882 23.625994 -0.696405 0.056317 -0.297852 0.873517 0.614997 0.858728 8.771408 9.046077 -4.187751 11.085727 -2.365952 45.094135 -0.574014 0.196291 -0.001958 0.317981 -0.319456 0.255461 1.554944 5.041385 14.371879 1.189048 5.416692 8.521784 1.147369 6.143015 7.442298 -0.194363 8.499720 17.237143 0.886822 8.808413 -22.982040 -19.039608 -12.887521 -9.880662 -47.570629 -19.674337 -0.998168 -1.062973 -16.635492 -2.707341 0.277885 -0.302164 0.934549 -0.316259 0.547239 0.123153 17.732674 11.242092 -9.265613 40.413792 15.682255 -2.383039 6.131542 3.302848 -0.129522 -0.402671 0.227531 -0.042700 0.206322 -0.256617 -0.345801
+-9.636073 158.571884 6.016896 -6.691835 -30.089706 -8.750011 14.670211 0.031095 -31.673883 -14.979071 3.596771 29.695944 -0.718236 0.024334 -0.335466 0.932299 0.690109 0.911402 7.233939 8.810682 -4.688260 10.272268 -2.388019 45.652504 -0.609610 0.214794 -0.014848 0.356029 -0.372964 0.264123 1.305026 4.891948 14.583576 1.154468 5.291867 8.657742 1.334564 5.993772 7.777369 -0.631232 9.540623 18.960327 0.130144 9.759798 -24.206102 -19.518185 -15.832146 -10.050529 -49.407986 -21.665363 -0.200329 -1.556772 -16.551971 -2.694484 0.300610 -0.307333 0.961227 -0.342373 0.596212 0.118353 19.362965 13.120638 -9.314664 41.827682 16.515898 -2.339788 6.624511 4.969577 -0.176897 -0.410893 0.233801 -0.019914 0.203498 -0.279153 -0.359809
+-9.108415 158.779251 5.573061 -5.477449 -32.075066 -9.677759 15.671294 -0.764595 -32.850010 -17.560083 5.196311 35.689594 -0.738064 0.006293 -0.366415 0.974487 0.741309 0.969742 5.625000 8.470283 -4.934976 9.352080 -2.374818 46.169750 -0.639899 0.225438 -0.028207 0.380821 -0.420701 0.278680 0.932556 4.851438 14.410307 1.086872 5.197838 8.903420 1.533651 5.888756 8.391475 -0.234748 10.003583 20.866310 -1.149614 10.969938 -25.009699 -20.286894 -18.609407 -10.178786 -50.358410 -23.728495 0.546397 -2.814398 -17.875938 -2.616239 0.304100 -0.318012 0.982428 -0.353601 0.639846 0.105693 20.621862 14.892151 -9.138578 43.287216 17.228731 -2.406753 7.340977 7.993001 -0.253480 -0.419112 0.238936 -0.002798 0.194605 -0.297183 -0.381385
+-8.505656 159.232880 5.093085 -4.275481 -34.218761 -10.699747 16.894588 -1.436849 -33.462967 -20.510601 7.126741 40.893337 -0.768753 0.000108 -0.398985 0.997171 0.765775 1.027212 4.422439 8.145576 -5.102117 7.808385 -1.992654 46.386856 -0.658558 0.243981 -0.047508 0.397433 -0.464001 0.280237 0.548574 4.702779 14.729568 0.978264 5.056152 9.099132 1.566480 5.795266 8.751904 0.091444 10.723618 22.479464 -2.354585 12.248425 -26.003216 -21.443880 -21.453941 -10.138045 -50.662258 -25.681345 1.116512 -3.489121 -19.547783 -2.630942 0.300990 -0.345499 1.008927 -0.366877 0.671679 0.076758 22.205805 16.651075 -9.074614 43.962494 18.337772 -2.364227 8.833105 11.021660 -0.203839 -0.423237 0.258786 -0.003379 0.194872 -0.300714 -0.411882
+-7.834593 159.966415 4.643678 -1.882970 -36.433475 -12.618097 16.977129 -2.366022 -33.195255 -23.068577 9.127148 45.066254 -0.826644 0.006783 -0.446866 1.016415 0.779554 1.082392 2.403907 7.729887 -4.978648 5.499464 -1.208755 46.202560 -0.680634 0.256667 -0.071243 0.415049 -0.514808 0.288189 -0.894960 5.008406 14.773674 0.728998 4.814317 9.539832 1.880666 5.625733 9.502871 0.481985 11.132852 24.406157 -3.963163 13.447228 -27.493416 -21.919958 -24.452873 -9.874481 -50.519382 -27.605021 1.394769 -3.481914 -22.680683 -2.919984 0.293171 -0.381413 1.057725 -0.381508 0.706927 0.039973 23.551392 19.155375 -8.678759 44.427933 19.475800 -2.534384 10.078039 14.917957 -0.136241 -0.443249 0.286654 -0.014468 0.192930 -0.291066 -0.456353
+-7.165162 160.793503 4.283707 0.238823 -39.238861 -14.378939 17.246164 -2.741065 -32.197899 -25.600136 11.241257 48.281536 -0.828927 -0.003474 -0.459932 1.046581 0.800791 1.133092 0.858499 7.428174 -4.730891 3.079095 -0.211007 45.367607 -0.697090 0.261287 -0.081477 0.423085 -0.556403 0.300455 -1.830559 5.288857 14.921275 0.611014 4.816435 9.875745 2.063020 5.651507 9.983761 0.213365 11.375553 25.710402 -5.501446 14.038312 -27.795765 -22.714998 -26.952948 -9.265451 -49.609154 -29.469955 1.793366 -5.268327 -26.537363 -2.625034 0.303896 -0.376783 1.066818 -0.392220 0.732552 0.031906 24.831026 21.618864 -8.144290 43.932644 20.646214 -2.517233 12.358344 18.527437 0.213746 -0.438089 0.275954 0.001273 0.171888 -0.312142 -0.473910
+-6.430449 161.606766 3.940396 1.876936 -41.408436 -15.453056 17.315481 -3.309673 -31.762228 -27.458036 13.012508 51.162342 -0.853230 0.017257 -0.470488 1.040103 0.791094 1.137349 -0.158021 6.884166 -4.704592 0.910457 0.515511 44.064404 -0.694193 0.252056 -0.086085 0.427463 -0.553359 0.303073 -2.211656 5.232605 14.399217 0.448939 4.656695 10.410739 2.072017 5.548632 10.922960 0.120679 12.149110 26.049734 -6.363546 14.769971 -28.047478 -21.885748 -28.814566 -8.885612 -49.217857 -31.430677 2.167693 -6.195895 -32.240715 -2.587411 0.283281 -0.386881 1.072084 -0.381140 0.727265 0.021449 25.270052 23.226330 -8.199663 44.350948 22.273361 -2.195814 15.428885 21.894342 0.860539 -0.452317 0.280859 -0.011759 0.177549 -0.297239 -0.487329
+-5.631417 162.491837 3.606476 3.008605 -43.793907 -16.128222 17.358213 -3.807299 -31.181992 -28.127312 14.355082 54.328346 -0.875380 0.030412 -0.478622 1.045152 0.801579 1.140562 -0.503042 6.345408 -4.653802 -1.238565 1.208363 42.467804 -0.696775 0.241634 -0.084501 0.439878 -0.545771 0.308435 -1.805209 4.923957 13.687533 0.194250 4.627897 11.082767 1.639677 5.581228 12.179871 0.086009 13.153048 25.982771 -7.032184 15.516168 -28.798433 -20.668625 -30.623541 -8.528894 -48.476280 -33.652847 2.571884 -6.499969 -39.004627 -2.637658 0.265644 -0.395420 1.076154 -0.369095 0.727069 0.020652 25.220594 24.555351 -8.555973 45.347664 24.207422 -1.781312 18.345381 25.557941 1.650612 -0.470212 0.284291 -0.019050 0.188891 -0.289525 -0.492938
+-4.759070 163.480988 3.296902 4.000474 -46.216972 -16.110279 17.041389 -4.012347 -30.829884 -27.407703 15.105681 57.414116 -0.887821 0.055647 -0.475868 1.036110 0.781297 1.144281 -0.706903 5.986824 -5.174107 -3.264966 1.854724 40.227932 -0.678233 0.208492 -0.083553 0.442425 -0.537517 0.310133 -1.355690 4.766460 12.246209 0.064123 4.615983 11.587502 1.463282 5.535231 13.488696 0.044245 13.203000 25.498465 -8.423624 15.900200 -28.055286 -19.438356 -31.717064 -8.047983 -47.874111 -35.727654 3.130935 -5.793884 -45.148911 -2.987562 0.240502 -0.379545 1.054626 -0.341293 0.699712 0.016981 24.315844 26.448877 -8.999475 46.777725 26.329975 -0.899163 20.277107 27.449997 2.255914 -0.482816 0.254171 -0.031246 0.175106 -0.286093 -0.505863
+-3.919379 164.453705 3.035330 4.618347 -47.894962 -15.853466 15.937125 -4.265170 -30.084673 -25.190874 14.861521 60.253738 -0.912246 0.125652 -0.456237 1.006235 0.737047 1.116181 -0.879146 5.668768 -5.506497 -4.686450 2.204998 37.523163 -0.653045 0.161770 -0.074532 0.440689 -0.471368 0.322588 -0.624978 4.708740 10.677910 0.049026 4.637609 12.178946 1.260018 5.524060 14.939481 0.318657 13.213214 24.626966 -8.532291 16.065853 -26.863483 -17.165804 -32.795708 -7.951488 -47.850529 -38.542503 4.630060 -4.767030 -50.241539 -3.444657 0.179878 -0.383156 1.032963 -0.286382 0.654024 0.025608 22.603704 27.744493 -9.898866 47.679058 28.825258 0.351815 22.340576 29.293272 3.080029 -0.514913 0.238386 -0.062805 0.193268 -0.259166 -0.505391
+-3.137157 165.394684 2.850589 4.788627 -49.274307 -15.089492 14.558990 -4.433570 -29.314163 -22.124289 14.005825 63.133274 -0.924392 0.175187 -0.438430 0.987270 0.716609 1.096602 -0.808694 5.284151 -5.709283 -5.983040 2.418431 33.917595 -0.626072 0.105059 -0.069825 0.452400 -0.421861 0.330248 0.304352 4.579569 8.491406 0.017570 4.591809 12.866518 1.035248 5.328427 16.938099 0.759341 12.989155 23.195707 -9.210006 16.262569 -25.678915 -14.440363 -33.361832 -8.051211 -47.944576 -41.797501 6.582096 -2.172716 -55.054985 -4.706615 0.125628 -0.361458 0.986659 -0.230048 0.607496 0.035212 20.547213 28.646639 -11.131923 49.223793 31.833120 1.986602 23.129206 31.748959 3.673123 -0.540090 0.195796 -0.082153 0.195005 -0.248516 -0.502579
+-2.406451 166.210403 2.752489 4.892838 -50.037384 -14.225322 12.903289 -4.695079 -28.256201 -18.902647 12.606822 65.083183 -0.925088 0.253884 -0.412462 0.926391 0.644968 1.054169 -1.135631 4.860869 -5.757716 -6.393168 2.246193 30.598225 -0.577139 0.020560 -0.068196 0.435293 -0.348041 0.354351 0.982351 4.503106 6.147602 0.095033 4.374615 13.454057 1.047192 4.932051 18.879015 1.807042 12.452356 21.543949 -10.254242 16.826929 -23.443832 -11.566036 -33.395061 -8.345017 -48.071400 -45.383736 9.172027 0.914795 -58.477112 -6.211321 0.032111 -0.325246 0.915370 -0.141573 0.534780 0.029169 17.950436 28.770397 -12.194605 50.850979 34.642761 3.826443 24.424410 36.040520 4.733373 -0.563204 0.142196 -0.103941 0.173594 -0.213898 -0.499864
+-1.741199 166.936127 2.686651 4.567204 -50.538330 -13.126105 11.204014 -4.747783 -26.838512 -15.149994 10.656993 66.579414 -0.955702 0.338249 -0.397941 0.896324 0.602005 1.037689 -1.304852 4.599656 -5.750942 -6.092016 1.940378 27.872324 -0.541907 -0.065016 -0.068236 0.442993 -0.283998 0.381872 1.818287 4.337660 3.753734 0.135362 4.067211 14.070420 0.972161 4.424769 21.120447 2.898300 12.165617 19.755478 -11.424712 17.272381 -22.140577 -7.813501 -32.500191 -9.049336 -48.975452 -48.780499 11.931283 7.332956 -61.042088 -10.123203 -0.059005 -0.298473 0.863049 -0.057371 0.473225 0.026906 14.149646 28.324905 -13.783198 53.313660 38.319782 6.839855 24.272905 40.452888 5.504963 -0.606896 0.087924 -0.130276 0.163959 -0.187855 -0.508663
+-1.116850 167.522873 2.557625 4.297440 -51.116196 -12.040836 9.675473 -4.519208 -24.997295 -11.616341 8.511946 66.435524 -0.962903 0.379689 -0.370564 0.886650 0.604063 1.012242 -1.389569 4.485321 -5.933987 -5.458545 1.680303 25.809126 -0.510909 -0.126777 -0.052937 0.470299 -0.222756 0.380826 2.431949 4.417589 1.790206 0.288639 4.008914 14.463243 1.102686 4.126750 22.880022 3.484895 12.243679 17.819023 -11.681596 17.269367 -21.005154 -4.042046 -31.650074 -9.746116 -50.608727 -51.772160 14.626603 15.499710 -60.727291 -15.139826 -0.112405 -0.276126 0.800831 0.006442 0.420169 0.050234 11.013492 27.429026 -14.641417 54.557671 41.780724 9.835437 22.937544 46.543819 6.112786 -0.636364 0.035755 -0.149238 0.177622 -0.189456 -0.494775
+-0.541391 167.898407 2.453864 4.361744 -51.434917 -11.054779 7.878354 -3.735228 -23.162697 -7.941105 6.429951 65.177292 -0.949777 0.437757 -0.329240 0.861100 0.597817 0.944796 -1.804626 4.502451 -6.149775 -4.466592 1.429586 23.820765 -0.463412 -0.216011 -0.034420 0.493983 -0.121902 0.390823 2.997385 4.571626 -0.257583 0.370569 4.035855 14.711700 1.023057 3.951723 24.626509 3.914071 12.578932 15.228978 -11.110199 16.875650 -18.752180 -0.743901 -30.664396 -10.028459 -52.518311 -55.049278 18.219839 24.426231 -60.330238 -20.521482 -0.187869 -0.222364 0.699917 0.095241 0.339233 0.084744 8.055830 26.482649 -14.916796 54.994991 46.488121 13.880345 15.687236 53.654606 3.903935 -0.666761 -0.038188 -0.158363 0.186500 -0.177474 -0.454581
+-0.017238 168.023041 2.402568 3.871042 -52.003544 -9.528176 6.709861 -2.892868 -20.983067 -4.907027 4.673044 62.769791 -0.954610 0.534384 -0.294666 0.822020 0.562186 0.882944 -1.723489 4.555834 -6.583753 -3.497004 1.180878 22.104990 -0.413836 -0.329201 -0.024414 0.506356 -0.010320 0.427512 3.750002 4.468297 -2.291674 0.330457 3.861936 14.705108 0.769654 3.718451 26.160660 4.599025 13.089343 12.731689 -11.231078 17.006748 -16.437872 2.541770 -28.768927 -10.236218 -55.160057 -57.955772 22.532944 33.399292 -59.995354 -26.060850 -0.301763 -0.163693 0.600793 0.208210 0.250513 0.104402 4.048083 25.138454 -15.242782 57.143761 51.430218 19.309547 2.892658 58.712181 -2.700378 -0.714362 -0.116505 -0.171942 0.181699 -0.144272 -0.429184
+0.539191 168.027603 2.341322 3.245795 -52.347149 -8.080647 5.777129 -2.232229 -18.337067 -2.540280 3.240963 59.102299 -0.965928 0.613875 -0.258828 0.786637 0.532197 0.849030 -1.567415 4.424007 -6.680613 -2.641161 0.928540 19.995281 -0.369216 -0.409351 -0.008863 0.520865 0.082009 0.440413 4.445382 4.289368 -3.820657 0.398321 3.613709 14.689941 0.682775 3.432298 27.302216 4.940606 13.312265 10.404421 -11.891983 17.157036 -14.969582 5.120941 -26.997736 -10.015025 -56.990723 -60.259449 26.320190 43.209087 -60.279366 -32.511528 -0.399214 -0.149394 0.521621 0.303220 0.178195 0.117346 0.246590 24.085421 -15.501101 58.610477 55.349571 24.087618 -9.708085 61.525383 -10.294286 -0.753909 -0.165854 -0.198434 0.200387 -0.123885 -0.415817
+1.014935 167.862869 2.262209 2.580691 -52.641598 -6.906631 5.184370 -1.621103 -14.734839 -0.888774 2.226668 54.012791 -0.958989 0.669210 -0.238241 0.763504 0.529607 0.816491 -1.240811 4.195116 -6.455062 -2.224697 0.781500 17.749666 -0.338735 -0.486533 -0.007768 0.538846 0.153963 0.468239 5.080504 4.268611 -5.177485 0.521450 3.463481 14.743793 0.583985 3.059003 28.372547 5.678744 13.514594 8.482979 -12.038959 17.624033 -13.800121 7.956075 -25.593958 -9.929939 -56.198639 -63.232788 29.245718 51.822342 -58.840752 -37.121258 -0.487091 -0.106499 0.436747 0.386674 0.126779 0.125656 -2.841308 22.841391 -15.862072 60.078983 58.608681 28.536282 -20.106514 61.781517 -16.742739 -0.780824 -0.222018 -0.197245 0.195458 -0.107803 -0.393776
+1.574889 167.596359 2.205952 1.446637 -52.762737 -5.367519 5.059177 -1.391165 -10.710621 0.018047 1.433262 47.472149 -0.977717 0.731497 -0.225167 0.720070 0.485519 0.777411 -0.809864 3.966638 -6.352109 -2.113040 0.665520 15.869721 -0.305485 -0.549534 -0.004019 0.538197 0.215648 0.482522 5.767570 3.989911 -6.267773 0.639618 3.058176 14.700214 0.619620 2.579630 28.883720 6.159400 13.960284 7.362110 -12.458116 18.283043 -12.751431 10.052903 -24.351517 -9.480057 -53.699905 -64.759018 29.512980 58.553856 -56.511219 -40.093899 -0.560956 -0.092764 0.394651 0.453986 0.074504 0.123734 -6.371673 21.826117 -16.047449 60.999523 61.296791 32.375477 -28.739771 61.659569 -22.103241 -0.812228 -0.251972 -0.224097 0.195156 -0.076674 -0.393788
+2.122991 167.238693 2.187022 0.313755 -52.490204 -3.947927 4.938060 -1.299505 -6.705627 0.775312 0.735472 40.713821 -0.969301 0.772447 -0.194572 0.698240 0.467648 0.746544 -0.394179 3.708625 -6.110442 -1.957030 0.565109 14.122602 -0.279853 -0.608436 0.003066 0.544972 0.274963 0.493684 6.583023 3.607448 -7.297063 0.777250 2.633056 14.704673 0.659450 2.071916 29.388580 6.446123 14.108173 6.241909 -12.469319 18.545872 -11.315546 11.498991 -23.173052 -8.540711 -50.360516 -65.460114 28.249987 66.244225 -53.850945 -43.499607 -0.610585 -0.062093 0.339693 0.511628 0.028498 0.142019 -10.072805 20.962786 -16.156094 60.228111 63.554401 34.681648 -37.216831 61.106831 -27.350290 -0.827337 -0.300907 -0.235957 0.192610 -0.073424 -0.377537
+2.693966 166.916077 2.238712 -1.309960 -50.965702 -2.402592 5.175356 -1.478482 -2.685783 1.809810 -0.111490 33.517467 -0.961846 0.803516 -0.183226 0.676091 0.450051 0.720657 0.021776 3.442335 -5.737654 -1.272760 0.363422 12.778367 -0.264133 -0.651729 0.003701 0.540997 0.309819 0.515863 7.776382 2.774622 -8.128393 0.951592 1.749423 14.789710 0.656776 1.213658 29.835453 6.426330 14.210180 5.425530 -12.987343 18.695934 -10.650862 11.861858 -22.243177 -7.641180 -47.053417 -65.694344 26.514828 71.933510 -51.484486 -45.556492 -0.654173 -0.038133 0.300737 0.553796 0.003786 0.145219 -12.953259 19.873320 -16.167242 58.951290 65.573540 36.233543 -44.506298 60.223156 -31.614584 -0.837967 -0.328028 -0.232760 0.180454 -0.059542 -0.365360
+3.344231 166.516556 2.275648 -2.831777 -49.371227 -0.856844 5.602200 -1.604262 0.739984 3.104707 -0.801787 26.816574 -0.944391 0.822720 -0.162772 0.665852 0.444867 0.702334 0.268972 3.304372 -5.801988 -0.497117 0.202136 11.966423 -0.246493 -0.682495 0.009563 0.543759 0.344848 0.522821 8.932507 1.857474 -8.854094 1.053901 0.813424 14.744324 0.536229 0.242072 30.082453 6.469250 14.160932 4.716728 -12.887718 18.627659 -9.715234 11.906597 -21.417625 -6.675105 -44.719986 -65.960693 25.528608 77.199326 -49.268978 -47.273605 -0.682575 -0.014174 0.256794 0.586916 -0.024312 0.156279 -15.117030 18.801651 -16.190924 58.871418 67.275948 38.253052 -49.385948 58.973614 -34.156399 -0.840701 -0.358036 -0.229551 0.177425 -0.059580 -0.348875
+4.088347 166.135605 2.221860 -3.789623 -47.718605 0.243229 5.992908 -1.589058 3.621816 3.787888 -1.090564 20.618830 -0.964842 0.858817 -0.154754 0.645432 0.425519 0.680821 0.050851 3.428034 -6.595347 0.510630 0.033225 12.253393 -0.233086 -0.715098 0.009229 0.550480 0.381367 0.525954 9.625408 0.879968 -9.279586 1.091767 -0.226128 14.730681 0.445644 -0.853653 30.219864 6.392773 14.505769 3.931043 -13.087815 18.835524 -9.332656 12.099916 -20.844944 -6.184596 -40.841709 -66.085686 23.457973 80.984131 -47.533329 -48.129200 -0.718396 -0.016723 0.242627 0.619485 -0.050645 0.158796 -16.214434 17.959436 -16.351107 59.169277 69.208435 40.529335 -52.380905 57.442654 -35.167660 -0.861407 -0.370403 -0.252081 0.189459 -0.042917 -0.348726
+4.813396 165.871536 2.114463 -4.114263 -46.526340 0.768420 6.077905 -1.426612 6.019614 4.207882 -1.172302 15.388182 -0.975140 0.885805 -0.149485 0.645791 0.427648 0.698457 -0.542137 3.532210 -7.431653 1.385947 -0.112376 12.560043 -0.226389 -0.739483 0.003196 0.564623 0.395839 0.535510 9.543374 0.233090 -9.648150 1.246564 -0.986023 14.809028 0.725695 -1.763279 30.628012 6.600634 14.256324 3.307508 -13.710839 18.911345 -9.298841 12.732289 -19.973492 -6.519726 -38.631401 -67.696899 23.152399 80.889015 -45.741447 -46.305912 -0.753440 -0.017552 0.219062 0.648916 -0.061414 0.154361 -17.137726 16.946499 -16.522482 59.544132 70.997849 42.608353 -55.432217 55.552082 -36.067253 -0.873225 -0.388853 -0.257990 0.192265 -0.045149 -0.353095
+5.533974 165.746384 2.075864 -4.566462 -45.609764 1.454927 6.405031 -1.199720 7.733717 4.191383 -1.094135 11.088933 -0.992532 0.917020 -0.145568 0.636329 0.416415 0.697439 -0.942615 3.576872 -8.171201 2.072731 -0.253487 12.510178 -0.216528 -0.763465 0.004822 0.570931 0.418819 0.542791 9.632628 -0.336958 -9.938972 1.325083 -1.658846 14.787740 0.885473 -2.586810 30.807547 6.838702 14.095219 2.803681 -14.081438 18.978403 -9.149955 12.765807 -19.520563 -6.676977 -36.691902 -68.672310 22.575163 80.770302 -44.505062 -44.939026 -0.789069 -0.023248 0.205625 0.678495 -0.078759 0.151664 -17.390558 16.595470 -16.580105 61.515057 72.139572 45.213779 -56.794827 53.990479 -36.097549 -0.893428 -0.397582 -0.270697 0.199780 -0.035105 -0.358478
+6.182292 165.742096 2.022618 -4.448292 -45.172607 1.775614 6.603162 -0.842956 8.960481 3.519059 -0.881249 7.358668 -1.002064 0.928626 -0.132967 0.648525 0.432218 0.700545 -1.366270 3.568439 -8.801847 2.040270 -0.265983 12.231169 -0.217740 -0.772941 0.017745 0.587647 0.440070 0.540895 9.359339 -0.615042 -10.195879 1.330779 -1.990932 14.762650 0.993268 -3.045335 30.958542 7.037008 13.999804 2.575595 -13.990031 18.902618 -9.162629 12.861414 -19.338072 -6.997868 -36.704880 -69.690643 23.087234 79.349464 -43.535240 -43.198849 -0.798091 -0.034187 0.201807 0.693341 -0.083715 0.170899 -16.809072 16.337109 -16.476202 63.666771 72.694939 47.586052 -57.554092 53.302601 -36.181171 -0.909447 -0.403617 -0.280776 0.221884 -0.045928 -0.354175
+6.931452 165.857742 2.042048 -4.524076 -45.471512 2.415572 6.684500 -0.525990 9.548419 2.799656 -0.689551 4.551904 -0.998985 0.917826 -0.125861 0.647533 0.435453 0.706568 -1.552945 3.579619 -9.558947 1.619832 -0.219466 11.813200 -0.221203 -0.750366 0.023462 0.587641 0.438556 0.524521 9.622713 -0.744724 -10.239721 1.259315 -2.083407 14.659130 0.779097 -3.142443 30.788919 7.092689 13.957775 2.779118 -13.979992 18.911421 -9.485190 12.599025 -19.564396 -7.049825 -37.936455 -69.937202 23.966663 78.551476 -43.408169 -42.624744 -0.784627 -0.061749 0.212402 0.681619 -0.073988 0.175305 -16.565708 16.180525 -16.328308 65.363434 72.428841 48.807285 -58.076004 53.666645 -36.776566 -0.900515 -0.383453 -0.289668 0.243410 -0.053883 -0.352447
+7.675751 166.100204 2.070122 -4.128090 -45.772118 2.760961 6.582593 -0.288415 9.202554 1.806580 -0.502180 3.280814 -1.007232 0.934264 -0.125298 0.618597 0.400284 0.699762 -1.928900 3.487741 -10.127186 0.726737 -0.150823 10.941847 -0.214101 -0.738840 0.025129 0.568147 0.448070 0.520274 9.418840 -0.749399 -10.224453 1.178980 -2.105778 14.525285 0.775315 -3.132056 30.578533 7.119805 13.919209 2.932585 -14.344238 19.053808 -9.693613 12.580996 -20.104471 -7.008117 -41.190720 -69.969582 25.981901 78.363060 -43.288658 -42.714020 -0.801493 -0.093635 0.223122 0.685947 -0.077671 0.159990 -16.251534 16.404156 -16.139996 67.353638 71.347771 49.360287 -58.352673 54.922142 -37.832985 -0.901637 -0.353418 -0.304566 0.257814 -0.031979 -0.360226
+8.448124 166.301224 2.234575 -4.153297 -46.296391 3.781082 6.706800 -0.174174 8.164332 0.664245 -0.338887 2.763365 -0.968317 0.904292 -0.121538 0.613074 0.398732 0.685733 -2.018538 3.354179 -10.796198 -0.126673 -0.113046 9.494903 -0.217796 -0.735774 0.029467 0.544810 0.431228 0.531432 9.976312 -0.604007 -10.213030 1.122508 -1.857118 14.020645 0.699111 -2.880503 29.795309 6.919830 13.569256 3.437332 -14.687613 19.020651 -9.391164 12.138350 -20.374187 -6.631380 -48.149910 -69.667625 30.390884 77.630547 -43.134418 -42.613262 -0.782190 -0.067446 0.212994 0.675874 -0.066330 0.163441 -15.813344 16.263140 -15.958813 70.225433 69.319916 49.998711 -56.459789 57.044991 -37.963970 -0.879355 -0.360009 -0.274940 0.226777 -0.038582 -0.346344
+9.282786 166.494858 2.347009 -3.928795 -46.267166 4.502756 6.428177 -0.230351 6.592460 0.199388 -0.289583 3.161477 -0.936374 0.874512 -0.119686 0.626233 0.424233 0.686618 -2.211951 3.086046 -11.023399 -1.190971 -0.081117 7.473042 -0.226323 -0.730708 0.036597 0.541421 0.414474 0.540792 10.648317 -0.454686 -10.119455 1.047008 -1.567978 13.704820 0.487235 -2.615505 29.267078 6.617688 13.330579 3.289179 -15.048615 18.882923 -9.547975 11.276918 -20.780516 -6.425837 -53.815285 -69.043030 33.721661 77.028404 -43.968567 -43.241825 -0.766231 -0.046558 0.197844 0.668443 -0.049111 0.174003 -14.653196 16.206802 -15.984611 71.905121 67.237083 49.336391 -53.345303 59.163342 -37.195278 -0.865278 -0.367869 -0.244182 0.210047 -0.055226 -0.331272
+9.987024 166.609894 2.473021 -3.136998 -46.390316 4.714163 5.770554 -0.289849 4.999285 -0.387645 -0.227076 3.891324 -0.933112 0.862783 -0.114195 0.628699 0.422997 0.684465 -2.971613 2.695870 -11.014588 -1.807122 -0.127723 5.261276 -0.230353 -0.710394 0.043340 0.536817 0.410120 0.528214 10.550545 -0.095100 -10.051905 0.981614 -1.129025 13.418004 0.567488 -2.125025 28.658171 6.289466 13.210185 3.521309 -14.803766 18.554222 -9.669437 10.998502 -21.039623 -6.738458 -60.729252 -67.804482 37.449417 73.295395 -45.765530 -42.805649 -0.743066 -0.061895 0.214802 0.650001 -0.042513 0.181157 -12.756871 16.009085 -15.728785 72.112259 64.787239 47.309265 -49.490715 62.374615 -36.256721 -0.857743 -0.352462 -0.248829 0.222600 -0.060435 -0.328974
+10.609015 166.630081 2.673107 -3.135434 -46.986843 5.377173 5.519662 -0.344492 3.658340 -1.161456 -0.143338 4.655225 -0.925148 0.801436 -0.138361 0.680590 0.482693 0.714220 -3.008521 2.466415 -10.979682 -2.571390 -0.128521 3.314441 -0.258659 -0.674429 0.033636 0.555778 0.347898 0.518019 11.077219 0.304370 -9.943113 0.911144 -0.610080 13.158225 0.347211 -1.585290 28.096113 5.962961 13.161081 4.155705 -14.352313 18.135397 -10.577666 10.876793 -20.990904 -7.267356 -67.501236 -66.295486 41.076885 68.054977 -48.515629 -41.867592 -0.674972 -0.044893 0.243331 0.593388 -0.002065 0.185195 -11.143422 15.545979 -15.801326 74.072563 62.349815 46.512150 -42.419422 64.815987 -32.580124 -0.838154 -0.351920 -0.220728 0.206311 -0.091956 -0.329915
+11.287258 166.575317 2.875085 -3.017461 -47.034439 5.605857 5.282553 -0.456198 2.190993 -2.010683 -0.033410 6.026423 -0.915196 0.757858 -0.156570 0.691256 0.499767 0.715842 -3.337122 2.261250 -10.816745 -2.958837 -0.162566 1.978839 -0.277146 -0.634447 0.021719 0.550111 0.306414 0.506944 11.473438 0.529531 -9.672609 0.867118 -0.299386 13.043264 0.141956 -1.211992 27.429104 5.563430 13.129786 4.750746 -13.919151 17.716015 -11.302094 10.442020 -21.725042 -7.825304 -70.046265 -64.170631 40.751312 61.536026 -51.899170 -40.211170 -0.625531 -0.050168 0.273576 0.544298 0.029618 0.176874 -9.282664 15.843668 -15.935754 73.889618 59.597332 43.284920 -31.042006 66.623177 -25.413580 -0.813509 -0.325952 -0.205116 0.200880 -0.095371 -0.327139
+11.863712 166.463837 3.024435 -2.495398 -47.147263 5.546171 4.835598 -0.621972 0.556280 -3.121597 0.136987 7.777357 -0.902756 0.724637 -0.162514 0.685891 0.477446 0.721941 -4.096847 2.062710 -10.849076 -3.036463 -0.223883 0.992493 -0.287030 -0.588382 0.025372 0.518753 0.268736 0.493044 10.841722 0.522071 -9.321322 0.820394 -0.269371 12.876479 0.374337 -1.066074 26.485256 5.411653 13.156612 5.820654 -13.811643 17.776464 -11.664165 9.143945 -22.260668 -8.141236 -71.421997 -61.269115 38.767235 52.778831 -55.450920 -36.906933 -0.577676 -0.068979 0.317975 0.498814 0.053167 0.167633 -7.361797 16.529169 -15.911528 73.812050 56.629707 39.688011 -17.302402 66.768982 -16.052586 -0.788626 -0.290607 -0.202831 0.191856 -0.097674 -0.338239
+12.401054 166.277664 3.154704 -2.037565 -47.591949 5.415448 4.425879 -0.777078 -0.847201 -4.249456 0.337114 9.440880 -0.870760 0.671123 -0.169189 0.701285 0.482105 0.756035 -4.823535 1.944576 -11.127158 -2.877724 -0.268732 0.464964 -0.312754 -0.533135 0.023128 0.490767 0.208162 0.489862 9.686991 0.588235 -8.906542 0.920222 -0.218365 12.797845 1.038319 -0.995882 25.654694 5.434700 13.081088 7.084601 -14.084243 18.010908 -12.444237 8.137945 -22.453556 -8.675416 -72.790688 -58.218048 36.405453 41.390324 -58.006191 -31.138683 -0.518763 -0.078089 0.357650 0.443880 0.101073 0.159553 -5.290864 17.223194 -15.896435 73.718361 53.580341 35.691223 -4.735802 64.801926 -7.590811 -0.749722 -0.261426 -0.177602 0.170032 -0.120518 -0.346218
+13.009628 165.965729 3.271900 -1.599194 -47.615776 5.253868 3.936767 -1.008868 -2.273592 -5.255167 0.526702 11.173540 -0.851527 0.635296 -0.185302 0.696868 0.462706 0.779299 -5.782530 1.960593 -11.972582 -2.454888 -0.311167 1.149524 -0.338580 -0.489529 0.008743 0.451783 0.151036 0.500010 8.859654 0.416725 -8.360505 0.804848 -0.362835 12.657328 1.248595 -1.040597 24.621264 5.756118 13.107388 8.471386 -14.608809 18.523249 -13.256151 6.587135 -22.331894 -9.380278 -73.134293 -54.735966 33.103741 25.748184 -59.487988 -21.907495 -0.477792 -0.088404 0.405408 0.396669 0.147616 0.136833 -3.620882 17.437044 -15.965688 75.112976 50.245583 32.040432 4.919071 60.777485 -1.837394 -0.716589 -0.226837 -0.157760 0.139049 -0.121866 -0.361084
+13.689462 165.715256 3.357036 -1.525289 -47.352985 5.126395 3.498406 -1.336019 -3.517449 -5.589904 0.605295 12.880898 -0.828691 0.581504 -0.203737 0.686710 0.438279 0.810218 -6.341760 2.069883 -12.976401 -2.222594 -0.323506 2.569576 -0.357989 -0.428830 -0.001878 0.407752 0.076783 0.490936 8.293534 0.167247 -7.535941 0.813224 -0.585301 12.614116 1.447310 -1.184873 23.521425 6.062837 12.816745 10.041477 -15.351942 19.024492 -14.077400 4.619469 -23.113411 -10.017073 -71.529678 -51.379025 28.599667 9.291545 -58.586708 -11.682631 -0.422995 -0.112413 0.456453 0.337794 0.195500 0.105369 -1.405983 18.109829 -15.732746 75.129906 46.434978 26.554586 11.080467 55.365620 0.890533 -0.672955 -0.181828 -0.142557 0.108538 -0.128611 -0.383353
+14.340890 165.404556 3.512200 -1.447079 -46.619080 4.938597 3.089744 -1.707319 -4.562463 -5.856625 0.634827 14.411160 -0.803689 0.507842 -0.225091 0.696737 0.439189 0.852775 -6.788385 2.186548 -14.049139 -2.263346 -0.310509 4.552628 -0.389089 -0.356415 -0.008081 0.373815 -0.013550 0.478248 7.550427 -0.055913 -6.542283 1.055175 -0.835115 12.460199 2.099762 -1.391689 22.169083 6.373212 12.262589 11.831697 -16.036974 19.438776 -15.308483 3.124183 -23.787521 -10.731968 -70.668320 -48.315071 24.936066 -4.240743 -54.479362 -3.715521 -0.347205 -0.138050 0.518078 0.264602 0.260199 0.083844 0.825440 18.053167 -15.458365 73.993095 42.185501 20.460098 15.609978 49.038227 2.242805 -0.627372 -0.135274 -0.121289 0.080248 -0.152339 -0.404946
+14.950378 165.018173 3.797540 -1.462948 -45.454746 4.639722 2.957660 -2.082984 -5.279097 -6.165030 0.662631 15.945303 -0.782841 0.452228 -0.240743 0.694971 0.431214 0.870824 -7.284422 2.383875 -15.323796 -2.195810 -0.283828 7.683669 -0.409062 -0.299442 -0.011424 0.340246 -0.074252 0.466708 7.297747 -0.380790 -5.377279 1.294026 -1.106823 12.253443 2.448102 -1.498439 20.760929 6.308159 12.052160 13.019371 -16.238274 19.555813 -16.028206 0.244249 -25.022518 -10.924192 -68.617348 -45.258114 20.819571 -12.157901 -48.528503 0.207338 -0.290110 -0.160529 0.565281 0.208137 0.304053 0.065211 3.037800 18.043905 -15.088104 71.273048 38.630581 15.268636 18.606468 43.471981 2.859676 -0.591329 -0.092149 -0.105031 0.061955 -0.160574 -0.416139
+15.548557 164.614655 4.060344 -0.822508 -44.121681 3.669883 2.339354 -2.453251 -5.646589 -6.323235 0.658684 17.178185 -0.759197 0.389478 -0.259234 0.707116 0.443091 0.906007 -8.247067 2.518270 -16.659801 -2.202044 -0.232734 11.352078 -0.438053 -0.231460 -0.017038 0.314520 -0.143345 0.456366 6.283695 -0.651374 -4.055777 1.563119 -1.439776 12.040371 3.027382 -1.720565 19.457281 6.342428 11.837945 14.719854 -16.451115 19.658819 -17.063297 -3.105852 -25.975866 -10.878946 -66.261627 -42.296741 17.122465 -15.560457 -41.139008 1.300100 -0.230875 -0.190231 0.612396 0.146476 0.361282 0.046164 5.240134 18.377724 -15.069351 68.336533 35.998730 11.358818 17.344297 35.477619 1.663156 -0.552998 -0.042976 -0.080218 0.050287 -0.176439 -0.426192
+16.258875 164.121841 4.396281 -0.526689 -42.156631 3.096961 2.019501 -2.971795 -6.533850 -6.615857 0.680378 19.104445 -0.717315 0.334283 -0.259876 0.722446 0.454819 0.922395 -9.328238 2.684754 -18.373388 -1.465240 -0.298387 15.719181 -0.465424 -0.184207 -0.020246 0.289746 -0.193480 0.456953 5.969747 -0.987428 -2.639379 1.985360 -1.768169 11.528676 3.659006 -1.982298 17.828646 6.043072 11.164267 15.978730 -16.159763 19.152830 -17.022165 -6.791176 -26.318186 -10.280845 -64.828995 -39.297459 14.182349 -15.830262 -34.086334 0.930048 -0.168277 -0.189893 0.641259 0.093652 0.408390 0.050346 7.056951 18.279985 -14.689896 65.005257 33.120468 7.947034 15.165175 28.456213 0.616273 -0.511617 -0.022493 -0.048137 0.029762 -0.201445 -0.417883
+17.121155 163.674973 4.763916 -0.405854 -39.236660 2.653123 1.838215 -3.724790 -7.803119 -6.759108 0.645287 21.660698 -0.686228 0.278868 -0.257977 0.739851 0.471171 0.930936 -10.780169 2.609465 -19.950228 0.197283 -0.670253 20.128645 -0.483128 -0.129328 -0.012439 0.273504 -0.231067 0.437368 6.007480 -1.486705 -1.083374 2.573779 -2.254842 10.880698 4.430285 -2.424507 16.082211 5.199182 10.519214 17.099606 -15.341762 18.158955 -16.820065 -9.979325 -26.385277 -9.282495 -63.947819 -36.175777 11.363956 -13.223333 -28.615065 -0.279286 -0.102524 -0.205485 0.670263 0.039649 0.441250 0.058172 8.847895 18.030476 -14.134006 61.200119 30.162346 5.056910 12.578066 21.769110 -0.101112 -0.478289 0.007417 -0.027782 0.032450 -0.223496 -0.407672
+17.987257 163.158676 5.165557 -0.280909 -36.441559 2.200913 1.793572 -4.434504 -9.069856 -7.343200 0.723441 24.051542 -0.681959 0.247340 -0.263224 0.749371 0.470826 0.936671 -11.802122 2.483657 -21.586304 1.182879 -1.073035 24.508240 -0.496593 -0.087906 -0.011062 0.262516 -0.263968 0.420173 6.108651 -1.907411 0.472202 3.176996 -2.695463 10.254608 5.211618 -2.795543 14.492119 4.370212 10.061915 17.801533 -14.890090 17.281948 -16.884142 -12.154376 -25.205059 -8.618223 -63.741871 -33.114552 9.065126 -10.763738 -24.465286 -1.145176 -0.049799 -0.226170 0.710272 -0.006741 0.465452 0.059838 9.630290 16.706665 -13.765465 58.390163 27.449877 2.976409 9.903769 16.152252 -0.518547 -0.459651 0.035538 -0.026320 0.036820 -0.233362 -0.410518
+18.817377 162.452118 5.698482 -0.430604 -34.172382 2.031970 2.178449 -4.988667 -10.145332 -8.686339 1.057935 26.239075 -0.649058 0.222042 -0.264935 0.732481 0.443080 0.932907 -12.446044 2.401036 -24.001551 1.969040 -1.600069 29.910732 -0.497606 -0.064112 -0.015886 0.224122 -0.293268 0.423610 6.627773 -2.420562 1.985492 3.635797 -3.087609 9.539906 5.610117 -3.091744 12.832644 3.872123 9.503442 17.847464 -15.232028 16.768122 -16.546968 -14.318172 -23.482506 -8.115184 -62.692909 -30.076515 7.002473 -9.019322 -20.322674 -1.478949 -0.023655 -0.218934 0.717353 -0.033354 0.478306 0.044043 9.636743 14.672241 -13.277026 57.031883 24.705708 1.119607 6.524127 12.321244 -0.924001 -0.427650 0.049968 -0.003955 0.008118 -0.229006 -0.407992
+19.560867 161.792160 6.139999 -0.294029 -32.319698 1.308927 2.233769 -5.468419 -10.732575 -9.758977 1.383542 28.208796 -0.639850 0.192414 -0.275345 0.729107 0.431405 0.932727 -12.930139 2.362654 -26.414808 2.450257 -2.076389 35.690922 -0.501605 -0.029591 -0.020603 0.205311 -0.326625 0.409433 6.761763 -2.790942 3.965942 4.064402 -3.414850 8.906984 5.857875 -3.305818 11.231076 3.319335 9.235732 18.173372 -14.940285 16.087576 -16.600031 -16.075827 -22.279053 -7.568247 -60.280659 -26.863106 4.939161 -7.828651 -16.717510 -1.536998 0.017585 -0.228632 0.744063 -0.073283 0.493246 0.031533 9.730667 13.081980 -12.630844 55.004684 22.089293 -0.635053 3.349969 9.671106 -1.134834 -0.404504 0.074015 0.002507 -0.000893 -0.228049 -0.411501
+20.224602 161.254517 6.599075 -0.332635 -31.351137 0.433412 2.455002 -5.541077 -10.571746 -11.059589 1.861845 29.440784 -0.622424 0.139985 -0.273872 0.751526 0.465420 0.928432 -12.774965 2.737276 -28.874720 2.585881 -2.354895 41.719025 -0.516569 0.016297 -0.012289 0.210724 -0.352087 0.380525 7.165047 -2.848556 6.114282 4.568718 -3.356800 8.417006 6.010482 -3.167976 9.858669 2.086951 9.485168 18.477165 -14.131598 15.180103 -17.124079 -16.677940 -20.562317 -7.400714 -58.572071 -24.247978 3.575681 -6.228309 -13.320272 -1.565023 0.081132 -0.242995 0.767215 -0.122983 0.517194 0.047763 9.835015 10.827761 -12.255850 52.176533 19.710264 -1.849759 1.285018 6.732428 -1.015553 -0.381530 0.097441 0.012278 0.018222 -0.248879 -0.396089
+20.872875 160.901703 7.034765 -0.464211 -30.660666 -0.433510 2.673152 -5.482160 -10.041775 -12.319407 2.337566 30.229118 -0.607982 0.110005 -0.265406 0.757847 0.476723 0.913260 -12.021896 3.301222 -31.189882 2.236186 -2.369417 46.975021 -0.521024 0.044332 -0.001557 0.210049 -0.359058 0.357662 7.702997 -2.979056 8.228499 5.045257 -3.318313 8.036686 6.023520 -3.031139 8.680167 1.071115 9.656452 18.589230 -13.518010 14.430027 -17.097666 -17.382322 -19.095917 -7.240079 -56.243767 -21.826435 2.470163 -4.387517 -9.405055 -1.462072 0.124652 -0.254522 0.780898 -0.153239 0.526482 0.065704 9.550178 8.885822 -11.754519 49.023010 17.470602 -2.685491 -0.111989 4.112675 -0.775527 -0.365014 0.112732 0.012349 0.035185 -0.261608 -0.381423
+21.639994 160.829788 7.481021 -0.622758 -29.786985 -1.884700 2.283099 -5.567119 -8.806602 -12.604412 2.436697 31.018452 -0.603511 0.087460 -0.276855 0.772165 0.482783 0.923314 -10.980488 3.771713 -32.316219 2.067063 -2.423262 50.997051 -0.540236 0.074081 -0.005267 0.198972 -0.389428 0.360868 8.342907 -3.351641 10.840002 5.625210 -3.525408 7.821380 5.869770 -3.069598 7.649729 0.650808 9.776376 19.321848 -13.334396 14.028391 -17.694664 -18.402843 -18.589746 -6.502235 -52.590324 -18.987827 1.140892 -3.023208 -6.905797 -1.348025 0.161266 -0.261033 0.815077 -0.189580 0.555324 0.064392 8.239124 8.055065 -10.758518 46.048599 15.254581 -3.208683 -1.091520 1.592966 -0.432053 -0.351876 0.134838 0.025966 0.029404 -0.265958 -0.382933
+22.424587 160.908325 7.925178 -0.490471 -28.952196 -3.469056 1.336498 -5.674159 -7.503947 -12.487623 2.377238 31.576254 -0.596319 0.073967 -0.277076 0.758839 0.470597 0.898235 -9.953231 4.158872 -33.392475 2.160884 -2.563747 54.342800 -0.536870 0.094891 -0.000763 0.185013 -0.389990 0.347134 9.092764 -3.841287 13.144320 5.987845 -3.720496 7.830401 5.483124 -3.105277 6.963216 -0.112324 9.898744 19.384218 -12.884274 13.345969 -17.692638 -18.561357 -17.824627 -5.743066 -49.085014 -16.278885 0.096327 -2.032188 -5.323343 -1.237794 0.181732 -0.273470 0.825958 -0.209336 0.554862 0.063239 6.876943 7.121930 -9.678952 43.083279 13.109707 -3.523948 -1.373094 -0.261948 -0.142213 -0.341089 0.158238 0.026091 0.039243 -0.254256 -0.373656
+23.068216 160.935287 8.543096 -0.436278 -28.071491 -4.969201 0.564327 -5.590859 -5.618447 -12.296007 2.287382 31.611900 -0.565054 0.050457 -0.265725 0.755624 0.464298 0.898159 -8.714998 4.598945 -34.485455 2.890420 -3.011736 57.040359 -0.541519 0.113503 0.004481 0.163393 -0.405349 0.346940 9.493400 -4.334207 14.952873 6.371686 -4.018046 8.027009 5.421814 -3.286953 6.647909 -0.553955 9.605702 19.111580 -13.468595 12.933849 -17.908739 -18.282885 -16.424681 -5.016461 -46.259041 -13.834525 -0.800706 -0.769497 -4.524465 -1.174586 0.207089 -0.271248 0.826546 -0.228122 0.567549 0.067077 4.821727 5.719222 -8.709655 40.986530 11.095417 -3.899732 -1.788374 -0.786228 -0.011765 -0.316219 0.165213 0.043130 0.029844 -0.264181 -0.363574
+23.712740 160.942703 9.323050 -0.599318 -26.723270 -6.319501 -0.155460 -5.561653 -3.512523 -11.891955 2.065704 31.452616 -0.538269 0.041541 -0.243085 0.716924 0.426200 0.867524 -7.456089 4.688745 -35.087532 3.938494 -3.794292 58.905201 -0.526702 0.127627 0.022362 0.131843 -0.390833 0.330828 10.296645 -5.149209 16.233130 6.656473 -4.409945 8.239621 5.156730 -3.526691 6.387286 -0.570579 9.342257 18.528896 -13.786405 12.824283 -17.583708 -17.849489 -15.090571 -4.014165 -43.565063 -11.130394 -1.708556 0.092901 -5.203298 -1.189002 0.212801 -0.291262 0.820949 -0.228239 0.558396 0.071292 2.206859 4.128012 -7.481816 39.591293 8.789874 -4.320118 -2.130549 -1.229685 0.122741 -0.297240 0.185543 0.034605 0.039052 -0.258056 -0.352514
+24.243956 161.042709 10.138887 -0.562326 -25.331175 -7.786211 -0.613432 -5.551534 -1.416547 -12.094377 2.014982 31.220966 -0.499184 0.023347 -0.223791 0.705707 0.412276 0.854163 -6.194920 4.618425 -34.851822 5.294713 -4.694408 59.146061 -0.520166 0.133804 0.034584 0.107697 -0.391482 0.329902 10.691087 -5.883470 17.202353 6.916006 -4.840452 8.608887 5.060363 -3.826022 6.436947 -0.904841 8.898948 17.676657 -14.208172 12.424594 -17.389872 -17.126730 -13.202976 -3.379419 -41.052414 -8.985575 -2.369873 0.805703 -6.117474 -1.214441 0.228904 -0.273964 0.804441 -0.233990 0.555044 0.081006 -0.019672 2.095010 -6.690527 37.759525 6.905876 -4.687798 -2.427107 -1.176888 0.173994 -0.274443 0.179563 0.050153 0.025607 -0.266645 -0.337505
+24.747442 160.870392 11.179552 -0.578539 -24.154449 -8.219872 -0.936901 -5.625724 -0.386215 -12.527210 2.088716 31.182953 -0.476140 0.074208 -0.178591 0.613041 0.305861 0.767077 -4.966709 4.493724 -35.246143 6.582835 -5.580624 58.713428 -0.466109 0.098409 0.059476 0.054857 -0.307502 0.320888 11.781857 -6.691152 16.796028 6.743843 -4.985833 8.706001 4.526690 -3.830220 6.383439 -0.946302 8.488519 16.003040 -14.010287 12.272089 -15.017850 -15.380864 -10.442210 -3.030805 -39.234646 -7.211109 -2.810589 0.887141 -7.536844 -1.274202 0.177573 -0.277170 0.763268 -0.180613 0.483986 0.085168 -2.506689 -0.986564 -6.003316 36.653732 4.884170 -5.199180 -2.806210 -0.854854 0.191117 -0.273786 0.178352 0.015746 0.033408 -0.222224 -0.319071
+25.213335 160.701965 12.193588 -0.845942 -23.051422 -8.161213 -0.904110 -5.684957 0.332777 -12.910088 2.163808 30.980381 -0.438464 0.122539 -0.125445 0.528355 0.206529 0.692907 -3.388099 4.560627 -35.916801 7.811176 -6.331916 57.676292 -0.407796 0.055356 0.081446 0.005881 -0.220031 0.312005 13.469209 -7.611569 15.729387 6.333099 -4.948132 8.774063 3.580273 -3.743841 6.513893 -0.684379 8.281332 14.177424 -13.361083 12.441552 -12.034737 -13.373982 -7.861249 -2.796458 -37.001450 -5.968611 -2.966073 0.532695 -8.605954 -1.245934 0.122792 -0.260270 0.702529 -0.119410 0.404888 0.091026 -4.601079 -4.041925 -5.429029 34.989899 3.055854 -5.526484 -2.762016 -0.647165 0.180077 -0.265609 0.155190 -0.012598 0.030121 -0.190733 -0.298594
+25.632938 160.749649 13.051257 -0.492865 -21.974169 -8.878628 -1.755484 -5.656342 1.673065 -13.018961 2.060964 30.379522 -0.421478 0.130250 -0.113707 0.496773 0.176204 0.653664 -1.826518 4.584180 -35.582439 8.616173 -6.525876 55.293709 -0.388612 0.034379 0.086310 -0.012125 -0.196096 0.314364 14.121047 -8.179625 15.231941 5.962939 -5.075099 9.090343 2.881322 -3.822383 6.937631 -0.516674 7.900000 13.028169 -13.183979 12.294391 -11.394678 -11.631428 -5.815143 -2.591468 -34.481136 -4.834396 -3.098848 0.822594 -9.827442 -1.268793 0.107955 -0.237085 0.678499 -0.101365 0.378991 0.092074 -6.267289 -6.337465 -4.952190 33.279041 1.446446 -5.851942 -3.306091 -0.368326 0.194454 -0.262062 0.141217 -0.013978 0.016206 -0.175855 -0.287376
+26.104988 160.896362 13.965075 -0.057939 -21.055170 -9.571999 -2.886122 -5.544180 3.153148 -12.934644 1.891727 29.578020 -0.412060 0.138143 -0.101730 0.454554 0.137933 0.606298 -0.317278 4.589125 -34.905312 9.536028 -6.574341 51.857410 -0.360851 0.023379 0.094021 -0.029845 -0.165000 0.298523 14.652732 -8.598117 14.889610 5.710014 -5.161633 9.303292 2.307444 -3.819375 7.148376 -0.597643 7.818739 11.919141 -12.729535 12.113002 -10.746063 -10.211658 -3.756370 -2.287253 -32.548527 -3.450843 -3.383921 1.534482 -12.660777 -1.446682 0.093359 -0.232053 0.657011 -0.086033 0.343812 0.088174 -7.820265 -8.597324 -4.433678 31.078848 -0.233092 -6.131640 -4.103442 0.337223 0.192112 -0.258543 0.141679 -0.028994 0.019398 -0.152918 -0.277645
+26.539045 161.073700 14.935816 0.547250 -20.791794 -10.104798 -4.250825 -5.331938 4.437512 -12.598433 1.676266 28.740479 -0.377824 0.138285 -0.083122 0.451326 0.134770 0.595281 1.284515 4.800222 -34.150448 9.944191 -6.175338 47.906193 -0.350290 0.013477 0.100568 -0.039561 -0.146735 0.306231 14.986228 -8.768910 13.744876 5.339252 -5.169948 9.657063 1.799087 -3.818850 7.960788 -0.735208 7.466435 11.453094 -12.274807 11.689947 -9.908114 -8.972543 -1.668569 -2.024903 -30.922911 -2.089892 -3.690157 2.569504 -16.170771 -1.742185 0.086264 -0.203547 0.623112 -0.073070 0.329006 0.097783 -8.537683 -10.219733 -3.942464 27.958426 -1.691526 -6.028136 -4.649889 1.120939 0.162565 -0.246776 0.121130 -0.011473 0.007524 -0.158651 -0.259085
+26.942667 161.344879 15.896255 1.111168 -20.721712 -10.597591 -5.323337 -5.051171 5.654825 -12.650623 1.602666 27.833784 -0.373337 0.137735 -0.080101 0.450876 0.145043 0.576128 2.927732 5.076637 -33.048817 10.019190 -5.563826 43.482086 -0.343068 -0.006288 0.106813 -0.031474 -0.133714 0.308576 15.360828 -8.868272 12.346582 4.943704 -5.174675 10.111707 1.264514 -3.810249 9.094934 -0.790980 7.210672 11.101158 -12.318106 11.479405 -9.616968 -8.512142 0.020960 -1.910882 -28.919224 -0.699997 -3.910028 4.508354 -19.858299 -2.224001 0.078637 -0.184834 0.602361 -0.058682 0.317163 0.108214 -8.636541 -11.399323 -3.504835 24.468323 -2.963563 -5.644667 -4.946243 2.094256 0.113133 -0.253664 0.103060 -0.007111 0.003796 -0.159320 -0.247979
+27.323874 161.485550 16.822321 1.940500 -20.586254 -11.312677 -6.426261 -4.807467 6.713341 -12.886385 1.595654 27.183458 -0.388482 0.137314 -0.097859 0.474284 0.167181 0.592241 4.363337 5.281616 -31.531485 9.498982 -4.702773 38.913509 -0.354493 -0.015034 0.097754 -0.017952 -0.153497 0.324411 14.890881 -8.579691 11.180299 4.772084 -5.225480 10.589808 1.320994 -3.811161 10.285958 -0.719606 6.772636 10.976127 -12.714890 11.198711 -10.499669 -7.627407 1.131515 -1.896130 -26.921474 0.094818 -3.812617 4.908077 -21.464312 -2.376128 0.080281 -0.166699 0.609572 -0.063852 0.327447 0.103616 -8.907653 -12.397421 -2.952041 21.458557 -4.484044 -5.297880 -5.691669 3.622358 0.060142 -0.265758 0.091516 0.005371 -0.010908 -0.161071 -0.255810
+27.733053 161.661743 17.672020 2.936355 -20.234690 -12.423692 -7.440042 -4.702025 7.723317 -13.639215 1.719158 27.088367 -0.347704 0.095099 -0.102163 0.512793 0.227143 0.597607 5.347136 5.092773 -29.293089 8.973684 -3.921381 33.949802 -0.381797 -0.017672 0.087484 -0.006805 -0.180232 0.351552 14.379848 -8.491043 10.683340 4.562894 -5.332934 11.013088 1.112489 -3.937561 11.036722 -1.037757 6.677705 10.967283 -12.649622 10.835899 -11.103036 -6.987932 1.553965 -1.552788 -24.450628 0.967897 -3.622825 5.621494 -22.384287 -2.451061 0.110502 -0.113252 0.592223 -0.082330 0.360925 0.121900 -8.923377 -12.963563 -2.366295 19.036575 -6.060053 -4.968187 -7.080666 5.788030 -0.049882 -0.244997 0.062701 0.057483 -0.042715 -0.188701 -0.228109
+28.199032 161.831436 18.564884 3.935950 -19.975906 -13.470344 -8.446548 -4.634501 8.534697 -14.544182 1.914137 27.118479 -0.368330 0.102974 -0.109190 0.522461 0.231264 0.610248 6.132268 4.886489 -27.054514 8.707843 -3.309890 29.131111 -0.385830 -0.015570 0.085881 0.002317 -0.186278 0.350654 13.767070 -8.363973 10.410259 4.456423 -5.503448 11.377352 1.066760 -4.043948 11.606845 -1.019220 6.530421 11.126109 -12.893304 10.702193 -11.680414 -6.545040 2.362676 -1.647606 -22.355587 1.570636 -3.376001 6.361985 -23.312319 -2.589114 0.111270 -0.124805 0.607171 -0.086344 0.364403 0.119365 -9.219361 -13.867187 -2.314639 17.515804 -6.807990 -4.825239 -9.570528 8.131412 -0.262355 -0.255550 0.068049 0.049185 -0.034856 -0.188238 -0.238254
+28.541647 161.793762 19.542185 4.836384 -19.584846 -13.983491 -9.181258 -4.602145 8.742255 -15.764236 2.256252 27.317549 -0.364263 0.098973 -0.114080 0.524402 0.241963 0.611414 7.115177 4.784397 -25.051985 8.157728 -2.640811 24.247156 -0.369422 -0.034754 0.080515 0.016462 -0.188609 0.343461 13.577951 -8.360355 9.505466 4.039819 -5.571687 11.464503 0.603761 -4.196056 12.063858 -0.785430 6.469944 11.022763 -12.940493 10.854214 -10.923961 -6.049020 3.724783 -2.050037 -19.880770 1.785222 -2.904534 6.634498 -23.258251 -2.454856 0.101281 -0.099871 0.574187 -0.072231 0.345223 0.112362 -9.214355 -15.139215 -2.807207 16.357065 -6.641982 -4.546820 -12.262469 11.375118 -0.758635 -0.254536 0.038821 0.053301 -0.050882 -0.193054 -0.238351
+28.819849 161.455246 20.582798 5.501999 -18.983150 -14.439883 -9.526916 -4.619923 9.075487 -17.114166 2.643763 27.612015 -0.383382 0.118425 -0.118071 0.527359 0.237103 0.620422 8.220951 4.635503 -22.843214 7.086633 -2.011553 19.550230 -0.373084 -0.041167 0.068217 0.023988 -0.185947 0.347996 13.764063 -8.303839 8.249594 3.652055 -5.576661 11.515009 0.061631 -4.181875 12.611379 -0.784308 6.331825 11.355735 -12.952488 10.665792 -10.932509 -5.263043 4.214811 -2.277065 -18.085043 1.730072 -2.537141 7.269808 -21.614712 -2.338888 0.094018 -0.105807 0.583146 -0.070687 0.344425 0.107690 -9.826147 -15.958713 -2.538904 14.973099 -7.633942 -4.311548 -13.660276 13.513130 -1.072121 -0.261758 0.037211 0.043573 -0.045830 -0.187614 -0.245351
+28.981285 161.012268 21.593531 6.283154 -18.216482 -14.890548 -9.775269 -4.668155 9.329054 -18.781454 3.175642 28.114075 -0.426747 0.158274 -0.117378 0.497460 0.195447 0.604459 8.982586 4.369207 -20.865597 5.802435 -1.512558 15.464101 -0.351822 -0.051487 0.070512 0.026505 -0.155678 0.326259 13.721465 -8.177870 7.020720 3.148574 -5.588692 11.484209 -0.528861 -4.155729 13.007775 -0.489836 6.371715 11.586772 -12.680111 10.763273 -10.295225 -4.610948 4.227846 -2.313578 -15.632827 1.728900 -1.975727 6.438355 -19.454004 -1.931612 0.067972 -0.143481 0.595944 -0.051967 0.313181 0.098198 -10.162242 -16.445547 -2.153110 13.438474 -8.816807 -4.008043 -14.461402 15.041906 -1.281716 -0.284887 0.052048 -0.004271 -0.016334 -0.162379 -0.263070
+29.091745 160.449585 22.696510 7.097708 -17.129730 -15.166535 -10.192272 -4.887434 9.344821 -20.191957 3.651021 29.180933 -0.438641 0.166236 -0.121271 0.502955 0.200876 0.605682 9.208413 3.916777 -19.096424 4.485482 -1.156900 11.882534 -0.351820 -0.058591 0.067507 0.036081 -0.151244 0.327244 13.243532 -7.911162 5.611916 2.762941 -5.614503 11.341988 -0.716813 -4.195790 13.419870 -0.310467 6.105711 11.929506 -12.333774 10.504126 -10.120347 -3.597796 4.366728 -2.416790 -14.227681 1.358350 -1.645980 5.930559 -17.445934 -1.661576 0.062807 -0.143912 0.596843 -0.047547 0.309774 0.098626 -10.614534 -16.990391 -1.703792 11.887816 -10.143188 -3.630639 -14.913715 16.414345 -1.447615 -0.293806 0.047669 -0.008381 -0.012970 -0.161023 -0.264786
+29.207226 159.837723 23.666128 7.712016 -16.004322 -15.367332 -9.978834 -5.258921 9.100378 -22.357061 4.474709 30.670122 -0.439226 0.163222 -0.127360 0.515837 0.220157 0.614076 9.433933 3.647732 -17.869516 2.987871 -0.884409 9.502289 -0.353731 -0.059620 0.066595 0.046321 -0.153594 0.330872 12.700594 -7.501065 4.181870 2.463449 -5.492935 11.347079 -0.698926 -4.101866 14.127007 0.180278 5.501620 12.209055 -11.815372 10.111182 -10.181724 -2.991740 3.895281 -2.436967 -12.062210 0.768945 -1.183762 5.186978 -15.957305 -1.402746 0.056840 -0.137682 0.587971 -0.044301 0.311424 0.096681 -10.285512 -17.062813 -0.946763 9.662179 -12.565763 -3.073917 -15.108890 17.430792 -1.512434 -0.299916 0.043413 0.001689 -0.013754 -0.163810 -0.263355
+29.426058 159.209763 24.614592 7.928586 -15.323689 -15.600723 -9.507494 -5.520351 9.085938 -24.409924 5.326041 31.885763 -0.418748 0.143598 -0.127389 0.544133 0.253459 0.623313 9.687757 3.499894 -16.785881 2.257941 -0.765191 8.231608 -0.366577 -0.068417 0.066878 0.053198 -0.165974 0.348757 12.889355 -7.166479 3.435863 2.314208 -5.161880 11.258159 -0.949478 -3.813627 14.326201 0.423360 4.832512 12.311110 -11.469893 9.620566 -10.045501 -2.816773 3.208280 -2.462684 -9.606656 -0.033824 -0.692229 4.037469 -14.369112 -1.091164 0.071214 -0.102609 0.576917 -0.048082 0.324757 0.111003 -10.229304 -16.947464 -0.260571 8.100140 -14.890740 -2.723325 -16.018366 16.948727 -1.421360 -0.295525 0.017982 0.031033 -0.036709 -0.185050 -0.251271
+29.766174 158.632538 25.475603 7.621066 -15.152352 -15.471346 -8.689743 -5.592311 8.784302 -26.091894 6.167400 32.777973 -0.413294 0.138755 -0.130253 0.537719 0.240441 0.636119 10.162057 3.676581 -16.570953 2.048931 -0.724808 8.049330 -0.360401 -0.073173 0.065454 0.042731 -0.185027 0.350596 13.919428 -6.928784 2.970354 2.330016 -4.719016 11.087609 -1.257635 -3.377333 14.288998 0.737286 3.976812 12.213526 -12.488499 9.621214 -9.735530 -3.279724 2.527533 -2.471359 -7.528010 -0.460287 -0.368102 3.751970 -13.351898 -0.926309 0.069560 -0.097729 0.569748 -0.045310 0.323642 0.098769 -10.915757 -16.559240 0.632193 7.309143 -16.583776 -2.514902 -15.946010 17.225903 -1.356128 -0.289680 0.009369 0.036431 -0.057897 -0.188458 -0.261622
+30.049887 158.162369 26.189802 6.962699 -14.989684 -15.508135 -7.497336 -5.706891 8.641949 -27.402998 6.910899 33.689133 -0.371358 0.115395 -0.110283 0.528690 0.237223 0.632792 10.841223 3.934454 -16.363766 1.802631 -0.675330 8.332833 -0.363488 -0.062381 0.074922 0.023858 -0.188796 0.350292 15.025036 -6.939703 3.109402 2.469576 -4.399085 10.865653 -1.578356 -3.061251 13.812459 1.058936 3.283553 12.595739 -12.710034 9.574748 -8.929901 -3.764917 1.589422 -2.094889 -6.462386 -0.273595 -0.331282 4.513516 -12.293045 -0.873566 0.084254 -0.096655 0.556048 -0.048575 0.336793 0.112239 -11.841180 -15.513090 1.390567 6.818652 -17.584158 -2.514080 -16.155731 15.101115 -0.978127 -0.263828 0.008948 0.051259 -0.065323 -0.207080 -0.245768
+30.248638 157.761292 26.728624 6.491487 -14.829825 -15.835049 -6.552793 -5.816516 8.458082 -28.358418 7.657000 34.973011 -0.372915 0.121387 -0.104146 0.503471 0.201766 0.629694 11.110970 4.290791 -16.501444 1.960814 -0.686886 9.932629 -0.355366 -0.061649 0.072800 0.005496 -0.190679 0.341966 15.290575 -6.979932 4.057720 2.806231 -4.295909 10.784944 -1.417856 -2.904050 13.238360 1.057600 3.013744 12.242680 -13.551327 9.753486 -8.635592 -4.509789 1.248641 -1.870017 -5.954648 0.346884 -0.322251 5.093081 -11.903625 -0.869440 0.083562 -0.109898 0.561624 -0.048579 0.329810 0.102686 -12.391376 -14.856591 1.550921 6.546456 -17.175508 -2.510331 -16.208431 13.476451 -0.717783 -0.255446 0.015310 0.036292 -0.067651 -0.199785 -0.254697
+30.357504 157.565948 27.039022 6.154626 -14.599262 -16.164690 -5.958722 -5.901393 8.157969 -28.582342 8.159281 36.367596 -0.385356 0.134096 -0.104726 0.494068 0.179139 0.632590 10.955996 4.573403 -16.777098 2.467204 -0.752147 11.476562 -0.352358 -0.062766 0.071203 -0.003092 -0.192168 0.342820 15.016627 -6.974363 5.258854 3.107051 -4.267134 10.837863 -1.130919 -2.852273 12.783979 1.048166 3.013133 11.610617 -13.959876 9.839225 -8.953155 -4.933079 1.305092 -1.641796 -5.789730 1.094720 -0.259236 4.756566 -11.887771 -0.829942 0.080110 -0.117927 0.575303 -0.049095 0.325325 0.094611 -12.431162 -14.316791 1.169260 7.166310 -15.805634 -2.762475 -16.535994 11.977156 -0.559312 -0.259227 0.020501 0.024483 -0.069746 -0.191966 -0.266665
+30.399561 157.528366 27.146849 5.956519 -14.886772 -16.370821 -5.440198 -5.703247 7.768578 -28.623344 8.622466 37.349514 -0.410951 0.141939 -0.105330 0.489458 0.171869 0.643956 10.699032 4.937881 -17.269531 3.223947 -0.833589 13.029739 -0.350202 -0.052367 0.074949 0.001684 -0.192338 0.326486 14.411567 -6.811465 6.490636 3.398232 -4.189300 11.032430 -0.706475 -2.769015 12.572057 0.983689 3.052675 10.958662 -14.582217 9.929221 -9.911330 -4.982390 2.009190 -1.749779 -6.529676 1.506366 -0.310794 4.260210 -11.822192 -0.800182 0.076715 -0.151632 0.592214 -0.051779 0.322743 0.086934 -12.734470 -14.029135 0.336070 8.472392 -13.112258 -3.091164 -16.294659 10.798756 -0.490094 -0.269127 0.040172 0.001546 -0.045269 -0.186964 -0.281159
+30.339607 157.476196 27.242664 5.944113 -14.881106 -15.928043 -5.248219 -5.503496 6.842326 -28.397404 8.842651 37.998096 -0.386869 0.138983 -0.101362 0.497581 0.189815 0.641138 10.461244 5.163394 -17.760872 3.605201 -0.835165 13.315157 -0.353035 -0.068152 0.079048 0.004424 -0.189802 0.348745 13.244697 -6.595880 6.948554 3.549035 -4.264536 10.971817 -0.019895 -2.948967 12.360863 1.202444 3.200784 10.330711 -14.881687 10.273718 -9.909054 -4.671034 3.270213 -1.564747 -8.216969 2.574778 -0.524523 3.975395 -13.123779 -0.834314 0.064245 -0.120932 0.565888 -0.036472 0.327934 0.097500 -12.930950 -13.512887 -0.862791 9.544818 -9.209775 -3.201771 -15.541133 8.565932 -0.340103 -0.268386 0.018952 0.025468 -0.063982 -0.195933 -0.268721
+30.199154 157.554657 27.224709 6.295666 -14.709862 -15.478904 -5.393034 -5.279015 5.930209 -28.091183 8.973037 38.481190 -0.383452 0.135332 -0.109572 0.490587 0.191550 0.638214 9.881211 5.181289 -18.090767 3.817168 -0.805951 12.824518 -0.354522 -0.069717 0.073610 0.000104 -0.193546 0.356008 11.499378 -6.062536 7.379834 3.723889 -4.253629 10.827986 0.934491 -2.997172 12.078241 1.451505 3.407788 10.225019 -15.201970 10.712162 -10.262547 -4.238020 4.296362 -1.496332 -10.667542 3.197327 -0.954672 3.816173 -14.553652 -0.948335 0.053289 -0.116241 0.559897 -0.032733 0.331886 0.086478 -13.048090 -13.251823 -1.829619 11.397662 -6.363200 -3.516469 -14.907276 7.384171 -0.305597 -0.267199 0.023045 0.034216 -0.071442 -0.186492 -0.268473
+30.131283 157.867599 27.127083 6.350891 -14.928918 -14.890300 -5.289638 -4.937490 4.974705 -27.805422 9.049233 38.566460 -0.395173 0.131492 -0.104987 0.500339 0.210715 0.627306 9.820393 5.269256 -18.177876 3.643326 -0.692824 11.978544 -0.353413 -0.058997 0.084513 0.018721 -0.179827 0.335639 10.804163 -5.714648 8.023380 3.906886 -4.057765 10.685299 1.375394 -2.820498 11.649542 0.551024 3.947881 10.107016 -14.591199 10.248961 -10.587710 -3.657234 5.385692 -1.954279 -14.252076 2.915236 -1.586665 3.151838 -13.583187 -0.965609 0.064907 -0.135342 0.565787 -0.039512 0.327558 0.101520 -12.736875 -13.191368 -2.810116 12.884055 -3.735859 -3.611952 -13.356699 6.262575 -0.253936 -0.275227 0.034386 0.020984 -0.038396 -0.190057 -0.260301
+30.111605 158.297852 27.080999 6.327734 -14.585902 -14.206551 -5.359306 -4.794890 4.228354 -27.446735 8.884121 38.345341 -0.403796 0.144675 -0.093543 0.486335 0.189070 0.613359 10.063691 5.184845 -18.003691 2.677558 -0.536818 10.488398 -0.347102 -0.037714 0.091176 0.011008 -0.155228 0.316317 10.574171 -5.597697 8.234426 3.888579 -3.978340 10.390518 1.420014 -2.722083 11.111599 -0.030063 4.150172 10.545103 -13.475779 9.625774 -10.296573 -3.357089 5.341727 -1.886962 -17.447842 2.909647 -2.170531 2.385792 -12.101093 -0.976106 0.066998 -0.171386 0.581421 -0.046523 0.316425 0.102556 -12.303658 -12.327489 -3.045515 14.666038 -2.607507 -3.861895 -11.567373 5.306784 -0.176175 -0.276049 0.064763 0.000144 -0.002968 -0.176297 -0.257062
+30.010118 158.602371 27.089525 6.282655 -14.564713 -13.151332 -5.057266 -4.493742 3.361610 -27.331770 8.838996 37.856174 -0.413529 0.153356 -0.086789 0.453945 0.159569 0.570760 10.547114 5.120882 -18.025686 1.767877 -0.429431 8.589332 -0.330096 -0.012344 0.101893 0.001757 -0.124825 0.281967 11.215186 -5.700174 7.833645 3.469628 -3.804246 9.886544 0.704192 -2.530436 10.496570 -1.342581 4.722218 11.383420 -12.442162 8.906964 -9.631481 -2.977246 5.110019 -1.654178 -21.442612 3.115887 -2.945143 2.993537 -9.796471 -1.034400 0.070500 -0.217050 0.591587 -0.054675 0.297216 0.102723 -11.741857 -11.240360 -3.277771 17.235374 -1.572505 -4.281914 -10.480584 4.944125 -0.185634 -0.275471 0.107696 -0.027396 0.043478 -0.148742 -0.246859
+29.898935 158.917343 26.994972 6.213161 -14.444826 -12.582776 -4.839992 -4.117995 3.175196 -27.255589 8.754518 37.051910 -0.472215 0.194381 -0.104352 0.446712 0.125084 0.562555 11.089897 4.981045 -17.551100 0.873825 -0.375243 6.679551 -0.315954 0.003167 0.096090 0.006840 -0.108247 0.260152 11.683347 -5.722230 7.984309 3.210825 -3.657197 9.711916 0.065912 -2.289042 10.172665 -2.822268 5.572945 11.675797 -11.301063 8.050905 -10.012334 -3.549395 5.153346 -2.059089 -24.214298 2.908840 -3.370008 3.081029 -8.124423 -1.090686 0.067837 -0.254246 0.632770 -0.068972 0.271344 0.084088 -9.875575 -10.795519 -3.909389 18.611870 -0.562996 -4.423255 -9.127356 5.554174 -0.269495 -0.299385 0.142715 -0.067743 0.079462 -0.111442 -0.267581
+29.792141 159.108276 26.855881 6.409310 -13.855268 -12.294105 -4.982192 -3.781625 3.255327 -27.215187 8.680679 36.401089 -0.515911 0.209961 -0.111730 0.475191 0.140582 0.584925 11.139560 4.701042 -17.125233 0.073008 -0.352894 5.117799 -0.324100 0.020746 0.090645 0.033808 -0.110041 0.243884 11.655437 -5.774844 7.993254 2.855658 -3.654006 9.720996 -0.471523 -2.266027 10.218013 -4.123295 6.122288 11.581326 -10.851723 7.319858 -11.291009 -5.106292 5.339411 -2.666782 -26.000406 2.945770 -3.682779 2.770024 -7.275377 -1.128248 0.085451 -0.283398 0.668822 -0.091600 0.272537 0.085837 -6.994681 -10.419511 -4.952926 19.434055 0.639557 -4.452319 -8.093126 6.758753 -0.434333 -0.315212 0.159177 -0.091834 0.115774 -0.112343 -0.279957
+29.667559 159.218079 26.644072 6.329707 -13.470401 -12.048507 -4.515739 -3.270645 3.596764 -27.524151 8.762982 35.453831 -0.482355 0.159128 -0.118366 0.513468 0.180934 0.590725 11.479113 4.616019 -16.836380 -0.586822 -0.319920 4.161694 -0.344747 0.046808 0.079332 0.038520 -0.148962 0.242711 11.915384 -5.918492 9.243279 2.744793 -3.463031 9.117044 -1.051242 -2.122634 8.834666 -5.584988 6.756280 12.108064 -9.778239 6.594338 -11.531184 -6.142281 5.580660 -2.667313 -28.813879 3.299719 -4.303535 2.492845 -7.248882 -1.153578 0.151138 -0.242555 0.678934 -0.141883 0.298923 0.099370 -5.830135 -9.849174 -5.400896 21.912331 1.298590 -4.866356 -7.401746 7.767945 -0.556075 -0.282320 0.145909 -0.056910 0.091223 -0.139554 -0.262476
+29.569347 159.172623 26.446882 6.269451 -13.174543 -11.172928 -4.097548 -2.774816 3.139869 -27.923309 8.971105 34.833061 -0.462497 0.123015 -0.113173 0.538420 0.218090 0.573582 11.572903 4.729729 -17.521500 -0.722051 -0.308501 3.688889 -0.351855 0.061679 0.088878 0.052708 -0.153924 0.226940 12.591079 -6.001792 9.605393 2.324220 -3.094104 8.426630 -1.950168 -1.864691 7.694792 -6.730220 7.192993 12.420354 -8.505079 5.825611 -11.389704 -7.119482 5.745963 -2.872986 -31.719219 3.185961 -4.805126 3.304205 -6.259524 -1.127030 0.195245 -0.224212 0.678660 -0.167409 0.305353 0.126740 -4.336369 -8.992954 -6.098037 24.572191 2.225322 -5.245615 -6.866198 7.011560 -0.562297 -0.271229 0.138055 -0.044087 0.097137 -0.160677 -0.240788
+29.477365 159.007706 26.142805 6.223991 -12.498484 -10.298424 -3.738692 -2.387608 2.456785 -28.422720 9.300655 34.640659 -0.471048 0.133093 -0.104764 0.543157 0.204161 0.576009 11.427178 4.886093 -18.521704 -0.923525 -0.307686 3.365987 -0.350125 0.073081 0.088644 0.051002 -0.146948 0.214861 12.750919 -5.924517 9.764084 2.100662 -2.863102 7.873507 -2.296029 -1.662908 6.843264 -7.721919 7.261347 12.530271 -7.858998 5.049589 -11.184621 -8.389657 5.700026 -2.899172 -34.569199 3.367752 -5.315777 2.861494 -6.232089 -1.186186 0.213304 -0.233081 0.695718 -0.182558 0.297153 0.133155 -2.617242 -7.829601 -6.629254 26.567329 3.030761 -5.472888 -5.868387 6.065035 -0.509718 -0.268240 0.143429 -0.058422 0.111732 -0.161724 -0.242175
+29.425888 158.722046 25.732248 6.169494 -11.490079 -9.553868 -3.625664 -2.133241 1.639908 -28.428530 9.564796 35.108116 -0.456315 0.112977 -0.110660 0.556463 0.213259 0.581558 10.931311 5.013136 -19.565132 -0.640476 -0.326723 3.132351 -0.359460 0.081784 0.081901 0.044623 -0.169771 0.221769 12.416652 -5.718983 10.065161 2.071599 -2.686715 7.382537 -2.161041 -1.538011 6.068128 -8.210696 7.058396 12.376423 -7.746030 4.617691 -11.547297 -10.153327 5.422749 -2.495363 -37.313187 4.306108 -6.149563 2.542232 -8.065474 -1.385875 0.238332 -0.209056 0.701367 -0.204217 0.309043 0.132348 -0.960675 -6.334895 -6.846285 28.344519 3.512999 -5.644332 -4.588552 5.497368 -0.463012 -0.254603 0.136931 -0.038455 0.090837 -0.168909 -0.238874
+29.271933 158.354004 25.185377 6.346716 -10.079624 -9.171851 -3.698564 -1.993315 1.098098 -28.446646 9.876289 35.914600 -0.451207 0.100593 -0.122999 0.576708 0.231789 0.586925 10.336311 5.082289 -20.482149 -0.636109 -0.323668 3.094872 -0.370836 0.080858 0.070322 0.048905 -0.189061 0.235718 11.830220 -5.489142 10.382275 1.836290 -2.523545 7.158545 -2.233234 -1.432093 5.679388 -8.465545 7.060418 11.915367 -7.303729 4.333837 -12.238037 -12.344754 4.444545 -2.186519 -38.594967 4.894594 -6.635296 0.700253 -10.057399 -1.546314 0.254377 -0.174870 0.705543 -0.220375 0.318856 0.130861 1.993550 -4.773497 -7.243268 29.595652 3.768939 -5.750490 -3.320504 4.763573 -0.407473 -0.251150 0.122811 -0.018115 0.067870 -0.172662 -0.237253
+29.141037 158.040817 24.586361 6.097801 -8.084673 -8.961074 -3.645773 -2.112123 0.746925 -27.999199 9.978824 37.101139 -0.461625 0.093452 -0.134490 0.584979 0.242272 0.595047 9.974692 5.021971 -20.964664 -0.988532 -0.342287 2.615807 -0.374972 0.097665 0.065072 0.055438 -0.202383 0.229859 11.922394 -5.433435 10.880869 1.674691 -2.309173 6.927113 -2.558054 -1.230235 5.207182 -8.500327 6.316292 11.783564 -6.782297 3.529876 -13.271473 -14.868720 2.971324 -2.428028 -39.410912 4.396306 -6.682635 -0.771670 -10.591772 -1.579446 0.264748 -0.185712 0.718039 -0.237223 0.327397 0.121769 4.568351 -3.170446 -7.274943 31.154720 3.604027 -5.880287 -2.058068 3.598397 -0.301977 -0.251484 0.138456 -0.016976 0.076064 -0.170125 -0.240267
+29.013243 157.729721 24.095802 5.655987 -5.207283 -8.880144 -3.534804 -2.506983 0.745981 -27.057346 9.708907 38.250732 -0.457436 0.065780 -0.130228 0.627910 0.292682 0.609451 9.162701 4.725035 -21.163876 -0.882665 -0.368821 1.779833 -0.391600 0.103372 0.069681 0.084727 -0.219092 0.221234 12.332123 -5.633175 11.093179 1.611233 -2.237217 6.666456 -2.870291 -1.225025 4.803767 -8.673305 5.568934 11.918119 -6.087243 2.604244 -13.612399 -17.395287 1.384362 -2.891054 -40.121067 3.354253 -6.523072 -2.168480 -10.411863 -1.529809 0.302995 -0.169408 0.721786 -0.257535 0.342308 0.150156 7.278218 -1.809242 -7.262040 32.195698 3.394795 -5.820215 -0.176333 2.703054 -0.238702 -0.251986 0.117321 -0.007714 0.080615 -0.205563 -0.231827
+28.812553 157.390747 23.601765 5.071200 -1.310085 -8.979477 -3.462275 -3.336172 0.716446 -25.579695 9.125874 39.875916 -0.492643 0.087285 -0.137740 0.617298 0.272974 0.604863 8.105640 4.269726 -21.185204 -0.702254 -0.442023 0.841704 -0.384840 0.106259 0.069463 0.087386 -0.209265 0.208792 12.515598 -6.103667 11.171701 1.573356 -2.628595 6.241263 -3.018596 -1.586869 4.192698 -8.397943 4.472079 12.649495 -5.669162 1.668499 -13.462651 -19.601292 0.114812 -3.444099 -40.997837 2.215185 -6.293734 -3.315649 -10.089608 -1.519195 0.295370 -0.202706 0.742351 -0.256873 0.332259 0.141809 9.265132 -0.571831 -7.364284 34.286995 3.681692 -5.850706 1.306664 1.601235 -0.169276 -0.269453 0.138047 -0.033514 0.103644 -0.188527 -0.243393
+28.608938 157.042282 22.977921 4.519161 2.013033 -8.804413 -3.394229 -3.978602 0.373990 -23.799622 8.386347 41.092442 -0.514966 0.115132 -0.143671 0.596098 0.245459 0.579663 7.000577 4.003871 -21.745338 -0.159948 -0.485320 0.280459 -0.372178 0.103611 0.066446 0.083532 -0.184906 0.202915 12.647942 -6.286822 11.069590 1.561930 -2.801963 5.771015 -3.063146 -1.741449 3.537047 -8.382360 3.646526 13.512518 -4.685461 0.533655 -12.818738 -21.337523 -0.555319 -4.372241 -42.785118 0.400613 -6.014304 -3.957402 -9.570695 -1.536533 0.278947 -0.221616 0.748259 -0.249836 0.314032 0.134122 11.084444 0.315532 -7.665232 36.468132 4.319850 -5.811065 2.618415 0.804768 -0.126575 -0.282495 0.155875 -0.051592 0.122192 -0.160442 -0.242672
+28.269754 156.747116 22.085966 4.339755 5.296126 -8.639063 -3.617352 -4.591505 -0.341889 -21.957815 7.643816 42.464226 -0.505066 0.107336 -0.159795 0.610407 0.263906 0.591155 5.706355 3.739227 -22.587250 -0.090952 -0.500829 0.227994 -0.385572 0.111254 0.050840 0.083885 -0.204308 0.223617 11.834533 -6.071802 11.287779 1.570490 -2.841987 5.399930 -2.697854 -1.820980 3.000845 -8.001896 2.335232 14.489170 -4.157847 -0.487822 -13.120970 -23.117996 -1.308810 -5.490103 -44.473148 -1.976666 -5.616940 -4.536611 -9.536870 -1.556270 0.281131 -0.208150 0.746406 -0.261006 0.334910 0.123406 12.868900 1.404231 -8.020859 39.191956 5.215048 -5.776736 3.076337 0.101030 -0.083253 -0.276038 0.158793 -0.022358 0.106005 -0.158756 -0.236427
+27.906647 156.365646 20.963110 4.410641 8.778469 -8.338996 -4.177017 -5.352042 -1.658212 -20.224306 6.942038 44.196724 -0.535718 0.119804 -0.180802 0.624613 0.269391 0.609464 3.839717 3.319544 -23.641001 0.223997 -0.524266 0.164661 -0.397049 0.108205 0.042280 0.094038 -0.221937 0.235733 10.139997 -5.523827 11.436276 1.734672 -2.940818 5.203216 -1.683958 -1.921312 2.758838 -7.059371 0.565439 15.375489 -4.164672 -1.303845 -13.411613 -24.844503 -2.740470 -6.342815 -46.644436 -4.423630 -5.258162 -4.806755 -10.321457 -1.675398 0.277285 -0.214437 0.768935 -0.265002 0.348155 0.115994 14.550628 3.274301 -8.091605 41.522835 6.248281 -5.643144 3.137065 -0.153997 -0.054676 -0.296286 0.163144 -0.024494 0.102438 -0.154571 -0.253131
+27.595140 156.091187 19.665060 4.221858 12.222312 -7.969398 -4.574879 -6.088915 -3.173878 -18.257891 6.093777 45.741943 -0.570213 0.118552 -0.205769 0.633910 0.272650 0.639866 1.913334 3.026387 -25.046480 0.575317 -0.519392 0.811232 -0.405243 0.130598 0.030969 0.102196 -0.251892 0.227176 9.002395 -5.115981 11.744984 1.919923 -2.989323 5.034914 -0.848791 -1.953063 2.456093 -6.277222 -1.312865 16.256500 -3.939985 -2.269178 -14.331126 -26.406481 -4.466504 -6.793521 -49.275414 -6.716758 -5.002645 -5.024380 -12.097875 -1.867526 0.285072 -0.248475 0.802474 -0.285292 0.365618 0.092980 15.311470 5.812951 -7.629855 43.943398 7.164374 -5.528250 3.167697 0.660597 -0.068037 -0.305083 0.190886 -0.035135 0.111840 -0.150457 -0.276370
+27.116629 155.906204 18.604557 4.329813 15.240598 -7.697303 -4.911915 -6.451137 -4.112158 -16.486551 5.374850 46.628201 -0.605056 0.123380 -0.212928 0.647117 0.281501 0.666244 0.013548 2.800500 -26.351377 0.832223 -0.486264 2.147160 -0.419245 0.161164 0.023121 0.119243 -0.262878 0.206694 7.971820 -4.710463 11.501247 1.787841 -3.014975 5.102662 -0.466259 -1.969558 2.622693 -6.092480 -2.862349 17.486681 -3.411625 -3.446512 -15.150769 -27.364672 -6.139272 -7.003966 -51.347263 -8.929889 -4.592390 -5.766596 -14.325867 -2.017407 0.300741 -0.300162 0.839764 -0.309215 0.383186 0.089105 16.131170 8.795153 -7.216225 46.506470 8.447229 -5.371361 2.538527 1.778814 -0.133308 -0.312699 0.224473 -0.058877 0.152143 -0.153341 -0.289569
+26.635674 155.817032 17.676298 4.469336 18.438759 -7.554540 -5.331704 -6.904976 -4.792204 -14.642678 4.535426 47.446972 -0.618371 0.113436 -0.214892 0.687401 0.323274 0.695304 -2.268661 2.399260 -27.167358 1.772370 -0.456835 3.508718 -0.437950 0.185195 0.020500 0.147397 -0.273279 0.195719 6.751513 -4.332043 11.024366 1.817539 -3.168061 5.341701 0.210218 -2.161468 3.137522 -6.325934 -3.960777 18.357395 -2.367594 -4.660659 -16.102848 -27.928358 -7.870063 -7.119432 -53.491894 -11.318644 -4.021638 -6.836498 -16.664190 -2.095754 0.327490 -0.317331 0.859239 -0.333751 0.402476 0.102485 17.375175 11.792508 -6.971258 47.440346 10.014883 -4.880489 2.702505 2.605687 -0.191300 -0.316295 0.233355 -0.059265 0.180016 -0.174938 -0.287606
+26.251764 155.855118 16.888285 4.535508 21.535776 -7.519525 -5.677888 -7.207882 -5.377047 -12.677802 3.673854 48.068851 -0.656320 0.115019 -0.226504 0.716271 0.359364 0.704910 -4.807043 2.063550 -27.888044 3.103678 -0.505970 5.918813 -0.447647 0.195726 0.025226 0.181959 -0.272186 0.180820 6.133019 -4.163436 9.891955 1.622010 -3.363647 5.872842 0.427960 -2.368970 4.249702 -6.390102 -4.814962 19.150347 -1.610486 -5.565776 -17.028254 -27.707073 -9.734378 -6.959610 -55.536041 -13.697385 -3.317946 -8.666479 -19.988319 -2.044225 0.337919 -0.347150 0.882842 -0.343954 0.410293 0.113205 17.414997 14.978840 -6.749334 49.280174 11.872175 -4.524707 2.254881 4.816284 -0.423550 -0.340940 0.248493 -0.074888 0.216715 -0.180830 -0.291352
+25.764318 156.128082 15.907289 4.696322 23.829775 -7.570925 -5.907414 -7.131886 -5.943677 -11.098533 3.144655 48.323887 -0.666339 0.097057 -0.239882 0.761246 0.430180 0.699197 -7.295033 1.968094 -28.689085 4.835948 -0.610713 8.912459 -0.461944 0.194954 0.024439 0.226890 -0.271691 0.178677 5.566652 -3.804609 9.249895 1.419187 -3.276936 6.583102 0.480642 -2.359561 5.542003 -6.753961 -5.431414 19.576117 -0.345162 -6.672997 -18.085983 -27.361067 -12.277717 -6.614029 -56.936787 -16.366074 -2.489535 -10.271459 -24.236067 -1.913069 0.353874 -0.331155 0.875917 -0.354175 0.419434 0.133639 17.754854 18.857485 -6.875865 49.469421 14.636652 -3.550971 2.458959 6.047445 -0.543968 -0.357518 0.237408 -0.057832 0.234577 -0.192971 -0.271944
+25.166931 156.644455 14.819669 4.844276 25.722618 -7.818984 -6.154426 -6.876193 -6.353540 -9.450631 2.650651 48.336094 -0.672981 0.080640 -0.254259 0.803702 0.502213 0.693764 -9.802073 2.152521 -29.723602 7.316015 -0.910602 13.033252 -0.474850 0.199401 0.024266 0.269082 -0.266669 0.179246 5.129659 -3.366827 9.029748 1.284563 -3.084219 7.361532 0.465062 -2.239733 6.852462 -7.239060 -6.050381 20.090130 0.949662 -7.809561 -19.400423 -26.716757 -15.319329 -6.205644 -57.701885 -19.241638 -1.414664 -12.323476 -28.820805 -1.485177 0.363551 -0.324045 0.865740 -0.362475 0.431046 0.149655 17.591602 22.878622 -7.020157 48.983776 17.483776 -2.602768 3.094691 8.183731 -0.684511 -0.371071 0.236891 -0.036156 0.257959 -0.200740 -0.247467
+24.512119 157.271927 13.984859 4.441242 27.460194 -8.137640 -5.571211 -6.410706 -6.516873 -8.092252 2.286307 47.531002 -0.675214 0.087608 -0.253799 0.827782 0.543276 0.683586 -11.715779 2.656454 -30.708874 9.936842 -1.456143 17.554523 -0.485444 0.183860 0.019519 0.297041 -0.247476 0.193378 5.164411 -3.186732 8.474540 1.143474 -2.992933 8.102832 0.268836 -2.193507 8.180728 -7.285074 -6.809966 20.031612 1.621186 -8.668216 -19.973759 -25.850964 -17.966930 -5.773623 -58.102531 -22.097084 -0.165981 -14.916681 -33.913589 -0.617247 0.356965 -0.308319 0.850025 -0.354526 0.434312 0.168512 16.538921 25.997391 -7.274403 48.629860 20.112856 -1.926184 3.994140 12.185192 -0.943659 -0.383326 0.222024 -0.022433 0.271206 -0.204431 -0.224937
+23.814491 158.199539 13.294817 3.256044 29.063789 -9.155458 -4.263346 -5.738843 -5.939646 -6.523683 1.809567 45.968437 -0.671084 0.064617 -0.262712 0.855866 0.595954 0.669672 -12.887477 3.567952 -30.921839 13.017015 -2.249657 21.916311 -0.492669 0.184214 0.021121 0.325015 -0.246415 0.191221 5.819688 -3.089695 8.592896 1.310256 -2.822544 8.745311 0.045570 -2.052399 9.162944 -7.495933 -7.501566 20.265594 2.902846 -9.537364 -20.967094 -25.429478 -20.671041 -5.166546 -57.896339 -25.034472 1.128080 -16.931236 -39.738041 0.470246 0.371573 -0.289137 0.837893 -0.362820 0.439639 0.183195 15.678104 28.474581 -7.579505 47.163280 22.666531 -1.377524 5.270758 16.495649 -1.041277 -0.389334 0.213223 -0.003287 0.278387 -0.213085 -0.204013
+23.040192 159.286911 12.727063 2.085419 30.759121 -10.160823 -3.242544 -5.104708 -5.097264 -4.353311 1.037138 44.016834 -0.671207 0.061167 -0.265493 0.869985 0.620600 0.648996 -13.886631 4.521673 -30.881811 16.438240 -3.338301 26.047087 -0.487922 0.175094 0.022171 0.344452 -0.230953 0.186936 6.452976 -3.046989 8.438512 1.410854 -2.733289 9.483829 -0.280487 -1.988145 10.343064 -7.657225 -7.926242 20.310543 4.373731 -10.259583 -21.355604 -24.526140 -23.240887 -4.442122 -57.102985 -28.010933 2.449670 -18.336750 -46.795601 1.761278 0.376816 -0.265207 0.823757 -0.362175 0.426435 0.196084 14.769696 30.711937 -7.982075 45.514183 25.363480 -0.828398 5.838742 20.116573 -1.104372 -0.396609 0.197824 0.001988 0.282951 -0.213551 -0.188292
+22.207411 160.471512 12.184043 1.061291 32.598038 -10.967278 -2.461814 -4.708122 -4.387957 -2.097421 0.138652 41.779812 -0.668624 0.066232 -0.263059 0.890615 0.651212 0.635969 -14.800729 5.151631 -30.539011 19.701668 -4.647790 29.593250 -0.493659 0.152623 0.025192 0.365140 -0.213416 0.201603 6.798256 -3.182018 8.022310 1.412541 -2.873770 10.164309 -0.609947 -2.162307 11.538822 -7.301456 -8.453079 20.477814 5.060830 -10.631055 -21.281103 -23.219326 -26.046133 -4.101646 -55.558712 -30.929806 3.858132 -18.512182 -51.258770 2.607941 0.371746 -0.237674 0.807912 -0.349131 0.424182 0.219410 13.230483 32.914146 -8.366644 44.366531 27.835798 -0.350682 5.837532 23.977058 -1.295515 -0.410005 0.172704 0.013661 0.282058 -0.221510 -0.171468
+21.438578 161.726349 11.673812 -0.040830 34.313217 -11.628920 -1.673478 -4.303185 -3.717794 -0.272738 -0.541548 39.043907 -0.685965 0.086447 -0.266125 0.904197 0.670933 0.625360 -15.100551 5.763575 -30.338890 22.089275 -6.028378 33.239742 -0.490705 0.133836 0.024913 0.388916 -0.189638 0.207924 7.654266 -3.481496 7.124373 1.258029 -3.029691 10.991680 -1.254539 -2.294507 13.125048 -7.143106 -8.871862 19.970989 5.773728 -11.021746 -21.883251 -20.821547 -28.345280 -4.319683 -54.832836 -34.347569 5.611211 -15.797197 -55.249847 1.883756 0.356126 -0.227107 0.797248 -0.335097 0.411352 0.229674 10.472245 34.357101 -9.389892 44.083149 30.640524 0.378157 5.566575 28.412239 -1.608877 -0.430060 0.160694 0.010856 0.295812 -0.215696 -0.162428
+20.723335 163.032257 11.191214 -0.926990 35.945194 -12.042765 -1.089631 -4.046011 -3.182861 1.154779 -1.059013 36.375290 -0.726320 0.131717 -0.266789 0.882876 0.653905 0.585654 -15.328492 6.021835 -29.709166 24.265753 -7.479314 36.149906 -0.466941 0.111024 0.029957 0.404861 -0.137648 0.197424 8.484181 -3.707858 6.060759 1.080041 -3.164773 11.800040 -1.876318 -2.343385 14.762287 -7.194626 -9.298961 19.137547 6.506810 -11.665500 -22.415083 -17.928062 -30.181505 -4.954783 -54.551098 -38.053963 7.641475 -9.352050 -57.531986 -1.280784 0.319570 -0.247312 0.788946 -0.307776 0.372475 0.230132 7.571458 35.000576 -10.470747 43.392273 33.488678 1.136706 5.233444 33.810329 -1.940118 -0.461675 0.169901 -0.022040 0.335063 -0.181301 -0.156481
+19.941734 164.258789 10.768316 -1.523354 37.582172 -12.106589 -0.611570 -3.879785 -2.685056 2.126771 -1.410940 33.377792 -0.733239 0.182211 -0.239170 0.870619 0.641316 0.548350 -15.162399 6.003363 -28.972998 25.431137 -8.677767 38.719017 -0.444807 0.074815 0.037785 0.421033 -0.068291 0.197358 8.695419 -3.708487 4.763141 0.921431 -3.203096 12.574789 -2.140428 -2.400179 16.520481 -6.731329 -9.662606 17.750376 7.522861 -12.259892 -22.043783 -14.683785 -31.439707 -6.016951 -53.927593 -41.983082 9.688093 -0.180859 -57.220863 -6.157604 0.282603 -0.235744 0.753213 -0.268739 0.327572 0.255280 5.366356 34.975170 -11.412416 41.867855 36.594833 2.093506 4.509552 38.822159 -2.274927 -0.481455 0.145630 -0.043949 0.365524 -0.168434 -0.134852
+19.230129 165.376297 10.375430 -1.902600 38.971424 -11.598115 -0.258452 -3.666492 -2.409913 2.587248 -1.527363 30.199461 -0.736054 0.227359 -0.212117 0.860992 0.633863 0.510839 -15.075758 5.809106 -28.478971 26.066092 -9.787413 41.197960 -0.418194 0.027713 0.051263 0.435082 -0.002006 0.202367 8.911913 -3.606342 3.203442 0.729307 -3.134586 13.084082 -2.291216 -2.388950 18.104635 -6.328229 -10.260142 16.036341 7.892051 -13.038393 -21.588837 -10.477677 -31.491276 -7.363132 -54.548618 -45.883717 12.365843 8.642369 -56.008240 -10.829762 0.241057 -0.213507 0.704999 -0.222102 0.277010 0.278385 2.357427 34.070740 -12.345271 41.152473 39.719810 3.448417 2.151344 44.600342 -3.408776 -0.504541 0.110998 -0.054951 0.384940 -0.156536 -0.111522
+18.687124 166.347504 9.974314 -2.310689 40.279587 -11.006674 0.100357 -3.499732 -2.295786 2.487200 -1.474953 27.307718 -0.744386 0.272430 -0.183019 0.840567 0.626667 0.461808 -14.897219 5.382519 -27.718615 26.136374 -10.742693 43.419033 -0.377804 -0.030645 0.068254 0.460318 0.069421 0.190501 9.313206 -3.503044 1.506375 0.548280 -2.994091 13.425483 -2.409700 -2.314191 19.640181 -5.704848 -10.987378 14.186208 7.560336 -13.808394 -20.347181 -6.513134 -31.244968 -8.634365 -54.938385 -49.560467 14.906215 16.944607 -53.622711 -14.881430 0.191178 -0.196107 0.638077 -0.162955 0.210821 0.301725 -0.985180 33.011467 -12.947491 39.825062 42.177673 4.524916 -2.254645 50.302353 -5.802182 -0.532254 0.067030 -0.077917 0.411554 -0.143862 -0.088877
+18.060892 167.234177 9.574602 -2.503239 41.375919 -10.348382 0.313622 -3.236461 -2.151685 2.520932 -1.417373 24.281450 -0.759291 0.314480 -0.153257 0.836363 0.640097 0.422754 -14.572427 5.147749 -26.804932 25.770674 -11.338579 45.355209 -0.348792 -0.076431 0.083798 0.497903 0.142219 0.175041 9.530257 -3.335175 0.092881 0.380000 -2.821460 13.801282 -2.498828 -2.203831 21.189375 -5.234855 -11.602422 12.219041 7.642187 -14.588822 -19.976063 -2.457355 -30.242067 -10.026138 -55.791397 -53.192753 17.921051 23.789381 -52.122158 -18.169596 0.150129 -0.190574 0.582111 -0.114369 0.155109 0.331486 -3.918231 31.523756 -13.670365 38.664120 44.947613 5.792022 -8.619454 54.821968 -9.548865 -0.561699 0.033013 -0.102164 0.457572 -0.137013 -0.062737
+17.522770 167.861908 9.231841 -2.534388 41.928226 -9.327371 0.399138 -2.895864 -2.123811 2.440695 -1.301455 21.389631 -0.742432 0.333099 -0.120285 0.845508 0.682946 0.365261 -14.100406 5.117535 -25.721895 24.800455 -11.346853 46.610592 -0.315162 -0.157269 0.101760 0.545211 0.209812 0.171700 9.921843 -2.921320 -1.544459 0.157356 -2.319041 13.918758 -2.748673 -1.888437 22.535528 -4.519524 -12.665752 10.148438 7.236514 -15.656990 -18.376480 1.733468 -28.637024 -11.167365 -57.143940 -57.041912 22.006670 29.470840 -50.953091 -20.705275 0.114865 -0.121885 0.481518 -0.052253 0.089502 0.378465 -6.999198 29.707127 -14.125741 38.072811 47.070999 7.218060 -16.802546 57.681587 -14.751307 -0.585693 -0.054971 -0.094647 0.464285 -0.147754 -0.017224
+17.038029 168.255035 8.950584 -2.648692 42.096210 -8.263953 0.629836 -2.525081 -2.022045 1.749012 -1.041924 18.632061 -0.732197 0.378130 -0.074694 0.830158 0.691727 0.306290 -13.192470 5.209767 -24.292976 23.231970 -10.726810 46.869068 -0.269955 -0.238711 0.123302 0.580649 0.298648 0.163671 10.110391 -2.472841 -3.038821 -0.014700 -1.840771 13.869283 -2.902485 -1.543239 23.565681 -3.540960 -13.477184 7.882901 6.449614 -16.431211 -16.352365 5.223634 -26.780432 -11.762089 -58.829777 -60.872795 26.695683 35.853588 -49.717781 -23.559652 0.057281 -0.078550 0.380397 0.024739 0.010770 0.419542 -9.650103 27.694958 -14.293766 36.838371 49.284142 8.743846 -25.710646 59.587105 -20.479643 -0.611490 -0.129753 -0.108443 0.487490 -0.146928 0.022273
+16.562016 168.486069 8.716304 -2.360321 42.547981 -6.863999 0.466906 -2.172605 -1.829564 1.126465 -0.839530 15.524995 -0.769601 0.453560 -0.048732 0.807118 0.675704 0.257755 -12.430118 5.072149 -22.558023 21.572147 -9.887450 46.221214 -0.222039 -0.324161 0.142270 0.614630 0.386305 0.158941 9.576869 -2.186552 -4.422950 -0.180364 -1.668776 13.638829 -2.730791 -1.370388 24.293818 -2.587760 -13.965160 5.836884 5.085770 -16.803114 -14.604775 7.846695 -24.405348 -12.159298 -61.781494 -64.193207 32.301254 40.748821 -47.924335 -25.388180 -0.020840 -0.064476 0.311044 0.107970 -0.072615 0.440397 -11.862582 25.530787 -14.400235 35.648048 51.772503 10.497199 -33.838905 59.846287 -25.374178 -0.664033 -0.183772 -0.146645 0.519173 -0.122722 0.034068
+16.009865 168.634048 8.549294 -1.814955 42.953789 -5.568084 0.031287 -1.872860 -1.411179 0.596582 -0.703577 12.976329 -0.777980 0.485012 -0.023631 0.792603 0.676827 0.222472 -11.626057 4.741498 -20.150265 19.584585 -8.669704 44.430088 -0.187022 -0.375358 0.157717 0.641319 0.443979 0.142626 8.949219 -1.913196 -5.546807 -0.470347 -1.443075 13.487349 -2.863154 -1.153778 24.905415 -1.644998 -14.329818 4.590631 4.553100 -17.053093 -13.341921 10.106936 -22.558868 -12.292032 -63.396645 -67.226295 37.006577 44.856899 -45.988918 -26.510292 -0.060908 -0.050900 0.252072 0.159145 -0.128951 0.460674 -13.562342 23.763559 -13.936574 34.601311 53.841854 11.711248 -43.928200 58.926441 -31.312250 -0.686214 -0.225371 -0.169588 0.542338 -0.119236 0.050895
+15.536944 168.705414 8.440519 -1.038251 42.629860 -4.394301 -0.633712 -1.500186 -0.438065 -0.022119 -0.585793 10.348891 -0.752269 0.488227 -0.005131 0.799392 0.688347 0.212396 -10.569515 4.390658 -16.915546 16.835037 -6.841002 41.077587 -0.179123 -0.406784 0.154293 0.650265 0.459344 0.152208 8.221095 -1.580770 -6.471900 -0.710672 -1.146535 13.495934 -3.064167 -0.794146 25.429632 -1.303423 -14.681625 3.763892 4.386237 -17.530979 -12.686896 11.745230 -21.478956 -12.116253 -62.285782 -69.919273 39.350536 48.310139 -44.224766 -27.180784 -0.064499 -0.003519 0.209089 0.175172 -0.146834 0.478663 -14.427497 22.758970 -13.160471 31.205866 55.644516 11.563784 -52.172802 57.433857 -35.489258 -0.676917 -0.272461 -0.154745 0.525079 -0.133517 0.071587
+15.070495 168.574783 8.431156 -0.290038 42.273487 -3.314117 -1.346378 -1.121383 0.574778 -0.007437 -0.550819 7.692607 -0.771068 0.530366 0.009406 0.789224 0.678371 0.178775 -9.502197 3.825621 -12.976598 14.075216 -4.958249 35.806370 -0.152059 -0.453248 0.161913 0.669011 0.512138 0.148402 7.181945 -1.177414 -7.538620 -0.857186 -0.869071 13.623814 -2.982444 -0.418474 26.178905 -0.767168 -14.661461 2.656714 4.355723 -17.809359 -11.948652 13.751911 -19.806362 -12.209868 -61.211620 -72.682259 41.933270 51.195114 -42.515987 -27.577179 -0.099852 0.016591 0.172632 0.214672 -0.197516 0.493878 -14.988359 21.376059 -12.565054 26.983641 57.292175 10.934783 -58.241360 55.737331 -37.933319 -0.702727 -0.306188 -0.176072 0.541285 -0.118596 0.082050
+14.508222 168.289093 8.495703 0.605823 41.100864 -2.069208 -1.978783 -0.650863 1.547334 0.012345 -0.480817 4.796735 -0.765250 0.549686 0.017632 0.776435 0.671852 0.139625 -8.139223 3.516699 -9.253458 10.278966 -2.867769 30.162609 -0.136097 -0.492970 0.163875 0.672279 0.544928 0.159414 5.811234 -0.347855 -8.556785 -0.860641 -0.195246 13.614306 -2.621492 0.313664 26.581839 -0.233719 -14.977542 2.000534 4.382761 -18.226637 -11.305650 15.210334 -18.234890 -12.115201 -60.617699 -75.596184 45.058079 53.098255 -40.487617 -27.222111 -0.122294 0.053563 0.137074 0.242115 -0.227497 0.505975 -15.074025 20.344606 -11.782967 22.344997 58.349854 9.735992 -62.368271 53.936634 -38.846844 -0.712225 -0.337819 -0.172621 0.532582 -0.105669 0.100521
+14.005503 167.818817 8.543565 1.570004 40.213821 -0.763812 -2.444937 -0.305819 1.997408 -0.202848 -0.384317 2.556235 -0.763432 0.599497 0.028844 0.734299 0.617382 0.102421 -7.262449 2.989761 -5.700957 6.758444 -1.382336 24.437973 -0.110707 -0.531431 0.161715 0.649859 0.588326 0.179662 4.196081 0.331002 -9.528341 -0.864063 0.316018 13.452916 -2.092408 0.920868 26.720657 0.351708 -15.286449 1.648702 4.003334 -18.496925 -10.152276 16.044497 -16.629969 -11.759386 -60.653557 -77.979538 48.357933 54.962593 -39.052269 -27.124033 -0.172080 0.071233 0.106281 0.282046 -0.265232 0.498368 -14.951234 19.369461 -10.925515 18.468014 59.050404 8.662132 -65.705521 52.258087 -39.281223 -0.721355 -0.351674 -0.179873 0.522828 -0.070832 0.107448
+13.479224 167.390640 8.594753 2.543075 38.417313 0.188307 -2.849252 0.078763 2.639567 -0.597739 -0.263363 0.481669 -0.782891 0.644232 0.040970 0.683540 0.554225 0.070443 -6.856147 2.406003 -2.312422 3.704601 -0.399372 18.905346 -0.081107 -0.537342 0.166768 0.630584 0.633238 0.163858 2.970963 1.115824 -10.271321 -1.008731 1.037758 13.559465 -2.018279 1.844362 27.053228 0.690664 -15.294487 1.604647 4.228273 -18.658215 -9.583572 16.504675 -15.130298 -11.630474 -58.156033 -79.718330 48.832214 56.228195 -38.777798 -27.207626 -0.209274 0.036202 0.102754 0.306287 -0.303561 0.484513 -14.689356 18.322502 -10.099127 14.392219 59.350132 7.294395 -70.056129 51.601223 -41.053566 -0.731632 -0.328415 -0.218878 0.551784 -0.033565 0.102327
+12.958972 167.067917 8.349648 2.702205 36.701839 0.486348 -2.678700 0.306702 2.864173 -1.107628 -0.172925 -0.808694 -0.828277 0.705107 0.035266 0.654131 0.523373 0.043678 -6.154392 1.836419 0.406537 1.431441 0.115053 13.854359 -0.060211 -0.564655 0.165787 0.639485 0.679597 0.167526 3.005822 1.667304 -10.683477 -1.114153 1.600607 13.901406 -2.317943 2.675538 27.748314 0.799350 -15.130547 0.893629 3.781889 -18.618504 -9.551449 16.266733 -13.564447 -11.777896 -54.775467 -81.217941 47.960983 58.047916 -38.559799 -27.637945 -0.266995 0.008268 0.095511 0.344565 -0.336193 0.472432 -14.631280 17.046846 -9.877468 10.202535 59.665512 5.718135 -74.244888 51.105705 -42.939346 -0.767504 -0.315106 -0.251355 0.584179 0.009071 0.096686
+12.452128 167.009888 8.077014 2.461706 35.263344 0.139519 -2.206611 0.438580 3.187374 -1.335386 -0.128689 -1.583616 -0.816248 0.700272 0.045012 0.634431 0.509062 0.017517 -5.480972 1.246305 2.747751 0.018858 0.324239 9.648031 -0.051052 -0.548562 0.174625 0.628151 0.697241 0.151840 4.024122 2.058709 -10.749973 -1.356176 2.137061 14.453202 -3.210816 3.475378 28.347219 0.293650 -14.566850 0.815414 4.702866 -18.753145 -9.856362 16.209381 -13.630665 -11.716234 -43.786751 -81.348572 38.521572 59.631126 -39.055981 -28.324064 -0.262782 -0.005497 0.093871 0.339756 -0.344698 0.475108 -14.263066 16.940414 -9.636518 5.357641 59.554520 3.299359 -76.598694 50.618366 -43.652618 -0.758523 -0.294897 -0.258568 0.602120 0.019008 0.108223
+11.955856 167.041473 7.815316 2.200115 34.074883 0.206242 -1.639331 0.305574 2.427539 -1.750045 -0.101623 -1.330747 -0.835996 0.736500 0.046488 0.597050 0.454322 -0.014514 -4.746152 0.807878 3.998532 -1.084824 0.383308 6.127007 -0.037535 -0.547111 0.178894 0.603604 0.729274 0.152477 5.311884 2.517585 -10.576951 -1.705931 2.709427 14.624536 -4.301122 4.300492 28.432043 -0.188175 -14.214143 0.843948 5.385569 -19.039980 -10.034118 16.288984 -13.570398 -11.571184 -37.661831 -81.309227 33.572430 61.485229 -39.728085 -29.360188 -0.282154 -0.033810 0.115317 0.347612 -0.361860 0.466673 -13.979778 16.668598 -9.179684 3.202501 59.799908 2.375279 -80.272774 50.243973 -45.521988 -0.768399 -0.263099 -0.284966 0.620532 0.054882 0.105502
+11.463541 167.175400 7.615250 1.644520 33.440304 0.253261 -0.925995 0.126036 1.482330 -1.911165 -0.098357 -0.955948 -0.813821 0.729590 0.060691 0.579135 0.431806 -0.022549 -3.619632 0.554533 4.396863 -2.148628 0.452830 4.018525 -0.033604 -0.539301 0.188081 0.580839 0.732228 0.150398 6.368691 2.689648 -10.363791 -1.849836 3.009660 14.549895 -4.934672 4.726927 28.222124 -0.745950 -13.666760 1.106444 5.366399 -18.867844 -9.584204 16.453615 -13.829520 -10.843252 -34.535763 -80.701866 30.749111 64.715393 -40.373333 -31.275719 -0.278773 -0.037142 0.113378 0.347625 -0.362174 0.468746 -14.035901 16.653095 -8.824483 2.001298 60.208763 1.997700 -82.096458 49.898731 -46.284203 -0.755234 -0.256565 -0.283784 0.615073 0.053241 0.108455
+10.993239 167.237579 7.539951 1.295010 33.481121 0.521082 -0.324293 -0.038454 0.457881 -2.060845 -0.079292 -0.507485 -0.823459 0.768823 0.068638 0.528464 0.364369 -0.034665 -2.861637 0.395406 4.423781 -2.633402 0.431289 2.594620 -0.007050 -0.549561 0.188721 0.551500 0.755267 0.147824 6.933473 2.812271 -10.289229 -1.887934 3.156713 14.240685 -5.206841 5.012040 27.864391 -1.051928 -13.655925 1.466474 4.331422 -18.791845 -8.415689 16.597418 -13.252803 -10.271108 -36.878922 -80.977745 33.450073 67.122765 -40.310059 -32.465187 -0.319352 -0.065203 0.105016 0.374625 -0.389421 0.444431 -14.540864 15.856384 -8.482399 1.997767 60.547745 2.622039 -84.576508 50.054199 -47.953842 -0.757898 -0.240801 -0.308830 0.619544 0.084014 0.095659
+10.492373 167.312592 7.450802 1.196500 33.919628 0.617233 -0.041295 -0.115466 -0.034266 -1.928445 -0.085836 -0.449756 -0.815569 0.776384 0.075136 0.506014 0.325132 -0.026379 -2.398987 0.297562 4.517623 -2.742403 0.401983 1.924661 -0.000041 -0.552527 0.185534 0.525945 0.747547 0.150814 6.901422 2.838551 -10.187568 -1.849278 3.180538 14.128212 -5.088349 5.059543 27.636864 -1.227593 -13.682513 1.796692 3.468035 -18.599436 -7.448743 16.908384 -13.486770 -9.805251 -34.709290 -80.651840 31.541033 68.689369 -40.359444 -33.268707 -0.326670 -0.066251 0.104823 0.379735 -0.394237 0.430956 -14.917236 16.137800 -8.020524 1.573260 60.114002 2.577746 -86.773041 50.163651 -49.522564 -0.747943 -0.242738 -0.313466 0.600900 0.087909 0.082838
+10.042785 167.362900 7.409591 1.103975 33.979431 0.673347 0.195685 -0.075464 -0.116285 -1.825712 -0.088740 -0.806052 -0.795450 0.758017 0.076582 0.511727 0.330893 -0.024579 -2.086533 0.226044 4.401073 -2.553589 0.370667 1.487296 -0.000196 -0.561265 0.183746 0.522715 0.731606 0.154432 6.877834 2.899671 -10.189466 -1.852989 3.277582 14.061892 -5.094145 5.133415 27.595903 -1.399282 -13.522391 2.257778 3.224619 -18.447943 -6.748367 17.225178 -13.233134 -9.625971 -33.884827 -80.705353 30.981220 69.179573 -40.153439 -33.357933 -0.313078 -0.034787 0.092228 0.376603 -0.393029 0.435271 -15.017733 15.959023 -7.926957 1.357403 60.508221 2.697932 -86.840057 49.996147 -49.352970 -0.736011 -0.267721 -0.298900 0.572397 0.073574 0.084829
+9.616451 167.313934 7.383577 1.220538 34.230259 0.622406 0.230571 -0.035240 0.042251 -1.527127 -0.106024 -1.134634 -0.765902 0.743211 0.082363 0.514276 0.332998 -0.027963 -1.871850 0.210533 4.445139 -2.460114 0.367419 1.524452 -0.002708 -0.561681 0.185297 0.510960 0.726979 0.164340 6.260054 2.925602 -10.205591 -1.795749 3.273537 14.131217 -4.743575 5.062759 27.673952 -1.304189 -13.308847 2.781027 3.625407 -18.327415 -6.301701 17.540573 -13.057667 -9.729997 -32.780350 -80.868057 30.153566 68.420479 -40.181412 -32.936153 -0.304163 -0.007525 0.081055 0.373941 -0.388547 0.441484 -14.618386 15.834386 -7.807631 0.826287 60.684471 2.683280 -87.390205 50.462826 -49.997082 -0.721362 -0.280565 -0.279007 0.549863 0.064345 0.094159
+9.303005 167.252426 7.293768 1.232568 34.683178 0.474910 0.197040 0.031295 0.286883 -1.105584 -0.130820 -1.724337 -0.765560 0.739267 0.068986 0.527362 0.341931 -0.025617 -1.684064 0.248492 4.421625 -2.434174 0.372566 1.769688 -0.012652 -0.569362 0.175961 0.510942 0.715045 0.182324 6.066134 3.041371 -10.214946 -1.693856 3.302436 14.209458 -4.501903 4.971045 27.795202 -0.937755 -13.256901 3.121925 4.101356 -18.195124 -6.394556 17.595268 -12.839832 -10.075691 -32.341721 -81.118774 30.098087 66.990913 -40.758858 -32.447964 -0.298262 0.020416 0.088509 0.368076 -0.379789 0.440394 -14.229906 15.612314 -7.828662 1.962926 60.533081 3.365970 -87.789757 51.222736 -51.005302 -0.722772 -0.292685 -0.264332 0.525719 0.064460 0.092659
+8.968754 167.167831 7.146215 1.381949 35.429028 0.456838 0.101620 -0.048881 -0.040603 -0.736985 -0.156048 -1.544584 -0.793290 0.752019 0.058949 0.528688 0.355558 -0.030494 -1.696548 0.294932 4.278858 -2.187216 0.360208 2.102972 -0.005214 -0.580239 0.180581 0.531575 0.727852 0.176124 5.681755 2.900441 -10.148498 -1.625783 3.125547 14.292733 -4.171819 4.772327 27.971828 -0.580064 -13.277518 2.819175 3.827273 -17.951632 -6.656736 17.428659 -12.139396 -10.612112 -33.844524 -81.430832 31.669037 65.749184 -41.053211 -31.974920 -0.320453 0.003271 0.083534 0.384848 -0.390559 0.436263 -14.394090 15.145332 -8.302116 2.260664 60.721401 3.668245 -87.505417 51.913006 -51.477657 -0.746406 -0.287915 -0.276745 0.545493 0.075031 0.088444
+8.621991 167.161285 7.049623 1.227778 35.940018 0.274685 0.277435 -0.104088 -0.343710 -0.576743 -0.170138 -1.399605 -0.782639 0.758410 0.069566 0.529441 0.360471 -0.029341 -1.543954 0.341663 4.001868 -1.694946 0.336475 2.631681 -0.005726 -0.586717 0.179225 0.534760 0.738722 0.181909 5.735066 2.737397 -10.073421 -1.626089 2.980023 14.322968 -4.132045 4.560612 28.067850 -0.313836 -13.435310 2.610354 3.639260 -17.946075 -6.464343 16.964933 -11.933111 -10.706272 -33.992123 -81.388275 31.762932 65.606773 -41.154209 -31.904236 -0.330163 0.008020 0.067724 0.394330 -0.392285 0.441809 -14.477422 15.319427 -8.529713 3.296667 61.269142 4.177522 -86.655357 52.028927 -51.133362 -0.743367 -0.296438 -0.271924 0.548627 0.070916 0.096833
+8.335776 167.162964 7.017150 1.158154 36.069458 0.093816 0.513630 -0.193180 -0.561071 -0.648085 -0.186324 -0.857826 -0.779334 0.772135 0.064984 0.526734 0.352295 -0.048018 -1.332691 0.443916 3.686069 -1.597836 0.357166 3.322105 0.001045 -0.610278 0.169021 0.533197 0.747095 0.197772 5.877307 2.649546 -9.987617 -1.680527 2.935882 14.354516 -4.257368 4.573883 28.132406 -0.442568 -13.521820 2.401300 3.808778 -18.333462 -6.183328 16.780916 -11.715172 -10.835422 -36.299534 -81.285095 33.569817 65.331917 -41.141613 -31.840427 -0.337470 0.045761 0.052242 0.401426 -0.406837 0.441739 -14.366479 15.261948 -8.724748 3.244602 61.631279 4.224452 -86.064445 52.312061 -50.930725 -0.743962 -0.319765 -0.262094 0.527535 0.082389 0.105012
+8.086520 167.129272 6.982969 1.113014 35.763039 -0.015015 0.814213 -0.252904 -0.811763 -0.882264 -0.178316 -0.323731 -0.801724 0.781831 0.061039 0.534687 0.365296 -0.038287 -1.249285 0.510152 3.380480 -1.596195 0.376963 3.619185 0.003416 -0.608723 0.170022 0.551901 0.752567 0.187476 6.077522 2.623214 -9.942127 -1.757048 2.956401 14.379050 -4.439812 4.661711 28.299021 -0.524828 -13.601445 2.232626 3.532584 -18.334280 -6.584974 16.462692 -11.155466 -11.009156 -39.048531 -81.328979 35.997299 65.407547 -41.064457 -31.893126 -0.346292 0.024123 0.053837 0.405845 -0.411118 0.439301 -14.809453 15.152475 -9.095040 4.015037 62.585377 4.619361 -84.772469 51.845974 -49.768559 -0.757174 -0.312478 -0.274791 0.550867 0.084084 0.099831
+7.869051 167.035736 6.990849 1.035165 35.784931 -0.072413 1.169224 -0.303131 -1.179914 -1.241332 -0.151096 0.144948 -0.827531 0.814158 0.063549 0.515023 0.336201 -0.048745 -1.291338 0.467849 3.380780 -1.227285 0.321366 3.479705 0.015436 -0.609704 0.169722 0.550829 0.777534 0.177506 6.103163 2.602976 -9.974830 -1.767186 2.912050 14.291284 -4.404027 4.685915 28.254179 -0.580914 -13.557173 2.167021 3.609180 -18.448467 -6.602057 16.366638 -10.872387 -11.038634 -42.523594 -81.260468 39.032402 65.375038 -41.072159 -31.990337 -0.365088 -0.004118 0.062877 0.415370 -0.429056 0.433127 -14.803628 15.112213 -9.251678 4.461949 63.274105 4.883279 -83.603905 51.586010 -48.733044 -0.769223 -0.295170 -0.303822 0.577611 0.104903 0.093386
+7.659686 167.033066 6.996001 1.019570 35.861710 -0.323491 1.378375 -0.296127 -1.050976 -1.409914 -0.137103 0.309856 -0.849876 0.825475 0.051710 0.497071 0.303940 -0.056004 -1.207573 0.404454 3.636643 -1.188517 0.290747 3.324433 0.014400 -0.585710 0.164942 0.536098 0.777194 0.168158 6.526380 2.624433 -9.908018 -1.922981 2.937468 14.376523 -4.823515 4.865574 28.263691 -0.827681 -13.281828 2.781018 4.499244 -18.501703 -7.196418 16.445639 -11.247074 -10.955324 -42.509098 -80.754425 38.650330 65.633942 -41.618572 -32.495312 -0.358345 -0.034984 0.102318 0.397519 -0.424340 0.420392 -14.914519 15.093378 -9.169952 4.819797 63.196419 5.021386 -83.927582 51.857780 -49.187798 -0.770721 -0.257144 -0.326413 0.593177 0.126563 0.080692
+7.525850 167.044418 7.033552 0.892192 36.112305 -0.709661 1.466823 -0.315579 -0.802789 -1.149170 -0.168846 0.428178 -0.862697 0.831569 0.042041 0.514791 0.319339 -0.053213 -0.961615 0.308838 4.067444 -1.298715 0.294904 3.020282 0.008734 -0.587183 0.163641 0.548243 0.778089 0.175176 6.870462 2.528930 -9.953801 -2.003535 2.856042 14.568444 -5.071709 4.837686 28.592924 -0.905478 -13.178675 2.813828 5.026232 -18.606459 -7.765009 16.548752 -10.892982 -11.240913 -44.721809 -80.758339 40.602085 65.293053 -42.058964 -32.641357 -0.355695 -0.028242 0.111601 0.393568 -0.421192 0.425443 -14.898005 14.609347 -9.376429 5.651835 63.393562 5.647392 -84.616806 52.549801 -50.345825 -0.781149 -0.258240 -0.324040 0.596174 0.127423 0.080947
+7.355191 167.028397 7.109883 1.045829 36.404373 -0.765478 1.356241 -0.303848 -0.610719 -0.870652 -0.185159 0.220932 -0.871081 0.860843 0.043275 0.501896 0.300764 -0.062406 -0.957733 0.327540 4.148426 -1.354308 0.304025 3.120034 0.019672 -0.606451 0.157234 0.547485 0.798355 0.184665 6.597807 2.458812 -10.071966 -1.989085 2.752110 14.623957 -4.922241 4.768068 28.763779 -0.914021 -13.144807 2.635721 4.778679 -18.637754 -7.378561 16.391348 -10.428543 -11.464166 -49.561325 -80.737061 44.902363 64.547562 -42.483311 -32.581692 -0.381163 -0.023364 0.098980 0.412392 -0.437929 0.419943 -14.561620 14.190603 -9.497291 6.366853 63.573101 6.401924 -85.399155 53.637516 -51.821232 -0.787840 -0.265775 -0.331001 0.596187 0.142624 0.082159
+7.155077 167.017242 7.172861 1.389389 36.439602 -0.654162 1.092596 -0.235716 -0.311941 -0.698065 -0.190512 -0.220540 -0.883363 0.865037 0.036902 0.508159 0.307619 -0.059471 -1.263333 0.380055 4.059262 -1.196603 0.290519 3.359639 0.016204 -0.607453 0.155426 0.555536 0.797220 0.186080 6.260530 2.504630 -10.129204 -2.022061 2.785383 14.680104 -4.863013 4.834050 28.861631 -0.962676 -13.147769 2.711264 4.801445 -18.622095 -7.634530 16.361652 -10.223455 -11.741094 -52.711117 -80.662842 47.482277 63.326042 -42.414639 -32.001530 -0.382022 -0.028120 0.106533 0.411631 -0.434609 0.420347 -14.466109 13.873824 -9.583220 7.144923 63.394001 7.011439 -86.213013 54.561375 -53.267361 -0.795329 -0.263296 -0.334569 0.601115 0.143887 0.079192
+7.031621 167.014420 7.198403 1.057742 36.872124 -0.849215 1.523878 -0.208912 -0.391857 -0.722919 -0.182614 -0.286065 -0.873812 0.863877 0.044145 0.496634 0.301524 -0.085036 -0.937315 0.340427 4.041193 -1.041760 0.278305 3.466509 0.027129 -0.615768 0.163659 0.552071 0.811878 0.181179 6.918967 2.404315 -10.114307 -2.097667 2.754581 14.613281 -5.223070 4.845906 28.733524 -1.109023 -13.184677 2.744221 4.970967 -18.905294 -7.277417 16.089365 -10.393722 -12.050610 -55.173679 -80.644966 49.547867 61.083500 -42.415867 -30.813631 -0.384747 -0.020208 0.091057 0.419534 -0.449088 0.427145 -14.075385 13.639119 -9.614275 7.362137 63.367119 7.293767 -85.902428 55.099770 -53.431530 -0.795216 -0.269020 -0.334109 0.601950 0.148890 0.090196
+6.869502 166.981400 7.210660 1.172682 36.980831 -0.748471 1.497608 -0.218089 -0.551707 -0.788285 -0.180495 -0.270307 -0.859250 0.865159 0.053512 0.485923 0.297021 -0.120271 -0.976377 0.337658 3.924813 -0.868291 0.261145 3.467600 0.035086 -0.630295 0.168213 0.547971 0.834601 0.183655 7.011422 2.395876 -10.147407 -2.193405 2.795569 14.540473 -5.430142 4.909186 28.631712 -1.231446 -13.098920 2.779909 5.486808 -19.247047 -6.950037 16.275200 -10.264022 -12.216107 -57.851528 -80.525887 51.688046 59.947651 -42.182903 -30.191647 -0.386563 0.000455 0.073449 0.427834 -0.464141 0.439617 -13.784278 13.369806 -9.735926 7.633672 63.621166 7.532999 -84.590286 55.149101 -52.444565 -0.792893 -0.280839 -0.329248 0.599410 0.155810 0.109428
+6.680131 167.002899 7.217666 1.187125 36.931793 -0.828285 1.584544 -0.211414 -0.574275 -0.874610 -0.168310 -0.137720 -0.853878 0.852943 0.057319 0.481894 0.305317 -0.117365 -0.924843 0.306214 3.943217 -0.710594 0.244724 3.424115 0.036048 -0.617330 0.172972 0.549581 0.834253 0.171210 6.938194 2.424942 -10.129640 -2.162041 2.830045 14.563975 -5.362299 4.945365 28.630226 -1.108801 -13.269798 2.883466 5.393882 -19.189121 -7.077047 16.167507 -10.224322 -12.440940 -58.815575 -80.563515 52.533798 58.769753 -42.223835 -29.591715 -0.386777 -0.020734 0.068889 0.427108 -0.460082 0.436339 -13.920820 13.326815 -9.742256 7.921180 63.209751 7.597058 -84.553902 55.298958 -52.618496 -0.788153 -0.267142 -0.330272 0.613667 0.152480 0.112158
+6.503870 167.006622 7.259048 1.223659 36.710667 -0.789219 1.667362 -0.248274 -0.710682 -0.994127 -0.166245 0.114754 -0.844824 0.857779 0.061901 0.484431 0.299339 -0.114939 -0.919867 0.351613 3.776792 -0.658970 0.249494 3.601349 0.038687 -0.628574 0.170801 0.545470 0.832809 0.179662 6.920116 2.451582 -10.147552 -2.190137 2.873035 14.485276 -5.432727 4.983889 28.563953 -1.250659 -13.474602 3.059166 5.110630 -19.398945 -6.588612 16.064640 -9.891124 -12.523528 -60.746830 -80.527710 54.340054 58.082737 -42.285530 -29.261112 -0.387535 0.000330 0.058164 0.431093 -0.466143 0.438853 -13.849615 13.132182 -9.793068 8.730017 63.434021 8.228467 -84.133987 55.605637 -52.583416 -0.784933 -0.285533 -0.322633 0.597733 0.148686 0.113093
+6.376717 167.041550 7.305188 1.097854 36.949028 -1.073196 1.935652 -0.254477 -0.687994 -1.066603 -0.164356 0.418212 -0.846568 0.833776 0.059838 0.499092 0.324248 -0.098737 -0.653753 0.299158 4.005669 -0.798804 0.268196 3.566319 0.028284 -0.605173 0.180354 0.553496 0.817310 0.166575 6.957397 2.375856 -10.142779 -2.110652 2.777897 14.540224 -5.311823 4.900160 28.637188 -1.358882 -13.677279 3.537927 5.161724 -19.382687 -7.172004 16.039686 -9.890258 -12.559263 -62.288631 -80.590691 55.694286 57.895103 -42.014481 -29.074713 -0.370295 -0.026997 0.073214 0.417207 -0.447181 0.441966 -14.062440 12.942348 -9.874907 9.264707 63.198250 8.559819 -84.200516 56.096909 -53.085690 -0.784523 -0.266521 -0.321773 0.613572 0.133946 0.110358
+6.286732 167.087952 7.310278 0.856923 37.076107 -1.401306 2.204793 -0.269972 -0.682690 -1.208705 -0.157978 0.722451 -0.819156 0.813195 0.075473 0.499385 0.331879 -0.106948 -0.370564 0.220591 4.209398 -0.763063 0.271545 3.486713 0.027777 -0.596422 0.191148 0.547748 0.820315 0.159305 7.602540 2.296217 -10.084869 -2.208013 2.782577 14.598593 -5.738420 4.895529 28.646461 -1.458791 -13.595873 3.768286 5.554889 -19.492493 -6.980786 15.811882 -10.120440 -12.544173 -60.683052 -80.523209 54.150425 57.557728 -42.240051 -28.906698 -0.355791 -0.021915 0.062710 0.412584 -0.444980 0.455440 -13.799865 12.832455 -9.814207 9.383290 63.073311 8.679627 -84.512550 56.422298 -53.589619 -0.770975 -0.269176 -0.312642 0.614160 0.120110 0.123627
+6.115209 167.098450 7.320713 0.915454 36.887005 -1.495124 2.163584 -0.294224 -0.655080 -1.098931 -0.164317 0.883671 -0.822154 0.822404 0.078934 0.479937 0.311945 -0.116933 -0.395738 0.198469 4.286450 -0.770784 0.266390 3.384946 0.033702 -0.591953 0.188015 0.540053 0.830461 0.152296 7.629976 2.325459 -10.029790 -2.260748 2.816364 14.666842 -5.828328 4.940321 28.679174 -1.617284 -13.597672 3.823709 5.571311 -19.589762 -6.911629 15.848895 -10.112772 -12.685377 -58.973038 -80.526443 52.560822 56.984753 -42.154224 -28.534901 -0.362758 -0.038457 0.064263 0.414368 -0.450308 0.449097 -13.486145 12.873084 -9.720198 8.992170 63.030647 8.511137 -85.463753 56.685261 -54.475582 -0.767245 -0.255791 -0.324681 0.625610 0.131663 0.124226
+5.951284 167.082748 7.312221 0.898624 36.792915 -1.566548 2.177181 -0.309065 -0.656299 -0.995318 -0.175929 0.869200 -0.821420 0.834609 0.085102 0.483429 0.312668 -0.119532 -0.231750 0.240905 4.208457 -0.952491 0.301475 3.524331 0.038061 -0.607260 0.189477 0.544582 0.842580 0.159046 7.742310 2.302027 -10.014476 -2.261708 2.819495 14.726674 -5.895653 4.955140 28.775240 -1.700639 -13.496553 3.524153 5.385921 -19.618820 -6.649409 16.105032 -9.935603 -12.813622 -59.379627 -80.614807 52.898712 56.905380 -41.867214 -28.420603 -0.372220 -0.025643 0.051789 0.426045 -0.460759 0.455521 -13.497173 12.731162 -9.910016 8.515057 63.158932 8.275264 -84.925995 56.664631 -54.020771 -0.772165 -0.271268 -0.323466 0.623341 0.130657 0.128387
+5.787125 167.104965 7.328816 1.126751 36.559666 -1.530483 1.942476 -0.329947 -0.553987 -0.672108 -0.202705 0.771892 -0.819245 0.842687 0.087930 0.482253 0.310788 -0.133697 -0.259554 0.278675 4.184200 -1.113613 0.332702 3.575195 0.047463 -0.619326 0.192033 0.546772 0.857767 0.160685 7.666715 2.351444 -10.005503 -2.330774 2.896169 14.843453 -6.022315 5.038610 28.951664 -1.752549 -13.266644 3.246964 5.749434 -19.731901 -6.518391 16.306450 -9.816788 -12.936370 -60.008442 -80.803070 53.505280 56.958443 -41.518337 -28.327360 -0.378644 -0.010050 0.038805 0.434545 -0.476493 0.459767 -13.001019 12.570029 -10.020170 7.993204 63.421856 8.054744 -84.885376 56.727764 -53.963055 -0.775347 -0.282678 -0.322482 0.621164 0.135585 0.135613
+5.713269 167.136322 7.379865 1.089275 36.820839 -1.680030 1.896983 -0.338186 -0.444317 -0.473926 -0.211391 0.864332 -0.836497 0.856064 0.084708 0.464715 0.302566 -0.150371 -0.205178 0.272041 4.247215 -0.895749 0.311699 3.761143 0.059852 -0.619337 0.194467 0.552581 0.876872 0.147437 7.720521 2.269701 -10.036958 -2.314242 2.781862 14.922002 -5.981796 4.932163 29.135073 -1.760437 -13.156147 3.171250 5.786662 -19.680607 -6.652070 16.406183 -9.372772 -13.173079 -62.759819 -80.830498 56.232899 56.567490 -42.057896 -28.402193 -0.397282 -0.035242 0.034899 0.445567 -0.490069 0.452141 -12.765620 12.238463 -10.174098 8.385249 63.879204 8.415292 -84.971672 56.765835 -54.053337 -0.785596 -0.265522 -0.340198 0.645710 0.153637 0.136120
+5.612041 167.109726 7.381964 1.057566 36.839554 -1.708119 1.992047 -0.353471 -0.576395 -0.589557 -0.214589 1.058342 -0.830550 0.836904 0.079233 0.494333 0.339559 -0.128948 -0.151834 0.284356 4.141333 -0.733491 0.300815 3.890992 0.041374 -0.610454 0.193442 0.565054 0.857366 0.155737 7.766678 2.265913 -10.021156 -2.293046 2.781116 14.873036 -5.962947 4.886598 29.127880 -1.726299 -13.386919 3.219218 5.820737 -19.718887 -7.258751 16.647438 -9.126202 -13.258051 -64.780159 -80.926186 58.244099 56.603374 -42.187405 -28.507826 -0.382001 -0.028421 0.040070 0.433274 -0.467185 0.459496 -13.030258 12.015736 -10.095535 9.413108 63.820103 8.994855 -86.126396 56.546379 -54.906349 -0.784324 -0.268824 -0.321024 0.641836 0.135699 0.138764
+5.498546 167.064697 7.439895 1.095821 36.936230 -1.626120 2.081196 -0.376115 -0.797146 -0.753682 -0.202171 1.318451 -0.830802 0.855129 0.078751 0.473904 0.316363 -0.149132 -0.096882 0.295974 4.095630 -0.600843 0.270566 3.950432 0.052518 -0.629416 0.195166 0.553035 0.873600 0.168353 7.622669 2.275712 -10.091393 -2.312842 2.739209 14.712197 -5.903061 4.789038 29.013309 -1.531460 -13.429269 3.188437 5.562817 -19.705956 -6.695267 16.943766 -9.080315 -13.126895 -66.239227 -80.963356 59.685429 56.783913 -41.970383 -28.534273 -0.405423 -0.021944 0.029246 0.452967 -0.480375 0.454158 -12.976559 12.104907 -9.672997 10.847079 63.962929 9.861280 -87.721085 55.954205 -55.755169 -0.790723 -0.271924 -0.321337 0.632243 0.152939 0.141288
+5.396627 167.072586 7.504025 1.060585 36.744377 -1.612108 2.328160 -0.316564 -0.709558 -0.951060 -0.175432 1.123986 -0.825951 0.868628 0.088873 0.462262 0.292059 -0.145241 0.095296 0.348313 4.001882 -0.871837 0.307826 4.099064 0.054479 -0.636562 0.192980 0.539283 0.877314 0.175364 7.630804 2.331413 -10.184217 -2.285271 2.759179 14.583076 -5.893759 4.797372 28.882467 -1.563660 -13.698160 3.390576 4.988390 -19.782946 -6.043611 16.978907 -9.295167 -12.923512 -67.691887 -80.955971 61.014683 56.770271 -41.682426 -28.429176 -0.413190 -0.021347 0.027558 0.460121 -0.484216 0.452626 -13.128291 12.364478 -9.378719 12.004086 63.792343 10.464619 -87.981667 55.823048 -55.968956 -0.786953 -0.277355 -0.324959 0.624839 0.154185 0.137322
+5.330537 167.055405 7.593513 1.084530 36.542492 -1.560997 2.391451 -0.276362 -0.517755 -0.900840 -0.170862 0.852253 -0.850873 0.883273 0.073986 0.460937 0.277907 -0.129016 0.102797 0.402642 3.941768 -1.012981 0.332478 4.281877 0.054240 -0.633409 0.177198 0.541782 0.864085 0.173437 7.529418 2.366551 -10.308225 -2.244161 2.731062 14.495906 -5.788133 4.816861 28.893471 -1.780086 -13.734798 3.643216 4.703999 -19.747282 -6.172123 17.010826 -9.118904 -12.845424 -70.347260 -80.890465 63.501747 56.906372 -41.477272 -28.476862 -0.414377 -0.030452 0.045398 0.452215 -0.482964 0.436135 -13.140022 12.343482 -9.428499 12.651466 64.249504 10.785138 -86.288033 55.231815 -54.155842 -0.790055 -0.271061 -0.338819 0.623980 0.163381 0.119629
+5.289005 167.037720 7.630992 1.070597 36.562958 -1.568699 2.367473 -0.243477 -0.378260 -0.757215 -0.173081 0.530254 -0.875511 0.909284 0.066754 0.455079 0.262711 -0.127630 0.183376 0.430434 3.949102 -1.107244 0.339805 4.372824 0.062129 -0.639185 0.176848 0.543574 0.875643 0.175485 7.617464 2.371757 -10.377048 -2.217575 2.688620 14.498006 -5.797486 4.825945 28.977270 -1.787121 -13.713302 3.565958 4.595257 -19.731100 -6.276907 17.116297 -8.909925 -12.919465 -73.537117 -80.882309 66.541573 56.928295 -41.421242 -28.557047 -0.433093 -0.045721 0.053374 0.462413 -0.493283 0.427257 -13.166192 12.073348 -9.508842 13.134483 64.340355 11.059110 -86.042732 55.085392 -53.870678 -0.805012 -0.261652 -0.353532 0.634293 0.178656 0.110244
+5.250557 167.058228 7.630060 1.050691 36.366405 -1.686339 2.308505 -0.219475 -0.241682 -0.665622 -0.175459 0.381430 -0.864898 0.896839 0.068571 0.454871 0.268891 -0.132367 0.196316 0.410073 4.032111 -1.123985 0.348553 4.327813 0.062662 -0.631083 0.178655 0.543306 0.873466 0.169125 7.852811 2.438426 -10.328544 -2.239943 2.779359 14.602224 -5.973296 4.897834 29.070875 -1.781101 -13.696284 3.615752 4.969555 -19.811272 -6.400131 17.020857 -8.956825 -12.976069 -73.120125 -81.007019 66.391487 56.920227 -41.878071 -28.678911 -0.424972 -0.044541 0.049154 0.456517 -0.491343 0.428979 -12.895415 11.947515 -9.503976 12.969222 64.111511 10.956419 -86.773422 55.403698 -54.676723 -0.797579 -0.259023 -0.349095 0.635405 0.175091 0.115952
+5.184128 167.075302 7.605679 0.857725 36.516743 -1.842267 2.555790 -0.277433 -0.526348 -0.772827 -0.176450 0.846080 -0.853735 0.886909 0.075604 0.456990 0.284103 -0.143938 0.607954 0.418726 4.006513 -1.348587 0.395014 4.454660 0.065181 -0.641743 0.185531 0.549451 0.880516 0.167548 8.026899 2.320533 -10.259238 -2.213379 2.703124 14.615870 -5.970800 4.802303 29.088760 -1.663761 -13.756658 3.296550 4.789773 -19.824558 -6.180539 16.798262 -8.714105 -13.031642 -73.482353 -80.841736 66.679405 57.019016 -42.485992 -28.974310 -0.427150 -0.032243 0.029398 0.465330 -0.497494 0.438275 -12.835209 11.825673 -9.514554 13.026668 64.010742 11.019248 -87.478996 55.434261 -55.282013 -0.799002 -0.272638 -0.341057 0.634503 0.169435 0.126579
+5.100438 167.104965 7.646784 0.909297 36.567875 -1.958430 2.633620 -0.287639 -0.500175 -0.774964 -0.180695 1.045633 -0.844505 0.867536 0.079648 0.466620 0.307101 -0.146916 0.729203 0.416522 4.087817 -1.360196 0.418396 4.595594 0.059764 -0.636714 0.189720 0.559686 0.877513 0.159117 7.900171 2.290816 -10.256913 -2.228443 2.700352 14.701031 -5.944954 4.787866 29.196516 -1.451353 -13.782760 3.302187 5.056968 -19.771875 -6.331472 16.759624 -8.520159 -13.153247 -73.468071 -80.593155 66.478653 56.769646 -43.214493 -29.168270 -0.414012 -0.029168 0.024672 0.459416 -0.491536 0.449283 -13.015759 11.857333 -9.551817 13.687625 63.791054 11.190667 -87.213409 55.267269 -55.100910 -0.795388 -0.276697 -0.336466 0.639808 0.156807 0.134382
+5.008088 167.129333 7.727567 0.949260 36.551426 -2.099984 2.755935 -0.211639 -0.234606 -0.858205 -0.168052 0.749324 -0.821951 0.851078 0.086562 0.470697 0.312558 -0.141774 0.853582 0.384105 4.256401 -1.569275 0.443839 4.469748 0.052056 -0.631911 0.190364 0.550966 0.866567 0.165551 7.737350 2.326644 -10.258555 -2.170702 2.735248 14.777138 -5.840622 4.827994 29.184546 -1.352467 -14.159698 3.434502 5.002151 -19.944111 -6.215186 16.190968 -8.656936 -13.161228 -71.993462 -80.493362 65.159561 56.390408 -44.036282 -29.210642 -0.402254 -0.018424 0.020585 0.452831 -0.479743 0.454033 -12.901986 12.032985 -9.377705 13.275103 62.911510 10.781097 -88.324135 55.850304 -56.473270 -0.782287 -0.282232 -0.320535 0.626352 0.144586 0.140446
+4.963192 167.153793 7.782106 1.156298 36.496826 -2.127665 2.684453 -0.202155 -0.029091 -1.015884 -0.156476 0.745028 -0.816619 0.858987 0.085898 0.466582 0.286126 -0.131894 0.685491 0.372260 4.402023 -1.554614 0.433864 4.465656 0.053300 -0.627919 0.181654 0.532659 0.857004 0.173818 7.523893 2.357582 -10.241952 -2.174749 2.750012 14.820229 -5.793070 4.891691 29.099798 -1.390217 -14.534770 3.597457 5.218561 -20.355474 -6.080217 15.678180 -8.750938 -13.203680 -70.032333 -80.191971 63.259220 55.750103 -45.160484 -29.285482 -0.394580 -0.007406 0.030446 0.442902 -0.479654 0.445604 -12.664586 12.244982 -9.192148 12.718975 62.245361 10.403840 -89.635719 56.598236 -58.100262 -0.770649 -0.283998 -0.318057 0.607676 0.146970 0.133777
+4.980425 167.159668 7.797745 1.068909 36.452381 -2.292628 2.786405 -0.194068 0.088780 -1.040707 -0.159036 0.791008 -0.794324 0.836809 0.085342 0.471809 0.296360 -0.137958 0.690796 0.308528 4.547214 -1.425836 0.417952 4.356831 0.049718 -0.629332 0.177862 0.528284 0.841884 0.177942 7.671723 2.291188 -10.284655 -2.126873 2.697577 14.807689 -5.759335 4.825286 29.017426 -1.689996 -14.738440 3.816248 5.212533 -20.664696 -5.943554 15.470534 -8.747698 -13.173607 -67.873299 -79.820023 60.973171 55.292614 -45.843788 -29.305782 -0.377227 0.020678 0.019434 0.432736 -0.474386 0.448875 -12.643470 12.525416 -9.440774 12.348681 62.323391 10.104821 -86.888382 56.897175 -56.129887 -0.756567 -0.299153 -0.297647 0.585627 0.138824 0.143061
+4.981020 167.187576 7.803658 1.036540 36.473839 -2.403700 2.869146 -0.218954 0.107048 -1.164012 -0.153588 1.022332 -0.810535 0.848083 0.079926 0.480192 0.298212 -0.130302 0.591946 0.283084 4.629778 -1.127481 0.386642 4.424829 0.050783 -0.631893 0.172184 0.539211 0.841630 0.175131 7.591506 2.166855 -10.345649 -2.116177 2.561084 14.849139 -5.657648 4.719121 29.160421 -1.722937 -14.731774 3.772313 5.259337 -20.706451 -6.118005 15.504788 -8.423912 -13.311617 -69.624321 -79.666473 62.410542 55.051956 -45.851707 -29.262722 -0.376854 0.021951 0.024918 0.430339 -0.479272 0.448059 -12.895359 12.491542 -9.791109 12.708981 62.914509 10.320333 -84.744164 56.727249 -54.365055 -0.763020 -0.303410 -0.306532 0.590598 0.139997 0.136727
+5.047082 167.175354 7.848271 0.927761 36.355148 -2.514930 2.989300 -0.208507 0.209768 -1.243284 -0.145459 1.088630 -0.813972 0.846211 0.074915 0.475472 0.287151 -0.127648 0.562768 0.228185 4.751265 -0.937316 0.346548 4.300982 0.048979 -0.621827 0.170499 0.531201 0.833410 0.173062 7.916453 2.212790 -10.395432 -2.127248 2.581004 14.778918 -5.808135 4.749259 29.043978 -1.876827 -14.680673 4.247573 5.418719 -20.692797 -6.174877 15.551222 -8.749429 -13.174081 -69.696617 -79.436378 62.229210 54.839966 -45.956326 -29.232710 -0.370016 0.013319 0.039735 0.421480 -0.473295 0.442541 -13.044841 12.520248 -9.799725 13.724273 62.795391 10.911464 -83.937027 57.317081 -54.302471 -0.759751 -0.291841 -0.310656 0.588823 0.143047 0.130337
+5.073087 167.149094 7.932034 1.019595 36.256138 -2.364868 3.020548 -0.219561 0.056040 -1.336325 -0.133799 1.291663 -0.806025 0.844771 0.078581 0.464329 0.279056 -0.143216 0.384230 0.204050 4.766475 -0.801158 0.316622 4.146415 0.055712 -0.623473 0.177572 0.522809 0.843311 0.171823 7.919977 2.294420 -10.449600 -2.192153 2.649531 14.630041 -5.946094 4.770162 28.854000 -1.825394 -14.622427 4.413842 5.640388 -20.734272 -5.948671 15.440033 -8.603888 -13.137852 -71.107758 -79.295456 63.622021 54.508213 -46.429142 -29.209726 -0.375385 0.013650 0.032447 0.427696 -0.480534 0.443050 -12.644485 12.153852 -9.721261 15.248572 62.817627 12.082417 -84.642303 58.248035 -55.663387 -0.759379 -0.288531 -0.308910 0.588657 0.149302 0.136019
+5.043498 167.106400 7.954643 1.093215 35.983459 -2.139066 3.017900 -0.250176 -0.255423 -1.383556 -0.129376 1.515809 -0.794921 0.823673 0.083695 0.471557 0.297074 -0.132545 0.314686 0.233642 4.578667 -0.858146 0.326619 4.114213 0.048409 -0.611996 0.183948 0.525512 0.833354 0.165164 7.850098 2.343861 -10.441935 -2.204339 2.701849 14.437363 -5.960052 4.738928 28.567453 -1.639070 -14.669295 4.467441 5.509173 -20.516508 -6.020821 14.951685 -8.429297 -12.996246 -70.795593 -78.828667 63.283733 54.822636 -47.833076 -29.893827 -0.366324 0.003588 0.031600 0.423024 -0.468016 0.446955 -12.526380 11.950170 -9.649835 17.124981 62.494274 13.262240 -85.263184 59.198933 -57.114037 -0.753988 -0.284215 -0.302799 0.592748 0.134574 0.137407
+5.095516 167.042786 7.984816 0.903158 35.543045 -1.939275 3.079081 -0.293003 -0.540169 -1.283830 -0.139132 1.667989 -0.795821 0.818165 0.080269 0.471831 0.294149 -0.125795 0.489588 0.330247 4.126373 -1.003137 0.351619 4.303168 0.044581 -0.608511 0.181540 0.522403 0.820994 0.165066 8.181985 2.516271 -10.479298 -2.143429 2.831703 14.074541 -6.034562 4.811388 28.102791 -1.696857 -14.713048 4.768616 5.358076 -20.452990 -5.914348 14.838585 -7.849155 -12.572924 -72.965355 -77.797638 64.954498 56.478954 -50.188789 -31.986877 -0.359510 0.002851 0.039693 0.417068 -0.461019 0.444393 -12.703396 11.240368 -9.529000 20.194355 62.019615 15.377612 -87.118935 60.853245 -60.236732 -0.751565 -0.283514 -0.303227 0.585751 0.131029 0.131054
+5.132122 166.999817 7.991653 1.022229 35.086838 -1.626138 2.948421 -0.322659 -0.831135 -1.264407 -0.140674 1.856723 -0.796688 0.810701 0.082596 0.475948 0.311898 -0.127076 0.412929 0.397859 3.872775 -1.250527 0.384538 4.270426 0.041650 -0.608461 0.189424 0.531868 0.824619 0.161722 8.220167 2.702409 -10.531656 -2.141010 3.001126 13.857776 -6.078801 4.907050 27.848139 -1.641022 -14.649521 4.750578 5.182422 -20.250347 -6.039337 14.636772 -6.951462 -12.545179 -75.166626 -76.673332 66.450600 56.915081 -52.600636 -33.442177 -0.363343 -0.009322 0.035841 0.423196 -0.456404 0.450139 -12.700704 10.473583 -9.627508 23.532307 61.605652 17.570370 -88.667953 62.650448 -63.399887 -0.758002 -0.279826 -0.302796 0.597057 0.125532 0.134841
+5.154690 167.003418 7.984470 1.036968 34.697113 -1.492106 2.995063 -0.297665 -0.923387 -1.468930 -0.119321 1.882283 -0.787942 0.789721 0.080650 0.490478 0.331958 -0.105053 0.234910 0.420462 3.689543 -1.084834 0.359384 4.282561 0.027391 -0.588176 0.189629 0.532239 0.806153 0.161732 8.268809 2.753097 -10.519224 -2.155419 3.042879 13.714745 -6.065427 4.868672 27.539133 -1.832153 -14.313983 4.804371 5.274069 -19.927355 -6.604616 14.134051 -6.738642 -12.510820 -72.773087 -75.162277 63.252644 56.797169 -55.870495 -34.973621 -0.349820 -0.020095 0.046768 0.409172 -0.434152 0.448141 -12.291365 10.540211 -9.847257 25.971272 61.472614 19.155691 -88.934135 64.794701 -65.699059 -0.749635 -0.267912 -0.291611 0.597883 0.112176 0.132933
+5.238012 167.016373 7.983655 0.978339 34.382439 -1.314850 2.958524 -0.296860 -1.043319 -1.372988 -0.126424 1.751303 -0.788802 0.779242 0.081538 0.486128 0.316137 -0.096265 0.256089 0.509649 3.326399 -1.243640 0.371080 4.495334 0.021474 -0.574345 0.195847 0.517525 0.789076 0.156921 8.456328 2.824600 -10.427766 -2.197144 3.090913 13.442000 -6.104652 4.799969 26.881725 -2.025975 -14.078970 4.973618 5.167322 -19.706944 -6.532036 13.719447 -7.396658 -12.326555 -68.442574 -73.521545 58.304405 55.976265 -59.391674 -36.169315 -0.333219 -0.034025 0.071983 0.396430 -0.422454 0.447513 -11.928431 11.437916 -9.687008 28.298519 60.954433 20.578396 -91.278008 67.431305 -70.375175 -0.746105 -0.256012 -0.298774 0.592209 0.105669 0.119822
+5.277890 167.029343 7.983756 0.734260 34.114620 -1.308561 3.067275 -0.290465 -1.089488 -1.144143 -0.142079 1.516601 -0.783965 0.766228 0.082450 0.481462 0.302668 -0.076673 0.502374 0.499101 3.231309 -1.524966 0.390596 4.300476 0.012977 -0.549226 0.192679 0.502417 0.767043 0.150275 8.639610 2.859595 -10.354753 -2.162956 3.098950 13.273678 -6.004428 4.741036 26.379974 -2.116080 -14.129115 5.023512 5.099277 -19.614777 -6.763466 13.084592 -8.266971 -12.069324 -65.687752 -71.994507 54.787903 55.585758 -62.411465 -37.480400 -0.315546 -0.055010 0.094974 0.376949 -0.404220 0.438521 -11.848722 12.670813 -9.602012 29.958427 60.440739 21.379108 -92.888710 69.645279 -74.122681 -0.731303 -0.236541 -0.302483 0.590588 0.098656 0.108570
+5.281264 167.014130 8.023033 0.908277 34.129711 -1.086763 2.783380 -0.339127 -1.196940 -0.761818 -0.176862 1.459013 -0.793272 0.768730 0.078292 0.487429 0.289737 -0.039022 0.292326 0.510687 3.113835 -1.202313 0.324853 4.215816 0.005018 -0.543315 0.190945 0.491474 0.741639 0.157884 8.235631 2.799057 -10.290317 -2.148050 2.984715 13.102726 -5.759658 4.549164 25.860296 -2.044061 -14.232334 4.869754 4.154621 -19.183256 -6.609097 12.373513 -9.045307 -12.040943 -63.317570 -70.749008 52.089851 54.330452 -65.406319 -38.066517 -0.314546 -0.066757 0.115838 0.372678 -0.390868 0.426004 -11.768380 13.679309 -9.734341 31.489487 59.440304 21.969141 -94.808510 72.765526 -79.156494 -0.732769 -0.232882 -0.304400 0.576354 0.090547 0.084381
diff --git a/visualization/Animation.py b/visualization/Animation.py
new file mode 100644
index 0000000000000000000000000000000000000000..f1237fdc30a2f0800bd5404190a412936e174ed9
--- /dev/null
+++ b/visualization/Animation.py
@@ -0,0 +1,442 @@
+import operator
+
+import numpy as np
+import numpy.core.umath_tests as ut
+
+from visualization.Quaternions import Quaternions
+
+
+class Animation:
+ """
+ Animation is a numpy-like wrapper for animation data
+
+ Animation data consists of several arrays consisting
+ of F frames and J joints.
+
+ The animation is specified by
+
+ rotations : (F, J) Quaternions | Joint Rotations
+ positions : (F, J, 3) ndarray | Joint Positions
+
+ The base pose is specified by
+
+ orients : (J) Quaternions | Joint Orientations
+ offsets : (J, 3) ndarray | Joint Offsets
+
+ And the skeletal structure is specified by
+
+ parents : (J) ndarray | Joint Parents
+ """
+
+ def __init__(self, rotations, positions, orients, offsets, parents, names, frametime):
+
+ self.rotations = rotations
+ self.positions = positions
+ self.orients = orients
+ self.offsets = offsets
+ self.parents = parents
+ self.names = names
+ self.frametime = frametime
+
+ def __op__(self, op, other):
+ return Animation(
+ op(self.rotations, other.rotations),
+ op(self.positions, other.positions),
+ op(self.orients, other.orients),
+ op(self.offsets, other.offsets),
+ op(self.parents, other.parents))
+
+ def __iop__(self, op, other):
+ self.rotations = op(self.roations, other.rotations)
+ self.positions = op(self.roations, other.positions)
+ self.orients = op(self.orients, other.orients)
+ self.offsets = op(self.offsets, other.offsets)
+ self.parents = op(self.parents, other.parents)
+ return self
+
+ def __sop__(self, op):
+ return Animation(
+ op(self.rotations),
+ op(self.positions),
+ op(self.orients),
+ op(self.offsets),
+ op(self.parents))
+
+ def __add__(self, other):
+ return self.__op__(operator.add, other)
+
+ def __sub__(self, other):
+ return self.__op__(operator.sub, other)
+
+ def __mul__(self, other):
+ return self.__op__(operator.mul, other)
+
+ def __div__(self, other):
+ return self.__op__(operator.div, other)
+
+ def __abs__(self):
+ return self.__sop__(operator.abs)
+
+ def __neg__(self):
+ return self.__sop__(operator.neg)
+
+ def __iadd__(self, other):
+ return self.__iop__(operator.iadd, other)
+
+ def __isub__(self, other):
+ return self.__iop__(operator.isub, other)
+
+ def __imul__(self, other):
+ return self.__iop__(operator.imul, other)
+
+ def __idiv__(self, other):
+ return self.__iop__(operator.idiv, other)
+
+ def __len__(self):
+ return len(self.rotations)
+
+ def __getitem__(self, k):
+ if isinstance(k, tuple):
+ return Animation(
+ self.rotations[k],
+ self.positions[k],
+ self.orients[k[1:]],
+ self.offsets[k[1:]],
+ self.parents[k[1:]],
+ self.names[k[1:]],
+ self.frametime[k[1:]])
+ else:
+ return Animation(
+ self.rotations[k],
+ self.positions[k],
+ self.orients,
+ self.offsets,
+ self.parents,
+ self.names,
+ self.frametime)
+
+ def __setitem__(self, k, v):
+ if isinstance(k, tuple):
+ self.rotations.__setitem__(k, v.rotations)
+ self.positions.__setitem__(k, v.positions)
+ self.orients.__setitem__(k[1:], v.orients)
+ self.offsets.__setitem__(k[1:], v.offsets)
+ self.parents.__setitem__(k[1:], v.parents)
+ else:
+ self.rotations.__setitem__(k, v.rotations)
+ self.positions.__setitem__(k, v.positions)
+ self.orients.__setitem__(k, v.orients)
+ self.offsets.__setitem__(k, v.offsets)
+ self.parents.__setitem__(k, v.parents)
+
+ @property
+ def shape(self):
+ return (self.rotations.shape[0], self.rotations.shape[1])
+
+ def copy(self):
+ return Animation(
+ self.rotations.copy(), self.positions.copy(),
+ self.orients.copy(), self.offsets.copy(),
+ self.parents.copy(), self.names,
+ self.frametime)
+
+ def repeat(self, *args, **kw):
+ return Animation(
+ self.rotations.repeat(*args, **kw),
+ self.positions.repeat(*args, **kw),
+ self.orients, self.offsets, self.parents, self.frametime, self.names)
+
+ def ravel(self):
+ return np.hstack([
+ self.rotations.log().ravel(),
+ self.positions.ravel(),
+ self.orients.log().ravel(),
+ self.offsets.ravel()])
+
+ @classmethod
+ def unravel(cls, anim, shape, parents):
+ nf, nj = shape
+ rotations = anim[nf * nj * 0:nf * nj * 3]
+ positions = anim[nf * nj * 3:nf * nj * 6]
+ orients = anim[nf * nj * 6 + nj * 0:nf * nj * 6 + nj * 3]
+ offsets = anim[nf * nj * 6 + nj * 3:nf * nj * 6 + nj * 6]
+ return cls(
+ Quaternions.exp(rotations), positions,
+ Quaternions.exp(orients), offsets,
+ parents.copy())
+
+
+# local transformation matrices
+def transforms_local(anim):
+ """
+ Computes Animation Local Transforms
+
+ As well as a number of other uses this can
+ be used to compute global joint transforms,
+ which in turn can be used to compete global
+ joint positions
+
+ Parameters
+ ----------
+
+ anim : Animation
+ Input animation
+
+ Returns
+ -------
+
+ transforms : (F, J, 4, 4) ndarray
+
+ For each frame F, joint local
+ transforms for each joint J
+ """
+
+ transforms = anim.rotations.transforms()
+ transforms = np.concatenate([transforms, np.zeros(transforms.shape[:2] + (3, 1))], axis=-1)
+ transforms = np.concatenate([transforms, np.zeros(transforms.shape[:2] + (1, 4))], axis=-2)
+ # the last column is filled with the joint positions!
+ transforms[:, :, 0:3, 3] = anim.positions
+ transforms[:, :, 3:4, 3] = 1.0
+ return transforms
+
+
+def transforms_multiply(t0s, t1s):
+ """
+ Transforms Multiply
+
+ Multiplies two arrays of animation transforms
+
+ Parameters
+ ----------
+
+ t0s, t1s : (F, J, 4, 4) ndarray
+ Two arrays of transforms
+ for each frame F and each
+ joint J
+
+ Returns
+ -------
+
+ transforms : (F, J, 4, 4) ndarray
+ Array of transforms for each
+ frame F and joint J multiplied
+ together
+ """
+
+ return ut.matrix_multiply(t0s, t1s)
+
+
+def transforms_inv(ts):
+ fts = ts.reshape(-1, 4, 4)
+ fts = np.array(list(map(lambda x: np.linalg.inv(x), fts)))
+ return fts.reshape(ts.shape)
+
+
+def transforms_blank(anim):
+ """
+ Blank Transforms
+
+ Parameters
+ ----------
+
+ anim : Animation
+ Input animation
+
+ Returns
+ -------
+
+ transforms : (F, J, 4, 4) ndarray
+ Array of identity transforms for
+ each frame F and joint J
+ """
+
+ ts = np.zeros(anim.shape + (4, 4))
+ ts[:, :, 0, 0] = 1.0;
+ ts[:, :, 1, 1] = 1.0;
+ ts[:, :, 2, 2] = 1.0;
+ ts[:, :, 3, 3] = 1.0;
+ return ts
+
+
+# global transformation matrices
+def transforms_global(anim):
+ """
+ Global Animation Transforms
+
+ This relies on joint ordering
+ being incremental. That means a joint
+ J1 must not be a ancestor of J0 if
+ J0 appears before J1 in the joint
+ ordering.
+
+ Parameters
+ ----------
+
+ anim : Animation
+ Input animation
+
+ Returns
+ ------
+
+ transforms : (F, J, 4, 4) ndarray
+ Array of global transforms for
+ each frame F and joint J
+ """
+ locals = transforms_local(anim)
+ globals = transforms_blank(anim)
+
+ globals[:, 0] = locals[:, 0]
+
+ for i in range(1, anim.shape[1]):
+ globals[:, i] = transforms_multiply(globals[:, anim.parents[i]], locals[:, i])
+
+ return globals
+
+
+# !!! useful!
+def positions_global(anim):
+ """
+ Global Joint Positions
+
+ Given an animation compute the global joint
+ positions at at every frame
+
+ Parameters
+ ----------
+
+ anim : Animation
+ Input animation
+
+ Returns
+ -------
+
+ positions : (F, J, 3) ndarray
+ Positions for every frame F
+ and joint position J
+ """
+
+ # get the last column -- corresponding to the coordinates
+ positions = transforms_global(anim)[:, :, :, 3]
+ return positions[:, :, :3] / positions[:, :, 3, np.newaxis]
+
+
+""" Rotations """
+
+
+def rotations_global(anim):
+ """
+ Global Animation Rotations
+
+ This relies on joint ordering
+ being incremental. That means a joint
+ J1 must not be a ancestor of J0 if
+ J0 appears before J1 in the joint
+ ordering.
+
+ Parameters
+ ----------
+
+ anim : Animation
+ Input animation
+
+ Returns
+ -------
+
+ points : (F, J) Quaternions
+ global rotations for every frame F
+ and joint J
+ """
+
+ joints = np.arange(anim.shape[1])
+ parents = np.arange(anim.shape[1])
+ locals = anim.rotations
+ globals = Quaternions.id(anim.shape)
+
+ globals[:, 0] = locals[:, 0]
+
+ for i in range(1, anim.shape[1]):
+ globals[:, i] = globals[:, anim.parents[i]] * locals[:, i]
+
+ return globals
+
+
+def rotations_parents_global(anim):
+ rotations = rotations_global(anim)
+ rotations = rotations[:, anim.parents]
+ rotations[:, 0] = Quaternions.id(len(anim))
+ return rotations
+
+""" Offsets & Orients """
+
+
+def orients_global(anim):
+ joints = np.arange(anim.shape[1])
+ parents = np.arange(anim.shape[1])
+ locals = anim.orients
+ globals = Quaternions.id(anim.shape[1])
+
+ globals[:, 0] = locals[:, 0]
+
+ for i in range(1, anim.shape[1]):
+ globals[:, i] = globals[:, anim.parents[i]] * locals[:, i]
+
+ return globals
+
+
+def offsets_transforms_local(anim):
+ transforms = anim.orients[np.newaxis].transforms()
+ transforms = np.concatenate([transforms, np.zeros(transforms.shape[:2] + (3, 1))], axis=-1)
+ transforms = np.concatenate([transforms, np.zeros(transforms.shape[:2] + (1, 4))], axis=-2)
+ transforms[:, :, 0:3, 3] = anim.offsets[np.newaxis]
+ transforms[:, :, 3:4, 3] = 1.0
+ return transforms
+
+
+def offsets_transforms_global(anim):
+ joints = np.arange(anim.shape[1])
+ parents = np.arange(anim.shape[1])
+ locals = offsets_transforms_local(anim)
+ globals = transforms_blank(anim)
+
+ globals[:, 0] = locals[:, 0]
+
+ for i in range(1, anim.shape[1]):
+ globals[:, i] = transforms_multiply(globals[:, anim.parents[i]], locals[:, i])
+
+ return globals
+
+
+def offsets_global(anim):
+ offsets = offsets_transforms_global(anim)[:, :, :, 3]
+ return offsets[0, :, :3] / offsets[0, :, 3, np.newaxis]
+
+
+""" Lengths """
+
+
+def offset_lengths(anim):
+ return np.sum(anim.offsets[1:] ** 2.0, axis=1) ** 0.5
+
+
+def position_lengths(anim):
+ return np.sum(anim.positions[:, 1:] ** 2.0, axis=2) ** 0.5
+
+
+""" Skinning """
+
+
+def skin(anim, rest, weights, mesh, maxjoints=4):
+ full_transforms = transforms_multiply(
+ transforms_global(anim),
+ transforms_inv(transforms_global(rest[0:1])))
+
+ weightids = np.argsort(-weights, axis=1)[:, :maxjoints]
+ weightvls = np.array(list(map(lambda w, i: w[i], weights, weightids)))
+ weightvls = weightvls / weightvls.sum(axis=1)[..., np.newaxis]
+
+ verts = np.hstack([mesh, np.ones((len(mesh), 1))])
+ verts = verts[np.newaxis, :, np.newaxis, :, np.newaxis]
+ verts = transforms_multiply(full_transforms[:, weightids], verts)
+ verts = (verts[:, :, :, :3] / verts[:, :, :, 3:4])[:, :, :, :, 0]
+
+ return np.sum(weightvls[np.newaxis, :, :, np.newaxis] * verts, axis=2)
\ No newline at end of file
diff --git a/visualization/AnimationStructure.py b/visualization/AnimationStructure.py
new file mode 100644
index 0000000000000000000000000000000000000000..4f212768b856ce3c8d6f07050f8cc70cc19a4622
--- /dev/null
+++ b/visualization/AnimationStructure.py
@@ -0,0 +1,425 @@
+import numpy as np
+# import scipy.sparse as sparse
+import visualization.Animation as Animation
+
+
+""" Family Functions """
+
+
+def joints(parents):
+ """
+ Parameters
+ ----------
+
+ parents : (J) ndarray
+ parents array
+
+ Returns
+ -------
+
+ joints : (J) ndarray
+ Array of joint indices
+ """
+ return np.arange(len(parents), dtype=int)
+
+
+def joints_list(parents):
+ """
+ Parameters
+ ----------
+
+ parents : (J) ndarray
+ parents array
+
+ Returns
+ -------
+
+ joints : [ndarray]
+ List of arrays of joint idices for
+ each joint
+ """
+ return list(joints(parents)[:, np.newaxis])
+
+
+def parents_list(parents):
+ """
+ Parameters
+ ----------
+
+ parents : (J) ndarray
+ parents array
+
+ Returns
+ -------
+
+ parents : [ndarray]
+ List of arrays of joint idices for
+ the parents of each joint
+ """
+ return list(parents[:, np.newaxis])
+
+
+def children_list(parents):
+ """
+ Parameters
+ ----------
+
+ parents : (J) ndarray
+ parents array
+
+ Returns
+ -------
+
+ children : [ndarray]
+ List of arrays of joint indices for
+ the children of each joint
+ """
+
+ def joint_children(i):
+ return [j for j, p in enumerate(parents) if p == i]
+
+ return list(map(lambda j: np.array(joint_children(j)), joints(parents)))
+
+
+def descendants_list(parents):
+ """
+ Parameters
+ ----------
+
+ parents : (J) ndarray
+ parents array
+
+ Returns
+ -------
+
+ descendants : [ndarray]
+ List of arrays of joint idices for
+ the descendants of each joint
+ """
+
+ children = children_list(parents)
+
+ def joint_descendants(i):
+ return sum([joint_descendants(j) for j in children[i]], list(children[i]))
+
+ return list(map(lambda j: np.array(joint_descendants(j)), joints(parents)))
+
+
+def ancestors_list(parents):
+ """
+ Parameters
+ ----------
+
+ parents : (J) ndarray
+ parents array
+
+ Returns
+ -------
+
+ ancestors : [ndarray]
+ List of arrays of joint idices for
+ the ancestors of each joint
+ """
+
+ decendants = descendants_list(parents)
+
+ def joint_ancestors(i):
+ return [j for j in joints(parents) if i in decendants[j]]
+
+ return list(map(lambda j: np.array(joint_ancestors(j)), joints(parents)))
+
+
+""" Mask Functions """
+
+
+def mask(parents, filter):
+ """
+ Constructs a Mask for a give filter
+
+ A mask is a (J, J) ndarray truth table for a given
+ condition over J joints. For example there
+ may be a mask specifying if a joint N is a
+ child of another joint M.
+
+ This could be constructed into a mask using
+ `m = mask(parents, children_list)` and the condition
+ of childhood tested using `m[N, M]`.
+
+ Parameters
+ ----------
+
+ parents : (J) ndarray
+ parents array
+
+ filter : (J) ndarray -> [ndarray]
+ function that outputs a list of arrays
+ of joint indices for some condition
+
+ Returns
+ -------
+
+ mask : (N, N) ndarray
+ boolean truth table of given condition
+ """
+ m = np.zeros((len(parents), len(parents))).astype(bool)
+ jnts = joints(parents)
+ fltr = filter(parents)
+ for i, f in enumerate(fltr): m[i, :] = np.any(jnts[:, np.newaxis] == f[np.newaxis, :], axis=1)
+ return m
+
+
+def joints_mask(parents): return np.eye(len(parents)).astype(bool)
+
+
+def children_mask(parents): return mask(parents, children_list)
+
+
+def parents_mask(parents): return mask(parents, parents_list)
+
+
+def descendants_mask(parents): return mask(parents, descendants_list)
+
+
+def ancestors_mask(parents): return mask(parents, ancestors_list)
+
+
+""" Search Functions """
+
+
+def joint_chain_ascend(parents, start, end):
+ chain = []
+ while start != end:
+ chain.append(start)
+ start = parents[start]
+ chain.append(end)
+ return np.array(chain, dtype=int)
+
+
+""" Constraints """
+
+
+def constraints(anim, **kwargs):
+ """
+ Constraint list for Animation
+
+ This constraint list can be used in the
+ VerletParticle solver to constrain
+ a animation global joint positions.
+
+ Parameters
+ ----------
+
+ anim : Animation
+ Input animation
+
+ masses : (F, J) ndarray
+ Optional list of masses
+ for joints J across frames F
+ defaults to weighting by
+ vertical height
+
+ Returns
+ -------
+
+ constraints : [(int, int, (F, J) ndarray, (F, J) ndarray, (F, J) ndarray)]
+ A list of constraints in the format:
+ (Joint1, Joint2, Masses1, Masses2, Lengths)
+
+ """
+
+ masses = kwargs.pop('masses', None)
+
+ children = children_list(anim.parents)
+ constraints = []
+
+ points_offsets = Animation.offsets_global(anim)
+ points = Animation.positions_global(anim)
+
+ if masses is None:
+ masses = 1.0 / (0.1 + np.absolute(points_offsets[:, 1]))
+ masses = masses[np.newaxis].repeat(len(anim), axis=0)
+
+ for j in range(anim.shape[1]):
+
+ """ Add constraints between all joints and their children """
+ for c0 in children[j]:
+
+ dists = np.sum((points[:, c0] - points[:, j]) ** 2.0, axis=1) ** 0.5
+ constraints.append((c0, j, masses[:, c0], masses[:, j], dists))
+
+ """ Add constraints between all children of joint """
+ for c1 in children[j]:
+ if c0 == c1: continue
+
+ dists = np.sum((points[:, c0] - points[:, c1]) ** 2.0, axis=1) ** 0.5
+ constraints.append((c0, c1, masses[:, c0], masses[:, c1], dists))
+
+ return constraints
+
+
+""" Graph Functions """
+
+
+def graph(anim):
+ """
+ Generates a weighted adjacency matrix
+ using local joint distances along
+ the skeletal structure.
+
+ Joints which are not connected
+ are assigned the weight `0`.
+
+ Joints which actually have zero distance
+ between them, but are still connected, are
+ perturbed by some minimal amount.
+
+ The output of this routine can be used
+ with the `scipy.sparse.csgraph`
+ routines for graph analysis.
+
+ Parameters
+ ----------
+
+ anim : Animation
+ input animation
+
+ Returns
+ -------
+
+ graph : (N, N) ndarray
+ weight adjacency matrix using
+ local distances along the
+ skeletal structure from joint
+ N to joint M. If joints are not
+ directly connected are assigned
+ the weight `0`.
+ """
+
+ graph = np.zeros(anim.shape[1], anim.shape[1])
+ lengths = np.sum(anim.offsets ** 2.0, axis=1) ** 0.5 + 0.001
+
+ for i, p in enumerate(anim.parents):
+ if p == -1: continue
+ graph[i, p] = lengths[p]
+ graph[p, i] = lengths[p]
+
+ return graph
+
+
+def distances(anim):
+ """
+ Generates a distance matrix for
+ pairwise joint distances along
+ the skeletal structure
+
+ Parameters
+ ----------
+
+ anim : Animation
+ input animation
+
+ Returns
+ -------
+
+ distances : (N, N) ndarray
+ array of pairwise distances
+ along skeletal structure
+ from some joint N to some
+ joint M
+ """
+
+ distances = np.zeros((anim.shape[1], anim.shape[1]))
+ generated = distances.copy().astype(bool)
+
+ joint_lengths = np.sum(anim.offsets ** 2.0, axis=1) ** 0.5
+ joint_children = children_list(anim)
+ joint_parents = parents_list(anim)
+
+ def find_distance(distances, generated, prev, i, j):
+
+ """ If root, identity, or already generated, return """
+ if j == -1: return (0.0, True)
+ if j == i: return (0.0, True)
+ if generated[i, j]: return (distances[i, j], True)
+
+ """ Find best distances along parents and children """
+ par_dists = [(joint_lengths[j], find_distance(distances, generated, j, i, p)) for p in joint_parents[j] if
+ p != prev]
+ out_dists = [(joint_lengths[c], find_distance(distances, generated, j, i, c)) for c in joint_children[j] if
+ c != prev]
+
+ """ Check valid distance and not dead end """
+ par_dists = [a + d for (a, (d, f)) in par_dists if f]
+ out_dists = [a + d for (a, (d, f)) in out_dists if f]
+
+ """ All dead ends """
+ if (out_dists + par_dists) == []: return (0.0, False)
+
+ """ Get minimum path """
+ dist = min(out_dists + par_dists)
+ distances[i, j] = dist;
+ distances[j, i] = dist
+ generated[i, j] = True;
+ generated[j, i] = True
+
+ for i in range(anim.shape[1]):
+ for j in range(anim.shape[1]):
+ find_distance(distances, generated, -1, i, j)
+
+ return distances
+
+
+def edges(parents):
+ """
+ Animation structure edges
+
+ Parameters
+ ----------
+
+ parents : (J) ndarray
+ parents array
+
+ Returns
+ -------
+
+ edges : (M, 2) ndarray
+ array of pairs where each
+ pair contains two indices of a joints
+ which corrisponds to an edge in the
+ joint structure going from parent to child.
+ """
+
+ return np.array(list(zip(parents, joints(parents)))[1:])
+
+
+def incidence(parents):
+ """
+ Incidence Matrix
+
+ Parameters
+ ----------
+
+ parents : (J) ndarray
+ parents array
+
+ Returns
+ -------
+
+ incidence : (N, M) ndarray
+
+ Matrix of N joint positions by
+ M edges which each entry is either
+ 1 or -1 and multiplication by the
+ joint positions returns the an
+ array of vectors along each edge
+ of the structure
+ """
+
+ es = edges(parents)
+
+ inc = np.zeros((len(parents) - 1, len(parents))).astype(np.int)
+ for i, e in enumerate(es):
+ inc[i, e[0]] = 1
+ inc[i, e[1]] = -1
+
+ return inc.T
diff --git a/visualization/BVH.py b/visualization/BVH.py
new file mode 100644
index 0000000000000000000000000000000000000000..c956ff15edf18523fd381e4fe4b8dc569d8e729a
--- /dev/null
+++ b/visualization/BVH.py
@@ -0,0 +1,273 @@
+import re
+import numpy as np
+from common.quaternion import *
+from visualization.Animation import Animation
+
+channelmap = {
+ 'Xrotation': 'x',
+ 'Yrotation': 'y',
+ 'Zrotation': 'z'
+}
+
+channelmap_inv = {
+ 'x': 'Xrotation',
+ 'y': 'Yrotation',
+ 'z': 'Zrotation',
+}
+
+ordermap = {
+ 'x': 0,
+ 'y': 1,
+ 'z': 2,
+}
+
+def load(filename, start=None, end=None, world=False, need_quater=True):
+ """
+ Reads a BVH file and constructs an animation
+ Parameters
+ ----------
+ filename: str
+ File to be opened
+ start : int
+ Optional Starting Frame
+ end : int
+ Optional Ending Frame
+ order : str
+ Optional Specifier for joint order.
+ Given as string E.G 'xyz', 'zxy'
+ world : bool
+ If set to true euler angles are applied
+ together in world space rather than local
+ space
+ Returns
+ -------
+ (animation, joint_names, frametime)
+ Tuple of loaded animation and joint names
+ """
+
+ f = open(filename, "r")
+
+ i = 0
+ active = -1
+ end_site = False
+
+ names = []
+ orients = Quaterions.id(0)
+ offsets = np.array([]).reshape((0, 3))
+ parents = np.array([], dtype=int)
+ orders = []
+
+ for line in f:
+
+ if "HIERARCHY" in line: continue
+ if "MOTION" in line: continue
+
+ # """ Modified line read to handle mixamo data """
+ rmatch = re.match(r"ROOT (\w+)", line)
+ # rmatch = re.match(r"ROOT (\w+:?\w+)", line)
+ if rmatch:
+ names.append(rmatch.group(1))
+ offsets = np.append(offsets, np.array([[0, 0, 0]]), axis=0)
+ orients = np.append(orients, np.array([[1, 0, 0, 0]]), axis=0)
+ parents = np.append(parents, active)
+ active = (len(parents) - 1)
+ continue
+
+ if "{" in line: continue
+
+ if "}" in line:
+ if end_site:
+ end_site = False
+ else:
+ active = parents[active]
+ continue
+
+ offmatch = re.match(r"\s*OFFSET\s+([\-\d\.e]+)\s+([\-\d\.e]+)\s+([\-\d\.e]+)", line)
+ if offmatch:
+ if not end_site:
+ offsets[active] = np.array([list(map(float, offmatch.groups()))])
+ continue
+
+ chanmatch = re.match(r"\s*CHANNELS\s+(\d+)", line)
+ if chanmatch:
+ channels = int(chanmatch.group(1))
+
+ channelis = 0 if channels == 3 else 3
+ channelie = 3 if channels == 3 else 6
+ parts = line.split()[2 + channelis:2 + channelie]
+ if any([p not in channelmap for p in parts]):
+ continue
+ order = "".join([channelmap[p] for p in parts])
+ orders.append(order)
+ continue
+
+ # """ Modified line read to handle mixamo data """
+ jmatch = re.match("\s*JOINT\s+(\w+)", line)
+ # jmatch = re.match("\s*JOINT\s+(\w+:?\w+)", line)
+ if jmatch:
+ names.append(jmatch.group(1))
+ offsets = np.append(offsets, np.array([[0, 0, 0]]), axis=0)
+ orients = np.append(orients, np.array([[1, 0, 0, 0]]), axis=0)
+ parents = np.append(parents, active)
+ active = (len(parents) - 1)
+ continue
+
+ if "End Site" in line:
+ end_site = True
+ continue
+
+ fmatch = re.match("\s*Frames:\s+(\d+)", line)
+ if fmatch:
+ if start and end:
+ fnum = (end - start) - 1
+ else:
+ fnum = int(fmatch.group(1))
+ jnum = len(parents)
+ positions = offsets[np.newaxis].repeat(fnum, axis=0)
+ rotations = np.zeros((fnum, len(orients), 3))
+ continue
+
+ fmatch = re.match("\s*Frame Time:\s+([\d\.]+)", line)
+ if fmatch:
+ frametime = float(fmatch.group(1))
+ continue
+
+ if (start and end) and (i < start or i >= end - 1):
+ i += 1
+ continue
+
+ # dmatch = line.strip().split(' ')
+ dmatch = line.strip().split()
+ if dmatch:
+ data_block = np.array(list(map(float, dmatch)))
+ N = len(parents)
+ fi = i - start if start else i
+ if channels == 3:
+ positions[fi, 0:1] = data_block[0:3]
+ rotations[fi, :] = data_block[3:].reshape(N, 3)
+ elif channels == 6:
+ data_block = data_block.reshape(N, 6)
+ positions[fi, :] = data_block[:, 0:3]
+ rotations[fi, :] = data_block[:, 3:6]
+ elif channels == 9:
+ positions[fi, 0] = data_block[0:3]
+ data_block = data_block[3:].reshape(N - 1, 9)
+ rotations[fi, 1:] = data_block[:, 3:6]
+ positions[fi, 1:] += data_block[:, 0:3] * data_block[:, 6:9]
+ else:
+ raise Exception("Too many channels! %i" % channels)
+
+ i += 1
+
+ f.close()
+
+ all_rotations = []
+ canonical_order = 'xyz'
+ for i, order in enumerate(orders):
+ rot = rotations[:, i:i + 1]
+ if need_quater:
+ quat = euler_to_quat_np(np.radians(rot), order=order, world=world)
+ all_rotations.append(quat)
+ continue
+ elif order != canonical_order:
+ quat = euler_to_quat_np(np.radians(rot), order=order, world=world)
+ rot = np.degrees(qeuler_np(quat, order=canonical_order))
+ all_rotations.append(rot)
+ rotations = np.concatenate(all_rotations, axis=1)
+
+ return Animation(rotations, positions, orients, offsets, parents, names, frametime)
+
+def write_bvh(parent, offset, rotation, rot_position, names, frametime, order, path, endsite=None):
+ file = open(path, 'w')
+ frame = rotation.shape[0]
+ assert rotation.shape[-1] == 3
+ joint_num = rotation.shape[1]
+ order = order.upper()
+
+ file_string = 'HIERARCHY\n'
+
+ seq = []
+
+ def write_static(idx, prefix):
+ nonlocal parent, offset, rotation, names, order, endsite, file_string, seq
+ seq.append(idx)
+ if idx == 0:
+ name_label = 'ROOT ' + names[idx]
+ channel_label = 'CHANNELS 6 Xposition Yposition Zposition {}rotation {}rotation {}rotation'.format(
+ *order)
+ else:
+ name_label = 'JOINT ' + names[idx]
+ channel_label = 'CHANNELS 3 {}rotation {}rotation {}rotation'.format(*order)
+ offset_label = 'OFFSET %.6f %.6f %.6f' % (offset[idx][0], offset[idx][1], offset[idx][2])
+
+ file_string += prefix + name_label + '\n'
+ file_string += prefix + '{\n'
+ file_string += prefix + '\t' + offset_label + '\n'
+ file_string += prefix + '\t' + channel_label + '\n'
+
+ has_child = False
+ for y in range(idx + 1, rotation.shape[1]):
+ if parent[y] == idx:
+ has_child = True
+ write_static(y, prefix + '\t')
+ if not has_child:
+ file_string += prefix + '\t' + 'End Site\n'
+ file_string += prefix + '\t' + '{\n'
+ file_string += prefix + '\t\t' + 'OFFSET 0 0 0\n'
+ file_string += prefix + '\t' + '}\n'
+
+ file_string += prefix + '}\n'
+
+ write_static(0, '')
+
+ file_string += 'MOTION\n' + 'Frames: {}\n'.format(frame) + 'Frame Time: %.8f\n' % frametime
+ for i in range(frame):
+ file_string += '%.6f %.6f %.6f ' % (rot_position[i][0], rot_position[i][1],
+ rot_position[i][2])
+ for j in range(joint_num):
+ idx = seq[j]
+ file_string += '%.6f %.6f %.6f ' % (rotation[i][idx][0], rotation[i][idx][1], rotation[i][idx][2])
+ file_string += '\n'
+
+ file.write(file_string)
+ return file_string
+
+class WriterWrapper:
+ def __init__(self, parents, frametime, offset=None, names=None):
+ self.parents = parents
+ self.offset = offset
+ self.frametime = frametime
+ self.names = names
+
+ def write(self, filename, rot, r_pos, order, offset=None, names=None, repr='quat'):
+ """
+ Write animation to bvh file
+ :param filename:
+ :param rot: Quaternion as (w, x, y, z)
+ :param pos:
+ :param offset:
+ :return:
+ """
+ if repr not in ['euler', 'quat', 'quaternion', 'cont6d']:
+ raise Exception('Unknown rotation representation')
+ if offset is None:
+ offset = self.offset
+ if not isinstance(offset, torch.Tensor):
+ offset = torch.tensor(offset)
+ n_bone = offset.shape[0]
+
+ if repr == 'cont6d':
+ rot = rot.reshape(rot.shape[0], -1, 6)
+ rot = cont6d_to_quat_np(rot)
+ if repr == 'cont6d' or repr == 'quat' or repr == 'quaternion':
+# rot = rot.reshape(rot.shape[0], -1, 4)
+# rot /= rot.norm(dim=-1, keepdim=True) ** 0.5
+ euler = qeuler_np(rot, order=order)
+ rot = euler
+
+ if names is None:
+ if self.names is None:
+ names = ['%02d' % i for i in range(n_bone)]
+ else:
+ names = self.names
+ write_bvh(self.parents, offset, rot, r_pos, names, self.frametime, order, filename)
\ No newline at end of file
diff --git a/visualization/BVH_mod.py b/visualization/BVH_mod.py
new file mode 100644
index 0000000000000000000000000000000000000000..1eee63c35cac3d8e3ff985ae080d980c95432539
--- /dev/null
+++ b/visualization/BVH_mod.py
@@ -0,0 +1,304 @@
+import re
+import numpy as np
+
+from visualization.Animation import Animation
+from visualization.Quaternions import Quaternions
+
+channelmap = {
+ 'Xrotation': 'x',
+ 'Yrotation': 'y',
+ 'Zrotation': 'z'
+}
+
+channelmap_inv = {
+ 'x': 'Xrotation',
+ 'y': 'Yrotation',
+ 'z': 'Zrotation',
+}
+
+ordermap = {
+ 'x': 0,
+ 'y': 1,
+ 'z': 2,
+}
+
+
+def load(filename, start=None, end=None, order=None, world=False, need_quater=True):
+ """
+ Reads a BVH file and constructs an animation
+
+ Parameters
+ ----------
+ filename: str
+ File to be opened
+
+ start : int
+ Optional Starting Frame
+
+ end : int
+ Optional Ending Frame
+
+ order : str
+ Optional Specifier for joint order.
+ Given as string E.G 'xyz', 'zxy'
+
+ world : bool
+ If set to true euler angles are applied
+ together in world space rather than local
+ space
+
+ Returns
+ -------
+
+ (animation, joint_names, frametime)
+ Tuple of loaded animation and joint names
+ """
+
+ f = open(filename, "r")
+
+ i = 0
+ active = -1
+ end_site = False
+
+ names = []
+ orients = Quaternions.id(0)
+ offsets = np.array([]).reshape((0, 3))
+ parents = np.array([], dtype=int)
+
+ for line in f:
+
+ if "HIERARCHY" in line: continue
+ if "MOTION" in line: continue
+
+ """ Modified line read to handle mixamo data """
+ # rmatch = re.match(r"ROOT (\w+)", line)
+ rmatch = re.match(r"ROOT (\w+:?\w+)", line)
+ if rmatch:
+ names.append(rmatch.group(1))
+ offsets = np.append(offsets, np.array([[0, 0, 0]]), axis=0)
+ orients.qs = np.append(orients.qs, np.array([[1, 0, 0, 0]]), axis=0)
+ parents = np.append(parents, active)
+ active = (len(parents) - 1)
+ continue
+
+ if "{" in line: continue
+
+ if "}" in line:
+ if end_site:
+ end_site = False
+ else:
+ active = parents[active]
+ continue
+
+ offmatch = re.match(r"\s*OFFSET\s+([\-\d\.e]+)\s+([\-\d\.e]+)\s+([\-\d\.e]+)", line)
+ if offmatch:
+ if not end_site:
+ offsets[active] = np.array([list(map(float, offmatch.groups()))])
+ continue
+
+ chanmatch = re.match(r"\s*CHANNELS\s+(\d+)", line)
+ if chanmatch:
+ channels = int(chanmatch.group(1))
+ if order is None:
+ channelis = 0 if channels == 3 else 3
+ channelie = 3 if channels == 3 else 6
+ parts = line.split()[2 + channelis:2 + channelie]
+ if any([p not in channelmap for p in parts]):
+ continue
+ order = "".join([channelmap[p] for p in parts])
+ continue
+
+ """ Modified line read to handle mixamo data """
+ # jmatch = re.match("\s*JOINT\s+(\w+)", line)
+ jmatch = re.match("\s*JOINT\s+(\w+:?\w+)", line)
+ if jmatch:
+ names.append(jmatch.group(1))
+ offsets = np.append(offsets, np.array([[0, 0, 0]]), axis=0)
+ orients.qs = np.append(orients.qs, np.array([[1, 0, 0, 0]]), axis=0)
+ parents = np.append(parents, active)
+ active = (len(parents) - 1)
+ continue
+
+ if "End Site" in line:
+ end_site = True
+ continue
+
+ fmatch = re.match("\s*Frames:\s+(\d+)", line)
+ if fmatch:
+ if start and end:
+ fnum = (end - start) - 1
+ else:
+ fnum = int(fmatch.group(1))
+ jnum = len(parents)
+ positions = offsets[np.newaxis].repeat(fnum, axis=0)
+ rotations = np.zeros((fnum, len(orients), 3))
+ continue
+
+ fmatch = re.match("\s*Frame Time:\s+([\d\.]+)", line)
+ if fmatch:
+ frametime = float(fmatch.group(1))
+ continue
+
+ if (start and end) and (i < start or i >= end - 1):
+ i += 1
+ continue
+
+ # dmatch = line.strip().split(' ')
+ dmatch = line.strip().split()
+ if dmatch:
+ data_block = np.array(list(map(float, dmatch)))
+ N = len(parents)
+ fi = i - start if start else i
+ if channels == 3:
+ positions[fi, 0:1] = data_block[0:3]
+ rotations[fi, :] = data_block[3:].reshape(N, 3)
+ elif channels == 6:
+ data_block = data_block.reshape(N, 6)
+ positions[fi, :] = data_block[:, 0:3]
+ rotations[fi, :] = data_block[:, 3:6]
+ elif channels == 9:
+ positions[fi, 0] = data_block[0:3]
+ data_block = data_block[3:].reshape(N - 1, 9)
+ rotations[fi, 1:] = data_block[:, 3:6]
+ positions[fi, 1:] += data_block[:, 0:3] * data_block[:, 6:9]
+ else:
+ raise Exception("Too many channels! %i" % channels)
+
+ i += 1
+
+ f.close()
+
+ if need_quater:
+ rotations = Quaternions.from_euler(np.radians(rotations), order=order, world=world)
+ elif order != 'xyz':
+ rotations = Quaternions.from_euler(np.radians(rotations), order=order, world=world)
+ rotations = np.degrees(rotations.euler())
+
+ return Animation(rotations, positions, orients, offsets, parents, names, frametime)
+
+
+def save(filename, anim, names=None, frametime=1.0 / 24.0, order='zyx', positions=False, mask=None, quater=False):
+ """
+ Saves an Animation to file as BVH
+
+ Parameters
+ ----------
+ filename: str
+ File to be saved to
+
+ anim : Animation
+ Animation to save
+
+ names : [str]
+ List of joint names
+
+ order : str
+ Optional Specifier for joint order.
+ Given as string E.G 'xyz', 'zxy'
+
+ frametime : float
+ Optional Animation Frame time
+
+ positions : bool
+ Optional specfier to save bone
+ positions for each frame
+
+ orients : bool
+ Multiply joint orients to the rotations
+ before saving.
+
+ """
+
+ if names is None:
+ names = ["joint_" + str(i) for i in range(len(anim.parents))]
+
+ with open(filename, 'w') as f:
+
+ t = ""
+ f.write("%sHIERARCHY\n" % t)
+ f.write("%sROOT %s\n" % (t, names[0]))
+ f.write("%s{\n" % t)
+ t += '\t'
+
+ f.write("%sOFFSET %f %f %f\n" % (t, anim.offsets[0, 0], anim.offsets[0, 1], anim.offsets[0, 2]))
+ f.write("%sCHANNELS 6 Xposition Yposition Zposition %s %s %s \n" %
+ (t, channelmap_inv[order[0]], channelmap_inv[order[1]], channelmap_inv[order[2]]))
+
+ for i in range(anim.shape[1]):
+ if anim.parents[i] == 0:
+ t = save_joint(f, anim, names, t, i, order=order, positions=positions)
+
+ t = t[:-1]
+ f.write("%s}\n" % t)
+
+ f.write("MOTION\n")
+ f.write("Frames: %i\n" % anim.shape[0]);
+ f.write("Frame Time: %f\n" % frametime);
+
+ # if orients:
+ # rots = np.degrees((-anim.orients[np.newaxis] * anim.rotations).euler(order=order[::-1]))
+ # else:
+ # rots = np.degrees(anim.rotations.euler(order=order[::-1]))
+ # rots = np.degrees(anim.rotations.euler(order=order[::-1]))
+ if quater:
+ rots = np.degrees(anim.rotations.euler(order=order[::-1]))
+ else:
+ rots = anim.rotations
+ poss = anim.positions
+
+ for i in range(anim.shape[0]):
+ for j in range(anim.shape[1]):
+
+ if positions or j == 0:
+
+ f.write("%f %f %f %f %f %f " % (
+ poss[i, j, 0], poss[i, j, 1], poss[i, j, 2],
+ rots[i, j, ordermap[order[0]]], rots[i, j, ordermap[order[1]]], rots[i, j, ordermap[order[2]]]))
+
+ else:
+ if mask == None or mask[j] == 1:
+ f.write("%f %f %f " % (
+ rots[i, j, ordermap[order[0]]], rots[i, j, ordermap[order[1]]],
+ rots[i, j, ordermap[order[2]]]))
+ else:
+ f.write("%f %f %f " % (0, 0, 0))
+
+ f.write("\n")
+
+
+def save_joint(f, anim, names, t, i, order='zyx', positions=False):
+ f.write("%sJOINT %s\n" % (t, names[i]))
+ f.write("%s{\n" % t)
+ t += '\t'
+
+ f.write("%sOFFSET %f %f %f\n" % (t, anim.offsets[i, 0], anim.offsets[i, 1], anim.offsets[i, 2]))
+
+ if positions:
+ f.write("%sCHANNELS 6 Xposition Yposition Zposition %s %s %s \n" % (t,
+ channelmap_inv[order[0]],
+ channelmap_inv[order[1]],
+ channelmap_inv[order[2]]))
+ else:
+ f.write("%sCHANNELS 3 %s %s %s\n" % (t,
+ channelmap_inv[order[0]], channelmap_inv[order[1]],
+ channelmap_inv[order[2]]))
+
+ end_site = True
+
+ for j in range(anim.shape[1]):
+ if anim.parents[j] == i:
+ t = save_joint(f, anim, names, t, j, order=order, positions=positions)
+ end_site = False
+
+ if end_site:
+ f.write("%sEnd Site\n" % t)
+ f.write("%s{\n" % t)
+ t += '\t'
+ f.write("%sOFFSET %f %f %f\n" % (t, 0.0, 0.0, 0.0))
+ t = t[:-1]
+ f.write("%s}\n" % t)
+
+ t = t[:-1]
+ f.write("%s}\n" % t)
+
+ return t
\ No newline at end of file
diff --git a/visualization/InverseKinematics.py b/visualization/InverseKinematics.py
new file mode 100644
index 0000000000000000000000000000000000000000..dbb4d5598cc63f5f8a05d3695d6ef8ec40a1af56
--- /dev/null
+++ b/visualization/InverseKinematics.py
@@ -0,0 +1,633 @@
+import numpy as np
+import scipy.linalg as linalg
+
+from visualization import Animation
+from visualization import AnimationStructure
+
+from visualization.Quaternions import Quaternions
+
+
+class BasicInverseKinematics:
+ """
+ Basic Inverse Kinematics Solver
+
+ This is an extremely simple full body IK
+ solver.
+
+ It works given the following conditions:
+
+ * All joint targets must be specified
+ * All joint targets must be in reach
+ * All joint targets must not differ
+ extremely from the starting pose
+ * No bone length constraints can be violated
+ * The root translation and rotation are
+ set to good initial values
+
+ It works under the observation that if the
+ _directions_ the joints are pointing toward
+ match the _directions_ of the vectors between
+ the target joints then the pose should match
+ that of the target pose.
+
+ Therefore it iterates over joints rotating
+ each joint such that the vectors between it
+ and it's children match that of the target
+ positions.
+
+ Parameters
+ ----------
+
+ animation : Animation
+ animation input
+
+ positions : (F, J, 3) ndarray
+ target positions for each frame F
+ and each joint J
+
+ iterations : int
+ Optional number of iterations.
+ If the above conditions are met
+ 1 iteration should be enough,
+ therefore the default is 1
+
+ silent : bool
+ Optional if to suppress output
+ defaults to False
+ """
+
+ def __init__(self, animation, positions, iterations=1, silent=True):
+
+ self.animation = animation
+ self.positions = positions
+ self.iterations = iterations
+ self.silent = silent
+
+ def __call__(self):
+
+ children = AnimationStructure.children_list(self.animation.parents)
+
+ for i in range(self.iterations):
+
+ for j in AnimationStructure.joints(self.animation.parents):
+
+ c = np.array(children[j])
+ if len(c) == 0: continue
+
+ anim_transforms = Animation.transforms_global(self.animation)
+ anim_positions = anim_transforms[:, :, :3, 3]
+ anim_rotations = Quaternions.from_transforms(anim_transforms)
+
+ jdirs = anim_positions[:, c] - anim_positions[:, np.newaxis, j]
+ ddirs = self.positions[:, c] - anim_positions[:, np.newaxis, j]
+
+ jsums = np.sqrt(np.sum(jdirs ** 2.0, axis=-1)) + 1e-10
+ dsums = np.sqrt(np.sum(ddirs ** 2.0, axis=-1)) + 1e-10
+
+ jdirs = jdirs / jsums[:, :, np.newaxis]
+ ddirs = ddirs / dsums[:, :, np.newaxis]
+
+ angles = np.arccos(np.sum(jdirs * ddirs, axis=2).clip(-1, 1))
+ axises = np.cross(jdirs, ddirs)
+ axises = -anim_rotations[:, j, np.newaxis] * axises
+
+ rotations = Quaternions.from_angle_axis(angles, axises)
+
+ if rotations.shape[1] == 1:
+ averages = rotations[:, 0]
+ else:
+ averages = Quaternions.exp(rotations.log().mean(axis=-2))
+
+ self.animation.rotations[:, j] = self.animation.rotations[:, j] * averages
+
+ if not self.silent:
+ anim_positions = Animation.positions_global(self.animation)
+ error = np.mean(np.sum((anim_positions - self.positions) ** 2.0, axis=-1) ** 0.5)
+ print('[BasicInverseKinematics] Iteration %i Error: %f' % (i + 1, error))
+
+ return self.animation
+
+
+class JacobianInverseKinematics:
+ """
+ Jacobian Based Full Body IK Solver
+
+ This is a full body IK solver which
+ uses the dampened least squares inverse
+ jacobian method.
+
+ It should remain fairly stable and effective
+ even for joint positions which are out of
+ reach and it can also take any number of targets
+ to treat as end effectors.
+
+ Parameters
+ ----------
+
+ animation : Animation
+ animation to solve inverse problem on
+
+ targets : {int : (F, 3) ndarray}
+ Dictionary of target positions for each
+ frame F, mapping joint index to
+ a target position
+
+ references : (F, 3)
+ Optional list of J joint position
+ references for which the result
+ should bias toward
+
+ iterations : int
+ Optional number of iterations to
+ compute. More iterations results in
+ better accuracy but takes longer to
+ compute. Default is 10.
+
+ recalculate : bool
+ Optional if to recalcuate jacobian
+ each iteration. Gives better accuracy
+ but slower to compute. Defaults to True
+
+ damping : float
+ Optional damping constant. Higher
+ damping increases stability but
+ requires more iterations to converge.
+ Defaults to 5.0
+
+ secondary : float
+ Force, or bias toward secondary target.
+ Defaults to 0.25
+
+ silent : bool
+ Optional if to suppress output
+ defaults to False
+ """
+
+ def __init__(self, animation, targets,
+ references=None, iterations=10,
+ recalculate=True, damping=2.0,
+ secondary=0.25, translate=False,
+ silent=False, weights=None,
+ weights_translate=None):
+
+ self.animation = animation
+ self.targets = targets
+ self.references = references
+
+ self.iterations = iterations
+ self.recalculate = recalculate
+ self.damping = damping
+ self.secondary = secondary
+ self.translate = translate
+ self.silent = silent
+ self.weights = weights
+ self.weights_translate = weights_translate
+
+ def cross(self, a, b):
+ o = np.empty(b.shape)
+ o[..., 0] = a[..., 1] * b[..., 2] - a[..., 2] * b[..., 1]
+ o[..., 1] = a[..., 2] * b[..., 0] - a[..., 0] * b[..., 2]
+ o[..., 2] = a[..., 0] * b[..., 1] - a[..., 1] * b[..., 0]
+ return o
+
+ def jacobian(self, x, fp, fr, ts, dsc, tdsc):
+
+ """ Find parent rotations """
+ prs = fr[:, self.animation.parents]
+ prs[:, 0] = Quaternions.id((1))
+
+ """ Find global positions of target joints """
+ tps = fp[:, np.array(list(ts.keys()))]
+
+ """ Get partial rotations """
+ qys = Quaternions.from_angle_axis(x[:, 1:prs.shape[1] * 3:3], np.array([[[0, 1, 0]]]))
+ qzs = Quaternions.from_angle_axis(x[:, 2:prs.shape[1] * 3:3], np.array([[[0, 0, 1]]]))
+
+ """ Find axis of rotations """
+ es = np.empty((len(x), fr.shape[1] * 3, 3))
+ es[:, 0::3] = ((prs * qzs) * qys) * np.array([[[1, 0, 0]]])
+ es[:, 1::3] = ((prs * qzs) * np.array([[[0, 1, 0]]]))
+ es[:, 2::3] = ((prs * np.array([[[0, 0, 1]]])))
+
+ """ Construct Jacobian """
+ j = fp.repeat(3, axis=1)
+ j = dsc[np.newaxis, :, :, np.newaxis] * (tps[:, np.newaxis, :] - j[:, :, np.newaxis])
+ j = self.cross(es[:, :, np.newaxis, :], j)
+ j = np.swapaxes(j.reshape((len(x), fr.shape[1] * 3, len(ts) * 3)), 1, 2)
+
+ if self.translate:
+ es = np.empty((len(x), fr.shape[1] * 3, 3))
+ es[:, 0::3] = prs * np.array([[[1, 0, 0]]])
+ es[:, 1::3] = prs * np.array([[[0, 1, 0]]])
+ es[:, 2::3] = prs * np.array([[[0, 0, 1]]])
+
+ jt = tdsc[np.newaxis, :, :, np.newaxis] * es[:, :, np.newaxis, :].repeat(tps.shape[1], axis=2)
+ jt = np.swapaxes(jt.reshape((len(x), fr.shape[1] * 3, len(ts) * 3)), 1, 2)
+
+ j = np.concatenate([j, jt], axis=-1)
+
+ return j
+
+ # @profile(immediate=True)
+ def __call__(self, descendants=None, gamma=1.0):
+
+ self.descendants = descendants
+
+ """ Calculate Masses """
+ if self.weights is None:
+ self.weights = np.ones(self.animation.shape[1])
+
+ if self.weights_translate is None:
+ self.weights_translate = np.ones(self.animation.shape[1])
+
+ """ Calculate Descendants """
+ if self.descendants is None:
+ self.descendants = AnimationStructure.descendants_mask(self.animation.parents)
+
+ self.tdescendants = np.eye(self.animation.shape[1]) + self.descendants
+
+ self.first_descendants = self.descendants[:, np.array(list(self.targets.keys()))].repeat(3, axis=0).astype(int)
+ self.first_tdescendants = self.tdescendants[:, np.array(list(self.targets.keys()))].repeat(3, axis=0).astype(
+ int)
+
+ """ Calculate End Effectors """
+ self.endeff = np.array(list(self.targets.values()))
+ self.endeff = np.swapaxes(self.endeff, 0, 1)
+
+ if not self.references is None:
+ self.second_descendants = self.descendants.repeat(3, axis=0).astype(int)
+ self.second_tdescendants = self.tdescendants.repeat(3, axis=0).astype(int)
+ self.second_targets = dict([(i, self.references[:, i]) for i in range(self.references.shape[1])])
+
+ nf = len(self.animation)
+ nj = self.animation.shape[1]
+
+ if not self.silent:
+ gp = Animation.positions_global(self.animation)
+ gp = gp[:, np.array(list(self.targets.keys()))]
+ error = np.mean(np.sqrt(np.sum((self.endeff - gp) ** 2.0, axis=2)))
+ print('[JacobianInverseKinematics] Start | Error: %f' % error)
+
+ for i in range(self.iterations):
+
+ """ Get Global Rotations & Positions """
+ gt = Animation.transforms_global(self.animation)
+ gp = gt[:, :, :, 3]
+ gp = gp[:, :, :3] / gp[:, :, 3, np.newaxis]
+ gr = Quaternions.from_transforms(gt)
+
+ x = self.animation.rotations.euler().reshape(nf, -1)
+ w = self.weights.repeat(3)
+
+ if self.translate:
+ x = np.hstack([x, self.animation.positions.reshape(nf, -1)])
+ w = np.hstack([w, self.weights_translate.repeat(3)])
+
+ """ Generate Jacobian """
+ if self.recalculate or i == 0:
+ j = self.jacobian(x, gp, gr, self.targets, self.first_descendants, self.first_tdescendants)
+
+ """ Update Variables """
+ l = self.damping * (1.0 / (w + 0.001))
+ d = (l * l) * np.eye(x.shape[1])
+ e = gamma * (self.endeff.reshape(nf, -1) - gp[:, np.array(list(self.targets.keys()))].reshape(nf, -1))
+
+ x += np.array(list(map(lambda jf, ef:
+ linalg.lu_solve(linalg.lu_factor(jf.T.dot(jf) + d), jf.T.dot(ef)), j, e)))
+
+ """ Generate Secondary Jacobian """
+ if self.references is not None:
+
+ ns = np.array(list(map(lambda jf:
+ np.eye(x.shape[1]) - linalg.solve(jf.T.dot(jf) + d, jf.T.dot(jf)), j)))
+
+ if self.recalculate or i == 0:
+ j2 = self.jacobian(x, gp, gr, self.second_targets, self.second_descendants,
+ self.second_tdescendants)
+
+ e2 = self.secondary * (self.references.reshape(nf, -1) - gp.reshape(nf, -1))
+
+ x += np.array(list(map(lambda nsf, j2f, e2f:
+ nsf.dot(linalg.lu_solve(linalg.lu_factor(j2f.T.dot(j2f) + d), j2f.T.dot(e2f))),
+ ns, j2, e2)))
+
+ """ Set Back Rotations / Translations """
+ self.animation.rotations = Quaternions.from_euler(
+ x[:, :nj * 3].reshape((nf, nj, 3)), order='xyz', world=True)
+
+ if self.translate:
+ self.animation.positions = x[:, nj * 3:].reshape((nf, nj, 3))
+
+ """ Generate Error """
+
+ if not self.silent:
+ gp = Animation.positions_global(self.animation)
+ gp = gp[:, np.array(list(self.targets.keys()))]
+ error = np.mean(np.sum((self.endeff - gp) ** 2.0, axis=2) ** 0.5)
+ print('[JacobianInverseKinematics] Iteration %i | Error: %f' % (i + 1, error))
+ return self.animation
+
+
+class BasicJacobianIK:
+ """
+ Same interface as BasicInverseKinematics
+ but uses the Jacobian IK Solver Instead
+ """
+
+ def __init__(self, animation, positions, iterations=10, silent=True, **kw):
+ targets = dict([(i, positions[:, i]) for i in range(positions.shape[1])])
+ self.ik = JacobianInverseKinematics(animation, targets, iterations=iterations, silent=silent, **kw)
+
+ def __call__(self, **kw):
+ return self.ik(**kw)
+
+
+class ICP:
+
+ def __init__(self,
+ anim, rest, weights, mesh, goal,
+ find_closest=True, damping=10,
+ iterations=10, silent=True,
+ translate=True, recalculate=True,
+ weights_translate=None):
+
+ self.animation = anim
+ self.rest = rest
+ self.vweights = weights
+ self.mesh = mesh
+ self.goal = goal
+ self.find_closest = find_closest
+ self.iterations = iterations
+ self.silent = silent
+ self.translate = translate
+ self.damping = damping
+ self.weights = None
+ self.weights_translate = weights_translate
+ self.recalculate = recalculate
+
+ def cross(self, a, b):
+ o = np.empty(b.shape)
+ o[..., 0] = a[..., 1] * b[..., 2] - a[..., 2] * b[..., 1]
+ o[..., 1] = a[..., 2] * b[..., 0] - a[..., 0] * b[..., 2]
+ o[..., 2] = a[..., 0] * b[..., 1] - a[..., 1] * b[..., 0]
+ return o
+
+ def jacobian(self, x, fp, fr, goal, weights, des_r, des_t):
+
+ """ Find parent rotations """
+ prs = fr[:, self.animation.parents]
+ prs[:, 0] = Quaternions.id((1))
+
+ """ Get partial rotations """
+ qys = Quaternions.from_angle_axis(x[:, 1:prs.shape[1] * 3:3], np.array([[[0, 1, 0]]]))
+ qzs = Quaternions.from_angle_axis(x[:, 2:prs.shape[1] * 3:3], np.array([[[0, 0, 1]]]))
+
+ """ Find axis of rotations """
+ es = np.empty((len(x), fr.shape[1] * 3, 3))
+ es[:, 0::3] = ((prs * qzs) * qys) * np.array([[[1, 0, 0]]])
+ es[:, 1::3] = ((prs * qzs) * np.array([[[0, 1, 0]]]))
+ es[:, 2::3] = ((prs * np.array([[[0, 0, 1]]])))
+
+ """ Construct Jacobian """
+ j = fp.repeat(3, axis=1)
+ j = des_r[np.newaxis, :, :, :, np.newaxis] * (
+ goal[:, np.newaxis, :, np.newaxis] - j[:, :, np.newaxis, np.newaxis])
+ j = np.sum(j * weights[np.newaxis, np.newaxis, :, :, np.newaxis], 3)
+ j = self.cross(es[:, :, np.newaxis, :], j)
+ j = np.swapaxes(j.reshape((len(x), fr.shape[1] * 3, goal.shape[1] * 3)), 1, 2)
+
+ if self.translate:
+ es = np.empty((len(x), fr.shape[1] * 3, 3))
+ es[:, 0::3] = prs * np.array([[[1, 0, 0]]])
+ es[:, 1::3] = prs * np.array([[[0, 1, 0]]])
+ es[:, 2::3] = prs * np.array([[[0, 0, 1]]])
+
+ jt = des_t[np.newaxis, :, :, :, np.newaxis] * es[:, :, np.newaxis, np.newaxis, :].repeat(goal.shape[1],
+ axis=2)
+ jt = np.sum(jt * weights[np.newaxis, np.newaxis, :, :, np.newaxis], 3)
+ jt = np.swapaxes(jt.reshape((len(x), fr.shape[1] * 3, goal.shape[1] * 3)), 1, 2)
+
+ j = np.concatenate([j, jt], axis=-1)
+
+ return j
+
+ # @profile(immediate=True)
+ def __call__(self, descendants=None, maxjoints=4, gamma=1.0, transpose=False):
+
+ """ Calculate Masses """
+ if self.weights is None:
+ self.weights = np.ones(self.animation.shape[1])
+
+ if self.weights_translate is None:
+ self.weights_translate = np.ones(self.animation.shape[1])
+
+ nf = len(self.animation)
+ nj = self.animation.shape[1]
+ nv = self.goal.shape[1]
+
+ weightids = np.argsort(-self.vweights, axis=1)[:, :maxjoints]
+ weightvls = np.array(list(map(lambda w, i: w[i], self.vweights, weightids)))
+ weightvls = weightvls / weightvls.sum(axis=1)[..., np.newaxis]
+
+ if descendants is None:
+ self.descendants = AnimationStructure.descendants_mask(self.animation.parents)
+ else:
+ self.descendants = descendants
+
+ des_r = np.eye(nj) + self.descendants
+ des_r = des_r[:, weightids].repeat(3, axis=0)
+
+ des_t = np.eye(nj) + self.descendants
+ des_t = des_t[:, weightids].repeat(3, axis=0)
+
+ if not self.silent:
+ curr = Animation.skin(self.animation, self.rest, self.vweights, self.mesh, maxjoints=maxjoints)
+ error = np.mean(np.sqrt(np.sum((curr - self.goal) ** 2.0, axis=-1)))
+ print('[ICP] Start | Error: %f' % error)
+
+ for i in range(self.iterations):
+
+ """ Get Global Rotations & Positions """
+ gt = Animation.transforms_global(self.animation)
+ gp = gt[:, :, :, 3]
+ gp = gp[:, :, :3] / gp[:, :, 3, np.newaxis]
+ gr = Quaternions.from_transforms(gt)
+
+ x = self.animation.rotations.euler().reshape(nf, -1)
+ w = self.weights.repeat(3)
+
+ if self.translate:
+ x = np.hstack([x, self.animation.positions.reshape(nf, -1)])
+ w = np.hstack([w, self.weights_translate.repeat(3)])
+
+ """ Get Current State """
+ curr = Animation.skin(self.animation, self.rest, self.vweights, self.mesh, maxjoints=maxjoints)
+
+ """ Find Cloest Points """
+ if self.find_closest:
+ mapping = np.argmin(
+ (curr[:, :, np.newaxis] -
+ self.goal[:, np.newaxis, :]) ** 2.0, axis=2)
+ e = gamma * (np.array(list(map(lambda g, m: g[m], self.goal, mapping))) - curr).reshape(nf, -1)
+ else:
+ e = gamma * (self.goal - curr).reshape(nf, -1)
+
+ """ Generate Jacobian """
+ if self.recalculate or i == 0:
+ j = self.jacobian(x, gp, gr, self.goal, weightvls, des_r, des_t)
+
+ """ Update Variables """
+ l = self.damping * (1.0 / (w + 1e-10))
+ d = (l * l) * np.eye(x.shape[1])
+
+ if transpose:
+ x += np.array(list(map(lambda jf, ef: jf.T.dot(ef), j, e)))
+ else:
+ x += np.array(list(map(lambda jf, ef:
+ linalg.lu_solve(linalg.lu_factor(jf.T.dot(jf) + d), jf.T.dot(ef)), j, e)))
+
+ """ Set Back Rotations / Translations """
+ self.animation.rotations = Quaternions.from_euler(
+ x[:, :nj * 3].reshape((nf, nj, 3)), order='xyz', world=True)
+
+ if self.translate:
+ self.animation.positions = x[:, nj * 3:].reshape((nf, nj, 3))
+
+ if not self.silent:
+ curr = Animation.skin(self.animation, self.rest, self.vweights, self.mesh)
+ error = np.mean(np.sqrt(np.sum((curr - self.goal) ** 2.0, axis=-1)))
+ print('[ICP] Iteration %i | Error: %f' % (i + 1, error))
+
+import torch
+from torch import nn
+class InverseKinematics:
+ def __init__(self, rotations: torch.Tensor, positions: torch.Tensor, offset, parents, constrains):
+ self.rotations = rotations.cuda()
+ self.rotations.requires_grad_(True)
+ self.position = positions.cuda()
+ self.position.requires_grad_(True)
+
+ self.parents = parents
+ self.offset = offset.cuda()
+ self.constrains = constrains.cuda()
+ # hyper-param to tune
+ self.optimizer = torch.optim.AdamW([self.position, self.rotations], lr=5e-2, betas=(0.9, 0.999))
+ self.crit = nn.MSELoss()
+ self.weights = torch.ones([1,22,1]).cuda()
+ self.weights[:, [4, 8]] = 0.8
+ self.weights[:, [1, 5]] = 2.
+
+ def step(self):
+ self.optimizer.zero_grad()
+ glb = self.forward(self.rotations, self.position, self.offset, order='', quater=True, world=True)
+ # weighted joint position mse
+ loss = self.crit(glb*self.weights, self.constrains*self.weights)
+ # regularization term
+ loss += 0.5 * self.crit(self.rotations[1:, [3, 7, 12, 16, 20]], self.rotations[:-1, [3, 7, 12, 16, 20]]) + 0.1 * self.crit(self.rotations[1:], self.rotations[:-1])
+ loss.backward()
+ self.optimizer.step()
+ self.glb = glb
+ return loss.item()
+
+ def tloss(self, time):
+ return self.crit(self.glb[time, :], self.constrains[time, :])
+
+ def all_loss(self):
+ res = [self.tloss(t).detach().numpy() for t in range(self.constrains.shape[0])]
+ return np.array(res)
+
+ '''
+ rotation should have shape batch_size * Joint_num * (3/4) * Time
+ position should have shape batch_size * 3 * Time
+ offset should have shape batch_size * Joint_num * 3
+ output have shape batch_size * Time * Joint_num * 3
+ '''
+
+ def forward(self, rotation: torch.Tensor, position: torch.Tensor, offset: torch.Tensor, order='xyz', quater=False,
+ world=True):
+ '''
+ if not quater and rotation.shape[-2] != 3: raise Exception('Unexpected shape of rotation')
+ if quater and rotation.shape[-2] != 4: raise Exception('Unexpected shape of rotation')
+ rotation = rotation.permute(0, 3, 1, 2)
+ position = position.permute(0, 2, 1)
+ '''
+ result = torch.empty(rotation.shape[:-1] + (3,), device=position.device)
+
+ norm = torch.norm(rotation, dim=-1, keepdim=True)
+ rotation = rotation / norm
+
+ # if quater:
+ transform = self.transform_from_quaternion(rotation)
+ # else:
+ # transform = self.transform_from_euler(rotation, order)
+
+ offset = offset.reshape((-1, 1, offset.shape[-2], offset.shape[-1], 1))
+
+ result[..., 0, :] = position
+ for i, pi in enumerate(self.parents):
+ if pi == -1:
+ assert i == 0
+ continue
+
+ result[..., i, :] = torch.matmul(transform[..., pi, :, :], offset[..., i, :, :]).squeeze()
+ transform[..., i, :, :] = torch.matmul(transform[..., pi, :, :].clone(), transform[..., i, :, :].clone())
+ if world: result[..., i, :] += result[..., pi, :]
+ return result
+
+ @staticmethod
+ def transform_from_axis(euler, axis):
+ transform = torch.empty(euler.shape[0:3] + (3, 3), device=euler.device)
+ cos = torch.cos(euler)
+ sin = torch.sin(euler)
+ cord = ord(axis) - ord('x')
+
+ transform[..., cord, :] = transform[..., :, cord] = 0
+ transform[..., cord, cord] = 1
+
+ if axis == 'x':
+ transform[..., 1, 1] = transform[..., 2, 2] = cos
+ transform[..., 1, 2] = -sin
+ transform[..., 2, 1] = sin
+ if axis == 'y':
+ transform[..., 0, 0] = transform[..., 2, 2] = cos
+ transform[..., 0, 2] = sin
+ transform[..., 2, 0] = -sin
+ if axis == 'z':
+ transform[..., 0, 0] = transform[..., 1, 1] = cos
+ transform[..., 0, 1] = -sin
+ transform[..., 1, 0] = sin
+
+ return transform
+
+ @staticmethod
+ def transform_from_quaternion(quater: torch.Tensor):
+ qw = quater[..., 0]
+ qx = quater[..., 1]
+ qy = quater[..., 2]
+ qz = quater[..., 3]
+
+ x2 = qx + qx
+ y2 = qy + qy
+ z2 = qz + qz
+ xx = qx * x2
+ yy = qy * y2
+ wx = qw * x2
+ xy = qx * y2
+ yz = qy * z2
+ wy = qw * y2
+ xz = qx * z2
+ zz = qz * z2
+ wz = qw * z2
+
+ m = torch.empty(quater.shape[:-1] + (3, 3), device=quater.device)
+ m[..., 0, 0] = 1.0 - (yy + zz)
+ m[..., 0, 1] = xy - wz
+ m[..., 0, 2] = xz + wy
+ m[..., 1, 0] = xy + wz
+ m[..., 1, 1] = 1.0 - (xx + zz)
+ m[..., 1, 2] = yz - wx
+ m[..., 2, 0] = xz - wy
+ m[..., 2, 1] = yz + wx
+ m[..., 2, 2] = 1.0 - (xx + yy)
+
+ return m
\ No newline at end of file
diff --git a/visualization/Quaternions.py b/visualization/Quaternions.py
new file mode 100644
index 0000000000000000000000000000000000000000..7226326bc496983560ab06a89670609703e2149f
--- /dev/null
+++ b/visualization/Quaternions.py
@@ -0,0 +1,497 @@
+import numpy as np
+
+
+class Quaternions:
+ """
+ Quaternions is a wrapper around a numpy ndarray
+ that allows it to act as if it were an narray of
+ a quater data type.
+
+ Therefore addition, subtraction, multiplication,
+ division, negation, absolute, are all defined
+ in terms of quater operations such as quater
+ multiplication.
+
+ This allows for much neater code and many routines
+ which conceptually do the same thing to be written
+ in the same way for point data and for rotation data.
+
+ The Quaternions class has been desgined such that it
+ should support broadcasting and slicing in all of the
+ usual ways.
+ """
+
+ def __init__(self, qs):
+ if isinstance(qs, np.ndarray):
+ if len(qs.shape) == 1: qs = np.array([qs])
+ self.qs = qs
+ return
+
+ if isinstance(qs, Quaternions):
+ self.qs = qs
+ return
+
+ raise TypeError('Quaternions must be constructed from iterable, numpy array, or Quaternions, not %s' % type(qs))
+
+ def __str__(self):
+ return "Quaternions(" + str(self.qs) + ")"
+
+ def __repr__(self):
+ return "Quaternions(" + repr(self.qs) + ")"
+
+ """ Helper Methods for Broadcasting and Data extraction """
+
+ @classmethod
+ def _broadcast(cls, sqs, oqs, scalar=False):
+ if isinstance(oqs, float): return sqs, oqs * np.ones(sqs.shape[:-1])
+
+ ss = np.array(sqs.shape) if not scalar else np.array(sqs.shape[:-1])
+ os = np.array(oqs.shape)
+
+ if len(ss) != len(os):
+ raise TypeError('Quaternions cannot broadcast together shapes %s and %s' % (sqs.shape, oqs.shape))
+
+ if np.all(ss == os): return sqs, oqs
+
+ if not np.all((ss == os) | (os == np.ones(len(os))) | (ss == np.ones(len(ss)))):
+ raise TypeError('Quaternions cannot broadcast together shapes %s and %s' % (sqs.shape, oqs.shape))
+
+ sqsn, oqsn = sqs.copy(), oqs.copy()
+
+ for a in np.where(ss == 1)[0]: sqsn = sqsn.repeat(os[a], axis=a)
+ for a in np.where(os == 1)[0]: oqsn = oqsn.repeat(ss[a], axis=a)
+
+ return sqsn, oqsn
+
+ """ Adding Quaterions is just Defined as Multiplication """
+
+ def __add__(self, other):
+ return self * other
+
+ def __sub__(self, other):
+ return self / other
+
+ """ Quaterion Multiplication """
+
+ def __mul__(self, other):
+ """
+ Quaternion multiplication has three main methods.
+
+ When multiplying a Quaternions array by Quaternions
+ normal quater multiplication is performed.
+
+ When multiplying a Quaternions array by a vector
+ array of the same shape, where the last axis is 3,
+ it is assumed to be a Quaternion by 3D-Vector
+ multiplication and the 3D-Vectors are rotated
+ in space by the Quaternions.
+
+ When multipplying a Quaternions array by a scalar
+ or vector of different shape it is assumed to be
+ a Quaternions by Scalars multiplication and the
+ Quaternions are scaled using Slerp and the identity
+ quaternions.
+ """
+
+ """ If Quaternions type do Quaternions * Quaternions """
+ if isinstance(other, Quaternions):
+ sqs, oqs = Quaternions._broadcast(self.qs, other.qs)
+
+ q0 = sqs[..., 0];
+ q1 = sqs[..., 1];
+ q2 = sqs[..., 2];
+ q3 = sqs[..., 3];
+ r0 = oqs[..., 0];
+ r1 = oqs[..., 1];
+ r2 = oqs[..., 2];
+ r3 = oqs[..., 3];
+
+ qs = np.empty(sqs.shape)
+ qs[..., 0] = r0 * q0 - r1 * q1 - r2 * q2 - r3 * q3
+ qs[..., 1] = r0 * q1 + r1 * q0 - r2 * q3 + r3 * q2
+ qs[..., 2] = r0 * q2 + r1 * q3 + r2 * q0 - r3 * q1
+ qs[..., 3] = r0 * q3 - r1 * q2 + r2 * q1 + r3 * q0
+
+ return Quaternions(qs)
+
+ """ If array type do Quaternions * Vectors """
+ if isinstance(other, np.ndarray) and other.shape[-1] == 3:
+ vs = Quaternions(np.concatenate([np.zeros(other.shape[:-1] + (1,)), other], axis=-1))
+
+ return (self * (vs * -self)).imaginaries
+
+ """ If float do Quaternions * Scalars """
+ if isinstance(other, np.ndarray) or isinstance(other, float):
+ return Quaternions.slerp(Quaternions.id_like(self), self, other)
+
+ raise TypeError('Cannot multiply/add Quaternions with type %s' % str(type(other)))
+
+ def __div__(self, other):
+ """
+ When a Quaternion type is supplied, division is defined
+ as multiplication by the inverse of that Quaternion.
+
+ When a scalar or vector is supplied it is defined
+ as multiplicaion of one over the supplied value.
+ Essentially a scaling.
+ """
+
+ if isinstance(other, Quaternions): return self * (-other)
+ if isinstance(other, np.ndarray): return self * (1.0 / other)
+ if isinstance(other, float): return self * (1.0 / other)
+ raise TypeError('Cannot divide/subtract Quaternions with type %s' + str(type(other)))
+
+ def __eq__(self, other):
+ return self.qs == other.qs
+
+ def __ne__(self, other):
+ return self.qs != other.qs
+
+ def __neg__(self):
+ """ Invert Quaternions """
+ return Quaternions(self.qs * np.array([[1, -1, -1, -1]]))
+
+ def __abs__(self):
+ """ Unify Quaternions To Single Pole """
+ qabs = self.normalized().copy()
+ top = np.sum((qabs.qs) * np.array([1, 0, 0, 0]), axis=-1)
+ bot = np.sum((-qabs.qs) * np.array([1, 0, 0, 0]), axis=-1)
+ qabs.qs[top < bot] = -qabs.qs[top < bot]
+ return qabs
+
+ def __iter__(self):
+ return iter(self.qs)
+
+ def __len__(self):
+ return len(self.qs)
+
+ def __getitem__(self, k):
+ return Quaternions(self.qs[k])
+
+ def __setitem__(self, k, v):
+ self.qs[k] = v.qs
+
+ @property
+ def lengths(self):
+ return np.sum(self.qs ** 2.0, axis=-1) ** 0.5
+
+ @property
+ def reals(self):
+ return self.qs[..., 0]
+
+ @property
+ def imaginaries(self):
+ return self.qs[..., 1:4]
+
+ @property
+ def shape(self):
+ return self.qs.shape[:-1]
+
+ def repeat(self, n, **kwargs):
+ return Quaternions(self.qs.repeat(n, **kwargs))
+
+ def normalized(self):
+ return Quaternions(self.qs / self.lengths[..., np.newaxis])
+
+ def log(self):
+ norm = abs(self.normalized())
+ imgs = norm.imaginaries
+ lens = np.sqrt(np.sum(imgs ** 2, axis=-1))
+ lens = np.arctan2(lens, norm.reals) / (lens + 1e-10)
+ return imgs * lens[..., np.newaxis]
+
+ def constrained(self, axis):
+
+ rl = self.reals
+ im = np.sum(axis * self.imaginaries, axis=-1)
+
+ t1 = -2 * np.arctan2(rl, im) + np.pi
+ t2 = -2 * np.arctan2(rl, im) - np.pi
+
+ top = Quaternions.exp(axis[np.newaxis] * (t1[:, np.newaxis] / 2.0))
+ bot = Quaternions.exp(axis[np.newaxis] * (t2[:, np.newaxis] / 2.0))
+ img = self.dot(top) > self.dot(bot)
+
+ ret = top.copy()
+ ret[img] = top[img]
+ ret[~img] = bot[~img]
+ return ret
+
+ def constrained_x(self):
+ return self.constrained(np.array([1, 0, 0]))
+
+ def constrained_y(self):
+ return self.constrained(np.array([0, 1, 0]))
+
+ def constrained_z(self):
+ return self.constrained(np.array([0, 0, 1]))
+
+ def dot(self, q):
+ return np.sum(self.qs * q.qs, axis=-1)
+
+ def copy(self):
+ return Quaternions(np.copy(self.qs))
+
+ def reshape(self, s):
+ self.qs.reshape(s)
+ return self
+
+ def interpolate(self, ws):
+ return Quaternions.exp(np.average(abs(self).log, axis=0, weights=ws))
+
+ def euler(self, order='xyz'): # fix the wrong convert, this should convert to world euler by default.
+
+ q = self.normalized().qs
+ q0 = q[..., 0]
+ q1 = q[..., 1]
+ q2 = q[..., 2]
+ q3 = q[..., 3]
+ es = np.zeros(self.shape + (3,))
+
+ if order == 'xyz':
+ es[..., 0] = np.arctan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
+ es[..., 1] = np.arcsin((2 * (q0 * q2 - q3 * q1)).clip(-1, 1))
+ es[..., 2] = np.arctan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3))
+ elif order == 'yzx':
+ es[..., 0] = np.arctan2(2 * (q1 * q0 - q2 * q3), -q1 * q1 + q2 * q2 - q3 * q3 + q0 * q0)
+ es[..., 1] = np.arctan2(2 * (q2 * q0 - q1 * q3), q1 * q1 - q2 * q2 - q3 * q3 + q0 * q0)
+ es[..., 2] = np.arcsin((2 * (q1 * q2 + q3 * q0)).clip(-1, 1))
+ else:
+ raise NotImplementedError('Cannot convert from ordering %s' % order)
+
+ """
+
+ # These conversion don't appear to work correctly for Maya.
+ # http://bediyap.com/programming/convert-quaternion-to-euler-rotations/
+
+ if order == 'xyz':
+ es[fa + (0,)] = np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
+ es[fa + (1,)] = np.arcsin((2 * (q1 * q3 + q0 * q2)).clip(-1,1))
+ es[fa + (2,)] = np.arctan2(2 * (q0 * q1 - q2 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
+ elif order == 'yzx':
+ es[fa + (0,)] = np.arctan2(2 * (q0 * q1 - q2 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
+ es[fa + (1,)] = np.arcsin((2 * (q1 * q2 + q0 * q3)).clip(-1,1))
+ es[fa + (2,)] = np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
+ elif order == 'zxy':
+ es[fa + (0,)] = np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
+ es[fa + (1,)] = np.arcsin((2 * (q0 * q1 + q2 * q3)).clip(-1,1))
+ es[fa + (2,)] = np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
+ elif order == 'xzy':
+ es[fa + (0,)] = np.arctan2(2 * (q0 * q2 + q1 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
+ es[fa + (1,)] = np.arcsin((2 * (q0 * q3 - q1 * q2)).clip(-1,1))
+ es[fa + (2,)] = np.arctan2(2 * (q0 * q1 + q2 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
+ elif order == 'yxz':
+ es[fa + (0,)] = np.arctan2(2 * (q1 * q2 + q0 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
+ es[fa + (1,)] = np.arcsin((2 * (q0 * q1 - q2 * q3)).clip(-1,1))
+ es[fa + (2,)] = np.arctan2(2 * (q1 * q3 + q0 * q2), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
+ elif order == 'zyx':
+ es[fa + (0,)] = np.arctan2(2 * (q0 * q1 + q2 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
+ es[fa + (1,)] = np.arcsin((2 * (q0 * q2 - q1 * q3)).clip(-1,1))
+ es[fa + (2,)] = np.arctan2(2 * (q0 * q3 + q1 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
+ else:
+ raise KeyError('Unknown ordering %s' % order)
+
+ """
+
+ # https://github.com/ehsan/ogre/blob/master/OgreMain/src/OgreMatrix3.cpp
+ # Use this class and convert from matrix
+
+ return es
+
+ def average(self):
+
+ if len(self.shape) == 1:
+
+ import numpy.core.umath_tests as ut
+ system = ut.matrix_multiply(self.qs[:, :, np.newaxis], self.qs[:, np.newaxis, :]).sum(axis=0)
+ w, v = np.linalg.eigh(system)
+ qiT_dot_qref = (self.qs[:, :, np.newaxis] * v[np.newaxis, :, :]).sum(axis=1)
+ return Quaternions(v[:, np.argmin((1. - qiT_dot_qref ** 2).sum(axis=0))])
+
+ else:
+
+ raise NotImplementedError('Cannot average multi-dimensionsal Quaternions')
+
+ def angle_axis(self):
+
+ norm = self.normalized()
+ s = np.sqrt(1 - (norm.reals ** 2.0))
+ s[s == 0] = 0.001
+
+ angles = 2.0 * np.arccos(norm.reals)
+ axis = norm.imaginaries / s[..., np.newaxis]
+
+ return angles, axis
+
+ def transforms(self):
+
+ qw = self.qs[..., 0]
+ qx = self.qs[..., 1]
+ qy = self.qs[..., 2]
+ qz = self.qs[..., 3]
+
+ x2 = qx + qx;
+ y2 = qy + qy;
+ z2 = qz + qz;
+ xx = qx * x2;
+ yy = qy * y2;
+ wx = qw * x2;
+ xy = qx * y2;
+ yz = qy * z2;
+ wy = qw * y2;
+ xz = qx * z2;
+ zz = qz * z2;
+ wz = qw * z2;
+
+ m = np.empty(self.shape + (3, 3))
+ m[..., 0, 0] = 1.0 - (yy + zz)
+ m[..., 0, 1] = xy - wz
+ m[..., 0, 2] = xz + wy
+ m[..., 1, 0] = xy + wz
+ m[..., 1, 1] = 1.0 - (xx + zz)
+ m[..., 1, 2] = yz - wx
+ m[..., 2, 0] = xz - wy
+ m[..., 2, 1] = yz + wx
+ m[..., 2, 2] = 1.0 - (xx + yy)
+
+ return m
+
+ def ravel(self):
+ return self.qs.ravel()
+
+ @classmethod
+ def id(cls, n):
+
+ if isinstance(n, tuple):
+ qs = np.zeros(n + (4,))
+ qs[..., 0] = 1.0
+ return Quaternions(qs)
+
+ if isinstance(n, int):
+ qs = np.zeros((n, 4))
+ qs[:, 0] = 1.0
+ return Quaternions(qs)
+
+ raise TypeError('Cannot Construct Quaternion from %s type' % str(type(n)))
+
+ @classmethod
+ def id_like(cls, a):
+ qs = np.zeros(a.shape + (4,))
+ qs[..., 0] = 1.0
+ return Quaternions(qs)
+
+ @classmethod
+ def exp(cls, ws):
+
+ ts = np.sum(ws ** 2.0, axis=-1) ** 0.5
+ ts[ts == 0] = 0.001
+ ls = np.sin(ts) / ts
+
+ qs = np.empty(ws.shape[:-1] + (4,))
+ qs[..., 0] = np.cos(ts)
+ qs[..., 1] = ws[..., 0] * ls
+ qs[..., 2] = ws[..., 1] * ls
+ qs[..., 3] = ws[..., 2] * ls
+
+ return Quaternions(qs).normalized()
+
+ @classmethod
+ def slerp(cls, q0s, q1s, a):
+
+ fst, snd = cls._broadcast(q0s.qs, q1s.qs)
+ fst, a = cls._broadcast(fst, a, scalar=True)
+ snd, a = cls._broadcast(snd, a, scalar=True)
+
+ len = np.sum(fst * snd, axis=-1)
+
+ neg = len < 0.0
+ len[neg] = -len[neg]
+ snd[neg] = -snd[neg]
+
+ amount0 = np.zeros(a.shape)
+ amount1 = np.zeros(a.shape)
+
+ linear = (1.0 - len) < 0.01
+ omegas = np.arccos(len[~linear])
+ sinoms = np.sin(omegas)
+
+ amount0[linear] = 1.0 - a[linear]
+ amount1[linear] = a[linear]
+ amount0[~linear] = np.sin((1.0 - a[~linear]) * omegas) / sinoms
+ amount1[~linear] = np.sin(a[~linear] * omegas) / sinoms
+
+ return Quaternions(
+ amount0[..., np.newaxis] * fst +
+ amount1[..., np.newaxis] * snd)
+
+ @classmethod
+ def between(cls, v0s, v1s):
+ a = np.cross(v0s, v1s)
+ w = np.sqrt((v0s ** 2).sum(axis=-1) * (v1s ** 2).sum(axis=-1)) + (v0s * v1s).sum(axis=-1)
+ return Quaternions(np.concatenate([w[..., np.newaxis], a], axis=-1)).normalized()
+
+ @classmethod
+ def from_angle_axis(cls, angles, axis):
+ axis = axis / (np.sqrt(np.sum(axis ** 2, axis=-1)) + 1e-10)[..., np.newaxis]
+ sines = np.sin(angles / 2.0)[..., np.newaxis]
+ cosines = np.cos(angles / 2.0)[..., np.newaxis]
+ return Quaternions(np.concatenate([cosines, axis * sines], axis=-1))
+
+ @classmethod
+ def from_euler(cls, es, order='xyz', world=False):
+
+ axis = {
+ 'x': np.array([1, 0, 0]),
+ 'y': np.array([0, 1, 0]),
+ 'z': np.array([0, 0, 1]),
+ }
+
+ q0s = Quaternions.from_angle_axis(es[..., 0], axis[order[0]])
+ q1s = Quaternions.from_angle_axis(es[..., 1], axis[order[1]])
+ q2s = Quaternions.from_angle_axis(es[..., 2], axis[order[2]])
+
+ return (q2s * (q1s * q0s)) if world else (q0s * (q1s * q2s))
+
+ @classmethod
+ def from_transforms(cls, ts):
+
+ d0, d1, d2 = ts[..., 0, 0], ts[..., 1, 1], ts[..., 2, 2]
+
+ q0 = (d0 + d1 + d2 + 1.0) / 4.0
+ q1 = (d0 - d1 - d2 + 1.0) / 4.0
+ q2 = (-d0 + d1 - d2 + 1.0) / 4.0
+ q3 = (-d0 - d1 + d2 + 1.0) / 4.0
+
+ q0 = np.sqrt(q0.clip(0, None))
+ q1 = np.sqrt(q1.clip(0, None))
+ q2 = np.sqrt(q2.clip(0, None))
+ q3 = np.sqrt(q3.clip(0, None))
+
+ c0 = (q0 >= q1) & (q0 >= q2) & (q0 >= q3)
+ c1 = (q1 >= q0) & (q1 >= q2) & (q1 >= q3)
+ c2 = (q2 >= q0) & (q2 >= q1) & (q2 >= q3)
+ c3 = (q3 >= q0) & (q3 >= q1) & (q3 >= q2)
+
+ q1[c0] *= np.sign(ts[c0, 2, 1] - ts[c0, 1, 2])
+ q2[c0] *= np.sign(ts[c0, 0, 2] - ts[c0, 2, 0])
+ q3[c0] *= np.sign(ts[c0, 1, 0] - ts[c0, 0, 1])
+
+ q0[c1] *= np.sign(ts[c1, 2, 1] - ts[c1, 1, 2])
+ q2[c1] *= np.sign(ts[c1, 1, 0] + ts[c1, 0, 1])
+ q3[c1] *= np.sign(ts[c1, 0, 2] + ts[c1, 2, 0])
+
+ q0[c2] *= np.sign(ts[c2, 0, 2] - ts[c2, 2, 0])
+ q1[c2] *= np.sign(ts[c2, 1, 0] + ts[c2, 0, 1])
+ q3[c2] *= np.sign(ts[c2, 2, 1] + ts[c2, 1, 2])
+
+ q0[c3] *= np.sign(ts[c3, 1, 0] - ts[c3, 0, 1])
+ q1[c3] *= np.sign(ts[c3, 2, 0] + ts[c3, 0, 2])
+ q2[c3] *= np.sign(ts[c3, 2, 1] + ts[c3, 1, 2])
+
+ qs = np.empty(ts.shape[:-2] + (4,))
+ qs[..., 0] = q0
+ qs[..., 1] = q1
+ qs[..., 2] = q2
+ qs[..., 3] = q3
+
+ return cls(qs)
\ No newline at end of file
diff --git a/visualization/__init__.py b/visualization/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/visualization/data/.DS_Store b/visualization/data/.DS_Store
new file mode 100644
index 0000000000000000000000000000000000000000..4802556e01d6caeee59148fad823704f2de85f07
Binary files /dev/null and b/visualization/data/.DS_Store differ
diff --git a/visualization/data/gBR_sBM_cAll_d04_mBR0_ch01.pkl b/visualization/data/gBR_sBM_cAll_d04_mBR0_ch01.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..2bc25371145f6e89a929fe4aeedd224acfc48bb9
--- /dev/null
+++ b/visualization/data/gBR_sBM_cAll_d04_mBR0_ch01.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:51768ab001906029b273de1a7c15e8c6574f285663a28f4d8e0ce6dd44926bf3
+size 216300
diff --git a/visualization/data/smpl/smpl/.DS_Store b/visualization/data/smpl/smpl/.DS_Store
new file mode 100644
index 0000000000000000000000000000000000000000..5008ddfcf53c02e82d7eee2e57c38e5672ef89f6
Binary files /dev/null and b/visualization/data/smpl/smpl/.DS_Store differ
diff --git a/visualization/data/smpl/smpl/smpl.txt b/visualization/data/smpl/smpl/smpl.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5f418a9b417a68ffb8ad6935dab39e2539edad34
--- /dev/null
+++ b/visualization/data/smpl/smpl/smpl.txt
@@ -0,0 +1,8 @@
+Once you have downloaded the SMPL model, place it here like below.
+
+data
+|_smpl
+ |_smpl
+ |_SMPL_FEMALE.pkl
+ |_SMPL_MALE.pkl
+ |_SMPL_NEUTRAL.pkl
diff --git a/visualization/data/template.bvh b/visualization/data/template.bvh
new file mode 100644
index 0000000000000000000000000000000000000000..20c0c65aee60c2ed1ef7d98815a6b5dcb4e0d368
--- /dev/null
+++ b/visualization/data/template.bvh
@@ -0,0 +1,854 @@
+HIERARCHY
+ROOT Hips
+{
+ OFFSET -0.001795 -0.223333 0.028219
+ CHANNELS 6 Xposition Yposition Zposition Zrotation Yrotation Xrotation
+ JOINT LeftUpLeg
+ {
+ OFFSET 0.069520 -0.091406 -0.006815
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT LeftLeg
+ {
+ OFFSET 0.034277 -0.375199 -0.004496
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT LeftFoot
+ {
+ OFFSET -0.013596 -0.397961 -0.043693
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT LeftToe
+ {
+ OFFSET 0.026358 -0.055791 0.119288
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ End Site
+ {
+ OFFSET 0.000000 0.000000 0.000000
+ }
+ }
+ }
+ }
+ }
+ JOINT RightUpLeg
+ {
+ OFFSET -0.067670 -0.090522 -0.004320
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT RightLeg
+ {
+ OFFSET -0.038290 -0.382569 -0.008850
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT RightFoot
+ {
+ OFFSET 0.015774 -0.398415 -0.042312
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT RightToe
+ {
+ OFFSET -0.025372 -0.048144 0.123348
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ End Site
+ {
+ OFFSET 0.000000 0.000000 0.000000
+ }
+ }
+ }
+ }
+ }
+ JOINT Spine
+ {
+ OFFSET -0.002533 0.108963 -0.026696
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Spine1
+ {
+ OFFSET 0.005487 0.135180 0.001092
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Spine2
+ {
+ OFFSET 0.001457 0.052922 0.025425
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Neck
+ {
+ OFFSET -0.002778 0.213870 -0.042857
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT Head
+ {
+ OFFSET 0.005152 0.064970 0.051349
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ End Site
+ {
+ OFFSET 0.000000 0.000000 0.000000
+ }
+ }
+ }
+ JOINT LeftShoulder
+ {
+ OFFSET 0.078845 0.121749 -0.034090
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT LeftArm
+ {
+ OFFSET 0.090977 0.030469 -0.008868
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT LeftForeArm
+ {
+ OFFSET 0.259612 -0.012772 -0.027456
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT LeftHand
+ {
+ OFFSET 0.249234 0.008986 -0.001171
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ End Site
+ {
+ OFFSET 0.000000 0.000000 0.000000
+ }
+ }
+ }
+ }
+ }
+ JOINT RightShoulder
+ {
+ OFFSET -0.081759 0.118833 -0.038615
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT RightArm
+ {
+ OFFSET -0.096012 0.032551 -0.009143
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT RightForeArm
+ {
+ OFFSET -0.253742 -0.013329 -0.021401
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ JOINT RightHand
+ {
+ OFFSET -0.255298 0.007772 -0.005559
+ CHANNELS 3 Zrotation Yrotation Xrotation
+ End Site
+ {
+ OFFSET 0.000000 0.000000 0.000000
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+MOTION
+Frames: 720
+Frame Time: 0.016667
+-0.159536 1.582612 0.030130 -6.548568 2.583855 -18.484306 2.567626 -0.642801 -12.453255 -17.111603 3.336555 16.983561 -0.646515 0.385496 -0.056215 0.325094 -0.032605 0.189901 11.448563 8.871870 6.436031 21.109348 -6.065577 45.020580 -0.174829 0.026075 0.116341 0.072238 0.260225 0.053027 4.465475 2.398752 11.553416 -5.916316 5.109896 9.693657 -10.230002 5.977373 8.161955 -4.592945 0.456784 10.607079 11.999027 -6.871897 -9.583961 0.986580 11.602270 -6.802592 -10.811317 -2.869949 -1.570219 43.446667 -20.007170 -7.731044 0.092445 -0.321820 0.690197 0.794326 -2.761873 -4.701620 6.150688 4.680287 -2.319729 -7.082062 6.923985 -0.347780 -0.400098 0.244321 -0.323698
+-0.161087 1.583428 0.030032 -6.436900 2.553235 -18.466497 2.628736 -0.640951 -12.167108 -17.277838 3.260565 16.452961 -0.623134 0.361270 -0.052679 0.329175 -0.021943 0.188075 11.625759 8.663714 6.621767 20.507597 -5.825788 44.947929 -0.176207 0.037369 0.118593 0.068431 0.250536 0.048086 4.242087 2.434052 12.115721 -6.077591 5.185571 9.527125 -10.338363 5.937043 7.690588 -4.605536 0.197104 10.837864 12.726488 -7.272390 -9.544734 1.642845 11.950652 -6.932811 -11.680576 -4.277152 -1.549070 43.571354 -20.612377 -8.049021 0.109730 -0.311815 0.682838 0.926398 -3.272447 -4.630198 7.445030 3.782560 -2.564028 -8.259988 8.206085 -0.503641 -0.385034 0.241649 -0.309882
+-0.162891 1.584601 0.028981 -6.337712 2.417876 -18.367199 2.387673 -0.769141 -11.783619 -16.808804 2.974704 15.581153 -0.597874 0.341984 -0.045163 0.336606 -0.010386 0.182390 11.895297 8.444583 6.677911 19.618019 -5.451431 44.845573 -0.181456 0.041560 0.120532 0.063814 0.249287 0.050308 4.130446 2.249803 12.813165 -6.341510 5.110845 9.366212 -10.591797 5.717437 7.166194 -4.550250 0.315001 10.694882 13.649382 -7.465281 -9.502808 2.140804 12.233712 -6.924524 -12.244494 -5.059723 -1.525820 43.379272 -21.237177 -8.295979 0.124976 -0.288952 0.674843 1.297063 -3.571788 -4.703934 8.010023 3.486611 -2.652901 -8.476348 8.605403 -0.545584 -0.372898 0.231243 -0.293915
+-0.165646 1.587320 0.027265 -6.002626 2.455181 -17.973370 1.834383 -0.983811 -11.526038 -15.971136 2.528754 14.111326 -0.602751 0.340437 -0.036803 0.336285 -0.008456 0.180600 11.654990 8.101241 6.587115 18.879175 -5.168495 44.240204 -0.184101 0.051312 0.135291 0.064663 0.260571 0.042015 3.051892 2.191581 13.253531 -6.533848 4.771447 9.180534 -10.291628 5.312028 6.718891 -4.273476 0.849475 10.492126 14.207470 -6.976998 -9.746916 2.845061 11.944734 -6.652175 -13.332726 -5.224829 -1.703026 43.879097 -20.990297 -8.364495 0.124505 -0.311719 0.688117 1.603163 -3.485494 -4.864434 8.750508 3.673903 -2.785898 -8.287816 8.146102 -0.511701 -0.381603 0.246283 -0.306233
+-0.167123 1.590612 0.025445 -6.138146 2.120839 -17.193476 1.495634 -1.153967 -11.531704 -14.562866 2.010199 12.596170 -0.564200 0.317475 -0.030186 0.355434 0.019825 0.183202 11.821760 7.832906 6.029297 17.854931 -4.734118 43.749580 -0.192897 0.046537 0.137743 0.063975 0.252156 0.061209 2.591154 2.105130 12.956139 -6.259222 4.452549 8.945457 -9.745981 4.985147 6.536089 -4.571469 1.506478 10.368932 14.273899 -6.712031 -9.471840 3.448703 11.540046 -6.184101 -15.225222 -5.342481 -1.930704 43.757050 -21.041569 -8.442200 0.134142 -0.275313 0.666342 1.627102 -3.484644 -5.032462 9.050708 4.006345 -2.802380 -8.178758 7.832633 -0.502845 -0.366619 0.222956 -0.270694
+-0.167389 1.593951 0.024098 -6.371427 1.715281 -16.212042 1.344112 -1.182214 -11.552453 -13.644547 1.596031 10.760131 -0.553557 0.301520 -0.029561 0.378947 0.055993 0.190589 11.912018 7.518050 5.477684 17.113008 -4.432878 43.021950 -0.200891 0.036620 0.141589 0.080178 0.245286 0.068790 2.655632 1.979555 12.242448 -6.059598 4.245433 8.709062 -9.529772 4.797668 6.568608 -4.468900 1.918368 10.300252 13.968842 -6.223287 -9.409180 3.466537 11.571606 -6.341009 -16.185760 -6.324979 -1.868305 43.140266 -21.341555 -8.512464 0.137919 -0.253948 0.652056 1.538267 -4.164848 -5.698076 9.921809 4.595060 -2.894332 -8.263926 7.278342 -0.511822 -0.369502 0.201231 -0.253245
+-0.167765 1.597480 0.021578 -6.428220 0.974121 -15.499296 0.936812 -1.201844 -11.313258 -12.177716 1.160200 8.771048 -0.541815 0.290366 -0.027408 0.385098 0.072718 0.195796 11.659352 7.261486 5.164932 16.596523 -4.206794 42.218369 -0.209730 0.039482 0.143880 0.082221 0.241970 0.075982 2.573596 1.944514 12.080869 -5.894100 4.092123 8.473337 -9.288622 4.620084 6.356588 -4.217100 2.342363 10.327727 13.891860 -5.639298 -9.494050 3.559528 11.211238 -6.158870 -16.793213 -6.551462 -1.894842 42.277451 -21.691759 -8.545035 0.136256 -0.254222 0.648655 1.508747 -4.268039 -5.966607 10.860933 4.783715 -3.082765 -8.835072 6.579336 -0.500989 -0.366672 0.202077 -0.242371
+-0.167738 1.599857 0.018408 -6.892040 -0.265036 -14.707372 1.328187 -0.964429 -11.259574 -11.177370 0.888995 6.940612 -0.568827 0.312146 -0.017006 0.384319 0.065389 0.219003 11.855839 7.198880 4.539358 16.104712 -3.967600 41.788979 -0.207010 0.039457 0.152789 0.090576 0.252497 0.064945 2.552962 2.114229 11.497072 -5.267292 4.029208 8.392828 -8.548087 4.680492 6.497765 -3.776544 2.099114 10.020322 12.838959 -5.162495 -9.682754 2.628662 11.070118 -6.654572 -17.138351 -7.377963 -1.785861 42.147392 -22.057623 -8.732569 0.117987 -0.294817 0.657766 1.382665 -4.553769 -6.347175 11.398166 5.195314 -3.140609 -8.480102 5.291673 -0.409761 -0.384078 0.213121 -0.268936
+-0.167738 1.602421 0.013853 -7.016428 -1.505329 -14.080323 1.266081 -0.892498 -11.216756 -9.875610 0.647913 5.458475 -0.596244 0.324718 -0.036018 0.380901 0.056116 0.246956 11.449362 7.158514 3.991309 15.985287 -3.963041 41.578953 -0.208718 0.038813 0.142284 0.092089 0.233258 0.069335 2.184994 2.446226 11.041884 -4.768640 4.030961 8.394737 -7.787795 4.783552 6.747200 -2.993406 1.860639 10.339728 11.743679 -4.358018 -9.782350 2.318040 10.238366 -6.903628 -17.624683 -8.450515 -1.814095 41.897972 -21.614748 -8.678004 0.099946 -0.314608 0.672528 0.738849 -4.534195 -6.355844 13.447996 5.103255 -3.444934 -9.040357 4.058734 -0.338981 -0.394386 0.223943 -0.279044
+-0.168093 1.604251 0.009338 -7.032182 -2.290404 -13.168996 0.963916 -0.950240 -11.661660 -8.774489 0.446624 4.215530 -0.591520 0.324756 -0.038110 0.405520 0.077245 0.283295 11.117752 6.917726 3.290086 15.538538 -3.851339 41.050232 -0.220738 0.015278 0.131980 0.102497 0.209776 0.094493 1.436988 2.649358 10.414960 -4.232882 3.861250 8.380134 -6.796241 4.627924 7.040365 -2.038058 1.271019 9.802289 10.280865 -3.758888 -9.653845 1.583092 9.638629 -7.427457 -17.063530 -9.797557 -1.697351 40.920959 -21.239902 -8.413903 0.092666 -0.282492 0.658618 0.736511 -4.848399 -6.580435 14.807322 5.148545 -3.579633 -9.770852 4.246374 -0.421145 -0.396556 0.186414 -0.259444
+-0.167897 1.605926 0.003677 -7.171580 -3.178783 -12.647384 0.967041 -0.922395 -11.908892 -7.793193 0.286271 3.119777 -0.577536 0.297129 -0.039632 0.452639 0.135876 0.330994 10.758710 6.621087 2.877956 15.536983 -3.949389 40.555130 -0.244916 0.003562 0.132633 0.125324 0.175011 0.115623 1.386160 2.668587 9.904191 -3.783525 3.787306 8.664775 -6.183028 4.540397 7.717748 -1.120352 1.032352 9.925644 8.940594 -2.772691 -9.750923 0.745054 8.419509 -7.993518 -16.237057 -11.405189 -1.721316 39.923317 -20.612867 -8.124463 0.100576 -0.256890 0.647661 0.813248 -4.988221 -6.677959 16.553080 5.027795 -3.795870 -11.128160 5.261421 -0.631432 -0.398122 0.151377 -0.228331
+-0.167417 1.607293 -0.003169 -7.558708 -4.539864 -12.112906 1.386975 -0.769382 -12.272948 -6.737583 0.165605 2.225166 -0.576300 0.265689 -0.056850 0.509184 0.216077 0.371496 11.096457 6.453204 2.496656 14.883972 -3.657289 40.090054 -0.270425 -0.000597 0.123822 0.166345 0.140374 0.129843 1.571359 2.641582 9.193312 -3.330585 3.747882 9.214892 -5.608980 4.529363 8.885200 -0.731368 1.462196 9.633437 8.470182 -1.802790 -10.920446 0.051031 7.202787 -8.527828 -15.546686 -12.708365 -1.861073 39.913399 -20.185949 -8.141868 0.112741 -0.227957 0.639310 2.036472 -4.811833 -7.356366 16.969507 5.912110 -3.819465 -11.867729 5.299818 -0.755479 -0.403036 0.124151 -0.197492
+-0.165537 1.607645 -0.010421 -7.925178 -5.998769 -11.598991 1.845736 -0.696072 -12.929962 -5.726211 0.092250 2.030888 -0.569470 0.269086 -0.064483 0.529535 0.244756 0.386711 11.167949 6.396535 1.932726 14.707852 -3.614619 39.896099 -0.281741 -0.023981 0.115069 0.179399 0.131774 0.161120 1.726923 2.839438 8.667390 -2.650086 3.818988 9.649557 -4.748201 4.631983 9.787368 -0.131880 1.360343 9.359412 7.636412 -1.246999 -11.012045 -1.206931 5.552031 -9.087198 -14.850809 -14.288842 -1.986183 40.316353 -20.254745 -8.431984 0.094950 -0.196905 0.620114 3.140409 -4.329516 -7.363596 16.994743 6.043010 -3.810810 -12.448504 6.366045 -0.970701 -0.409567 0.097504 -0.171583
+-0.163521 1.608887 -0.017860 -8.061885 -7.845345 -11.192497 2.414356 -0.553609 -13.384150 -4.966199 0.047758 1.862995 -0.564971 0.259399 -0.069010 0.559372 0.295034 0.402097 10.879979 6.500432 1.349209 14.677989 -3.608514 39.977642 -0.297743 -0.033641 0.114398 0.203599 0.126196 0.178321 2.030623 3.112092 8.190439 -2.180508 4.059436 10.116151 -4.206339 4.850182 10.759787 0.209076 1.335603 9.352204 7.140994 -0.794189 -11.571316 -2.253699 3.974662 -9.873274 -14.183203 -16.453354 -2.139265 40.883957 -20.160650 -8.718738 0.085774 -0.183659 0.604347 4.736768 -3.786916 -7.713704 17.506262 6.563680 -3.926220 -13.609794 7.310733 -1.246494 -0.419190 0.083070 -0.148184
+-0.160862 1.609526 -0.026833 -8.046998 -9.908904 -10.881722 3.178403 -0.502334 -14.330916 -4.741286 0.060714 2.819452 -0.555648 0.238704 -0.085571 0.582981 0.340153 0.427670 10.591507 6.828996 0.462272 14.245204 -3.450773 40.673283 -0.309660 -0.039848 0.105944 0.222041 0.096309 0.195670 2.300500 3.250377 8.068968 -1.867627 4.212889 10.539503 -3.831827 4.921741 11.586883 0.605016 1.225105 9.274499 5.971914 -0.082918 -12.144478 -3.228095 2.257882 -10.338022 -12.876457 -17.771721 -2.434823 41.225170 -19.998362 -8.844715 0.078872 -0.166713 0.585088 5.875173 -2.771969 -7.843284 18.682720 7.382069 -4.064976 -14.685915 9.481850 -1.764936 -0.417760 0.068578 -0.117976
+-0.158197 1.608048 -0.034829 -7.975517 -12.322988 -10.388718 4.410126 -0.496662 -16.022293 -5.157393 0.167969 5.244440 -0.579617 0.243325 -0.095244 0.608477 0.373700 0.450725 10.490107 7.335312 -0.667436 13.604923 -3.189647 41.799717 -0.313874 -0.043234 0.106417 0.251317 0.093546 0.192373 2.630287 3.390921 7.611517 -1.650590 4.381994 10.853812 -3.557493 5.043419 12.445291 0.630615 1.692654 9.087181 5.536309 0.514806 -12.791163 -3.279937 1.171122 -10.690102 -12.859802 -19.157557 -2.569380 41.454315 -19.932009 -9.059175 0.069723 -0.175345 0.584963 6.833838 -1.895792 -8.632036 19.644712 9.359219 -4.074486 -15.135581 9.993315 -2.034602 -0.435857 0.065232 -0.122267
+-0.155255 1.606933 -0.042436 -7.904150 -14.910521 -9.976284 6.132611 -0.396099 -17.974174 -6.482966 0.442776 8.747579 -0.607337 0.263478 -0.093182 0.624604 0.389966 0.463768 10.625152 7.725592 -1.360209 12.235993 -2.568690 42.515491 -0.318295 -0.057561 0.101954 0.279279 0.105677 0.188364 3.059854 3.420854 7.726108 -1.554179 4.566720 10.980680 -3.558352 5.161422 12.777025 0.538786 2.560840 8.562731 5.153638 1.251932 -13.002645 -3.437396 0.448450 -11.197196 -12.642103 -20.749588 -2.599976 41.375114 -19.952688 -9.183331 0.061028 -0.179509 0.588692 8.093701 -1.192280 -9.645938 20.499111 11.572705 -4.045588 -15.529764 10.370626 -2.277901 -0.452976 0.052024 -0.142714
+-0.152083 1.606483 -0.051784 -7.567080 -17.146141 -10.049934 8.152706 -0.344608 -20.190386 -8.707283 1.042604 13.983326 -0.615083 0.277083 -0.103284 0.639628 0.414488 0.466801 10.462480 7.969729 -1.951233 11.097867 -2.149283 43.216347 -0.323782 -0.070184 0.094681 0.297566 0.114381 0.205735 3.036006 3.326841 8.200000 -1.485536 4.555881 11.291413 -3.447955 5.101433 13.248490 0.252534 3.551512 8.317461 5.070338 1.925607 -13.335642 -3.601868 -0.670601 -11.612844 -12.342030 -22.204805 -2.806740 42.235493 -19.971783 -9.538338 0.040605 -0.167086 0.578094 9.817141 -0.125658 -10.633718 20.723526 13.895201 -3.950775 -15.358629 10.303440 -2.375078 -0.464874 0.044683 -0.132438
+-0.148766 1.606644 -0.060721 -7.386243 -19.553471 -10.331503 10.622969 -0.118184 -22.140608 -11.675226 2.077783 19.915577 -0.634292 0.271717 -0.123380 0.676542 0.458746 0.491102 10.640180 8.157366 -2.223415 9.724277 -1.597904 43.703949 -0.343389 -0.068934 0.086461 0.325110 0.094941 0.217119 3.201195 3.166709 9.122756 -1.395641 4.617937 11.632595 -3.419672 5.162120 13.598430 -0.601054 4.760435 8.004275 4.673171 2.721645 -14.529936 -3.788130 -1.876887 -11.856270 -12.363192 -23.442291 -2.995182 43.647419 -21.224220 -10.523670 0.046908 -0.158676 0.591816 11.626849 0.905302 -11.395967 20.860348 15.695547 -3.925965 -15.010798 10.483617 -2.454436 -0.477184 0.041214 -0.122190
+-0.143809 1.608121 -0.069850 -6.752759 -21.915737 -10.967949 12.350435 -0.150520 -23.741671 -14.259523 3.365441 25.961500 -0.678074 0.287212 -0.137323 0.690565 0.467266 0.517168 10.132088 8.252432 -2.336057 8.676771 -1.232475 44.009972 -0.347024 -0.061635 0.087100 0.345248 0.089695 0.206591 2.914943 3.179664 10.192928 -1.256652 4.672759 12.059586 -3.178120 5.233828 13.956268 -0.853625 5.446908 7.955490 4.222835 3.458758 -15.352881 -4.715968 -3.841550 -12.430705 -11.510841 -25.186232 -3.382696 44.712788 -21.933510 -11.247051 0.039736 -0.191908 0.619013 13.512440 2.369993 -11.666486 20.429726 17.129457 -3.930598 -14.336025 11.806147 -2.659317 -0.500018 0.058389 -0.146900
+-0.137896 1.609854 -0.077652 -5.823012 -24.055769 -11.668018 13.779216 -0.294715 -25.182566 -16.967180 4.977308 31.880217 -0.714081 0.310344 -0.143757 0.693127 0.461524 0.529300 9.403065 8.282658 -2.397833 7.210505 -0.694751 44.228523 -0.354469 -0.063269 0.080190 0.356486 0.095099 0.204466 2.438852 3.261651 10.994482 -1.147426 4.692928 12.445843 -2.880855 5.274017 14.316557 -0.927538 6.005843 8.148997 3.969277 4.118996 -15.678823 -5.316980 -5.580879 -12.721301 -11.133784 -26.776617 -3.605953 45.565617 -24.253584 -12.633064 0.031767 -0.214452 0.645872 14.898627 3.831013 -11.785723 20.248457 18.586010 -3.900503 -13.525084 13.505468 -2.873523 -0.516495 0.068957 -0.173095
+-0.130867 1.612166 -0.084851 -4.875965 -25.981440 -12.199566 15.083968 -0.514531 -26.784744 -19.957155 6.923659 37.548882 -0.696912 0.291710 -0.163743 0.726395 0.490140 0.574809 8.477742 8.146724 -2.492680 5.551526 -0.122520 43.949738 -0.380759 -0.072170 0.057762 0.357321 0.044334 0.242526 2.158102 3.111463 11.672981 -1.094743 4.592554 12.783085 -2.704907 5.140908 14.687515 -0.885196 6.413784 8.514328 2.674360 5.196745 -15.926392 -5.635658 -7.048832 -12.588388 -11.202438 -27.804913 -3.808431 46.915981 -27.456287 -14.557017 0.040479 -0.164475 0.645094 15.019759 5.338651 -11.741925 21.237589 20.218506 -3.618650 -12.086660 15.796215 -3.075075 -0.504326 0.037830 -0.132508
+-0.124569 1.615139 -0.091197 -3.793108 -27.912590 -12.866165 16.083836 -0.745651 -27.852245 -22.382816 8.920979 42.601986 -0.718903 0.294819 -0.176465 0.746321 0.501490 0.619812 7.491395 7.949832 -2.409604 3.972824 0.429350 43.304806 -0.394515 -0.062772 0.052734 0.364812 0.020979 0.248542 1.629811 3.106494 12.275188 -1.131571 4.522753 13.153068 -2.561482 5.073355 15.087170 -0.799961 6.805485 8.702858 1.749366 6.156599 -16.791067 -5.698677 -8.449005 -12.665860 -11.313059 -29.085314 -3.926397 47.764103 -31.461718 -16.861189 0.037331 -0.182031 0.668726 15.449378 7.066398 -11.848394 22.377285 22.042166 -3.412206 -10.939917 17.745220 -3.241103 -0.512922 0.047209 -0.136056
+-0.118005 1.619715 -0.097560 -2.591225 -29.314501 -13.581259 16.482523 -1.302634 -28.535030 -24.110374 10.683502 47.065063 -0.736296 0.261939 -0.213807 0.795541 0.563422 0.675948 6.338984 7.540351 -2.273709 2.772543 0.743658 42.251862 -0.422817 -0.045223 0.036012 0.396663 -0.039910 0.254975 0.778419 3.097676 12.655063 -1.149864 4.316111 13.703722 -2.193244 4.838350 15.886477 -0.761904 7.446394 9.015975 0.933794 7.305212 -18.504755 -5.104967 -10.050616 -12.855439 -12.143413 -30.883242 -4.121560 49.404926 -34.883862 -19.457796 0.056960 -0.174758 0.689441 15.945306 8.780711 -12.205355 23.646778 24.080421 -3.216335 -10.003852 20.238850 -3.506859 -0.516217 0.046552 -0.115759
+-0.110987 1.624715 -0.103259 -1.339180 -31.126358 -13.841406 16.718086 -1.643628 -28.929125 -25.513557 12.321860 50.518543 -0.757916 0.253705 -0.245401 0.835283 0.611165 0.711364 5.128810 7.305420 -2.759619 1.290884 1.174620 41.272972 -0.452961 -0.043838 0.024794 0.418304 -0.071846 0.282597 0.033580 3.332775 12.349244 -1.225869 4.260793 14.080084 -1.894949 4.776854 16.723743 -0.553547 7.925304 9.409863 0.367788 8.212152 -20.010220 -3.718606 -11.724162 -12.963178 -13.988247 -33.032402 -3.971232 50.071518 -38.298206 -21.960804 0.056370 -0.167856 0.713036 15.872032 10.391656 -12.292434 25.809473 25.670246 -2.896585 -9.064837 22.811100 -3.769757 -0.532793 0.050022 -0.095163
+-0.104358 1.629916 -0.107108 -0.340732 -33.205326 -13.578669 17.083504 -1.833149 -29.206976 -26.589983 13.897703 53.715229 -0.750196 0.241307 -0.253408 0.863857 0.651652 0.735837 4.311136 7.021362 -3.433456 -0.456643 1.696122 39.838036 -0.473439 -0.051012 0.014963 0.434047 -0.087968 0.303216 -0.223134 3.382552 11.446911 -1.400740 4.257839 14.186185 -1.932330 4.763020 17.431128 -0.462293 8.599119 10.001927 -0.113684 9.099281 -20.279131 -2.714864 -13.559663 -13.001805 -16.253441 -35.308578 -3.677524 50.599213 -40.458481 -23.806383 0.056001 -0.147974 0.707228 16.279284 11.652099 -12.259357 28.209742 26.976212 -2.448616 -7.462887 26.771383 -4.023708 -0.531461 0.033484 -0.071842
+-0.098268 1.635540 -0.109911 0.095756 -34.932892 -12.928908 17.427895 -2.150764 -29.353802 -26.683149 14.960142 56.886841 -0.775600 0.247563 -0.266523 0.883510 0.678218 0.748740 3.784520 6.614614 -4.137233 -1.790574 1.957662 37.979965 -0.477766 -0.066562 0.013452 0.461028 -0.090299 0.304044 -0.407725 3.278637 10.209656 -1.420716 4.060065 14.271961 -1.720481 4.602381 18.262276 -0.373787 9.429996 10.366678 -0.548301 10.009103 -20.323969 -1.789331 -15.031480 -12.958756 -19.087252 -37.659576 -2.932446 52.041370 -43.372192 -26.582546 0.045365 -0.143714 0.707814 16.690390 12.616516 -12.644693 30.147425 28.905918 -1.605877 -4.369041 29.553823 -3.560164 -0.552401 0.020006 -0.078770
+-0.091888 1.641570 -0.112264 0.575041 -36.718918 -12.161089 17.424295 -2.511493 -29.285671 -26.184809 15.767151 60.096672 -0.797658 0.267854 -0.271517 0.892794 0.684860 0.776970 3.201453 6.249115 -5.004308 -2.994241 2.138109 36.112057 -0.481794 -0.083401 0.002949 0.477859 -0.092093 0.310422 -0.648649 3.246926 8.861405 -1.392490 3.866477 14.333423 -1.413709 4.428638 19.104046 -0.103472 9.798611 10.709154 -1.598368 10.882658 -20.192261 -1.001857 -16.252991 -13.005049 -21.506372 -40.416660 -1.777879 51.999561 -46.621296 -28.735558 0.023997 -0.147788 0.705759 16.538864 13.521867 -13.129786 32.457268 31.055237 -0.443250 -1.188440 31.425295 -2.842073 -0.564919 0.006470 -0.089682
+-0.085472 1.647810 -0.114437 1.149869 -38.550419 -11.313907 16.880774 -2.879326 -28.938185 -25.122160 16.001858 62.530167 -0.800713 0.277662 -0.269268 0.916811 0.714510 0.797108 2.501112 5.940675 -6.077391 -4.076771 2.259006 34.245506 -0.493576 -0.108549 0.004034 0.497184 -0.087258 0.332298 -0.720109 3.121574 7.480189 -1.547512 3.663750 14.362247 -1.480661 4.174148 19.906746 0.302679 10.420553 10.867702 -2.370678 11.809701 -20.080130 0.080329 -17.179731 -12.855272 -23.805977 -42.529972 -0.519510 52.495544 -50.011547 -31.235239 0.005652 -0.132177 0.693393 16.178818 14.208493 -13.697104 35.824646 33.236565 1.004251 1.353943 33.600208 -2.300271 -0.579396 -0.019572 -0.080469
+-0.078480 1.653010 -0.116195 1.207361 -40.712685 -9.825318 16.680843 -2.806930 -28.324362 -24.440128 16.056738 63.384495 -0.809462 0.299104 -0.257650 0.937312 0.742363 0.820825 2.239747 5.904922 -7.614280 -4.972218 2.391983 32.895176 -0.493000 -0.150027 0.012597 0.524501 -0.069347 0.347535 -0.265043 2.983308 5.719175 -1.626428 3.519567 14.301897 -1.620521 3.922987 20.849640 0.737091 11.077666 10.400050 -3.793144 12.827089 -19.545074 1.880812 -17.590981 -12.729789 -26.810213 -44.778999 1.364611 51.941055 -52.983013 -32.928169 -0.031328 -0.121367 0.661322 15.189126 14.529465 -14.530971 39.804871 35.688026 3.097610 3.818692 35.366108 -1.687046 -0.603707 -0.059245 -0.080730
+-0.072184 1.657377 -0.118193 1.385782 -42.416286 -8.287569 16.030611 -2.871326 -27.688341 -23.520807 15.715948 63.505116 -0.816973 0.334522 -0.244307 0.918547 0.731033 0.812317 1.770311 5.845553 -9.166382 -5.213834 2.293669 31.509369 -0.465045 -0.197759 0.024919 0.536055 -0.029868 0.349608 -0.226790 2.996415 3.967878 -1.667355 3.354706 14.080020 -1.546612 3.628032 21.509533 1.374760 11.638236 9.989178 -4.807969 13.829537 -18.186932 3.542742 -17.832680 -12.688412 -30.009165 -47.536533 4.054867 49.613194 -55.754639 -33.152542 -0.088418 -0.114964 0.612616 14.385589 14.381516 -15.278356 44.007767 37.964916 5.674764 6.515521 37.070274 -0.834909 -0.626331 -0.091569 -0.096701
+-0.064898 1.661765 -0.120543 1.130265 -44.115372 -6.712142 15.345182 -2.838210 -26.461418 -22.331165 14.909662 62.758747 -0.841119 0.368879 -0.252606 0.925117 0.741987 0.825588 1.790442 5.890166 -10.511384 -5.616301 2.297547 30.119736 -0.455930 -0.249934 0.017280 0.560090 -0.013790 0.371284 0.169494 2.961426 2.498317 -1.640429 3.221840 14.007882 -1.540515 3.396683 22.322811 2.146389 12.141342 9.480089 -5.753473 14.751775 -17.673609 4.438820 -18.124252 -12.933593 -33.573544 -50.742359 7.278052 46.982243 -57.752182 -32.590134 -0.139609 -0.092477 0.581458 13.425660 14.140767 -16.370064 47.970409 40.470715 8.781833 9.949854 38.282684 0.500140 -0.655403 -0.131579 -0.099691
+-0.058692 1.666194 -0.122879 0.943071 -45.379837 -5.602497 14.113273 -2.820513 -24.223135 -20.786242 13.536302 60.696419 -0.859730 0.397450 -0.247367 0.932780 0.759700 0.837800 2.014765 5.937261 -11.284970 -6.085701 2.381442 28.709223 -0.454839 -0.281371 0.015891 0.588520 0.009324 0.379726 0.527073 2.901817 1.245380 -1.638134 3.063291 14.126240 -1.628127 3.101448 23.195272 2.950866 12.442166 9.319098 -6.279268 15.430611 -17.397217 5.542769 -18.514566 -13.119287 -36.356892 -53.352074 10.368772 44.535427 -59.931213 -32.017178 -0.176244 -0.095668 0.560239 11.997142 14.337797 -17.430725 51.889919 42.790203 12.079476 13.062656 39.001709 1.774395 -0.677188 -0.153680 -0.112580
+-0.053305 1.670432 -0.124906 0.990812 -45.974033 -4.750149 12.411217 -2.871249 -21.573986 -18.896820 11.765480 57.618347 -0.887348 0.422795 -0.257062 0.940096 0.778581 0.861149 1.785346 5.759792 -11.596251 -5.834585 2.168309 26.426180 -0.446658 -0.318423 0.009561 0.618595 0.014775 0.388418 0.441593 2.873629 -0.103128 -1.561562 2.784042 14.372162 -1.410620 2.633698 24.328606 3.489204 12.555588 8.856671 -7.603151 16.014280 -17.478388 7.586046 -18.413704 -13.385505 -40.309376 -55.989292 14.399580 42.882065 -62.046642 -31.940090 -0.222067 -0.095247 0.531140 10.866857 14.158597 -18.542252 56.235340 44.844139 15.544897 15.105147 40.132389 2.681415 -0.703506 -0.179786 -0.119619
+-0.048060 1.672174 -0.125240 1.067987 -46.165146 -3.752481 10.301759 -2.922394 -19.107533 -16.376680 9.702046 54.235184 -0.921379 0.473185 -0.256851 0.918703 0.760504 0.852552 1.150216 5.573877 -11.928140 -4.950298 1.803252 24.475002 -0.424977 -0.365920 0.012501 0.632206 0.051694 0.397874 0.642000 2.780384 -1.415163 -1.532778 2.485471 14.412150 -1.429190 2.160666 25.085745 3.981361 12.783957 8.131550 -8.602957 16.508448 -17.115501 9.339681 -18.554905 -13.560049 -44.180595 -58.379166 18.957266 40.880371 -64.374359 -31.448904 -0.286232 -0.103685 0.503654 10.254326 13.675895 -19.172379 60.629196 46.249130 18.838848 15.949635 41.748264 3.152300 -0.739694 -0.196867 -0.143546
+-0.043900 1.670897 -0.125284 1.001006 -45.875393 -2.444858 8.380536 -2.904169 -16.533070 -13.964335 7.628642 49.627232 -0.939751 0.546710 -0.238290 0.874880 0.705128 0.829222 0.590914 5.385997 -12.298265 -3.988642 1.445380 22.669090 -0.396043 -0.415146 0.015164 0.622019 0.114329 0.417053 0.537711 2.648932 -2.827901 -1.372797 2.059048 14.222775 -1.103769 1.555918 25.482716 4.664692 12.824980 7.398415 -9.081342 16.854027 -16.197807 11.205435 -18.278149 -13.618406 -49.798798 -60.747002 25.021957 39.232407 -65.726738 -30.701593 -0.363890 -0.110333 0.471449 9.617601 12.529979 -19.236971 64.963943 47.001232 22.184855 17.124798 45.165901 4.042819 -0.767472 -0.210164 -0.170605
+-0.038835 1.668873 -0.124029 -0.051792 -45.021545 -0.811618 6.972673 -2.898533 -13.583907 -11.232874 5.433945 44.436188 -0.947751 0.593338 -0.225656 0.858661 0.677015 0.822131 0.704947 5.046429 -11.901040 -3.123290 1.088188 20.078775 -0.379908 -0.453130 0.015702 0.619103 0.149058 0.435917 1.769720 2.184735 -4.041565 -1.098175 1.514576 14.195010 -1.159758 0.891981 26.017015 5.077238 12.591658 6.953607 -9.457038 16.804754 -15.542446 12.277021 -18.676941 -13.749967 -55.035603 -62.946720 31.018974 36.727680 -66.060059 -28.745161 -0.408735 -0.099008 0.446163 8.671971 11.541602 -18.997971 68.022797 47.576248 24.943020 17.899282 49.754269 5.004252 -0.784801 -0.233018 -0.180115
+-0.033778 1.665825 -0.122855 -1.644150 -45.003338 1.184331 6.261551 -2.294415 -9.887939 -8.866342 3.690083 37.367271 -0.964685 0.627722 -0.227996 0.859038 0.670105 0.837439 1.428151 4.887099 -11.612030 -2.767780 0.915274 17.491590 -0.377034 -0.487039 0.002939 0.627601 0.157720 0.458584 3.198275 1.851826 -5.349900 -0.718613 1.082784 14.195268 -1.134445 0.412229 26.654737 5.591552 12.342720 6.582157 -10.255214 16.826820 -15.509573 13.337549 -19.134537 -14.107331 -61.931351 -64.535240 37.758808 32.681770 -65.366150 -25.521833 -0.444237 -0.087423 0.430981 6.535807 10.997141 -18.706129 70.987419 48.440365 28.019770 17.424387 54.716484 5.401154 -0.800673 -0.257395 -0.182369
+-0.028408 1.661072 -0.121875 -3.386826 -44.952564 3.472615 5.986441 -1.822455 -6.303314 -6.960638 2.314524 29.584284 -1.021682 0.705801 -0.240431 0.824908 0.614910 0.856751 2.116085 4.837297 -11.882384 -2.382343 0.715351 15.446751 -0.354885 -0.537739 -0.014611 0.628387 0.178956 0.479975 4.597176 1.368080 -6.635199 -0.448872 0.443305 14.086830 -1.067970 -0.256211 27.268509 6.369960 12.367743 5.941165 -12.047565 17.573902 -15.524791 13.117796 -18.458702 -14.757030 -69.187172 -66.160110 45.245892 28.394566 -62.623966 -21.438742 -0.525574 -0.105639 0.423171 5.044918 9.783927 -18.814711 75.794197 49.609234 32.938976 16.483166 57.893078 5.489139 -0.838915 -0.269500 -0.219826
+-0.021600 1.656338 -0.121351 -5.287672 -44.062309 5.598478 5.934884 -1.503548 -3.159291 -4.732643 1.173690 22.743078 -1.046881 0.743444 -0.243968 0.817461 0.603384 0.873714 2.503117 4.763614 -12.120962 -1.031927 0.409366 13.689591 -0.344708 -0.573331 -0.031582 0.643150 0.189425 0.490796 5.780529 0.611710 -7.560449 0.075164 -0.464842 14.042303 -0.558760 -1.223659 27.760399 6.800697 12.390827 5.251103 -12.960823 17.841030 -15.378655 12.954215 -18.894741 -15.182395 -75.067116 -67.311241 51.108837 26.665586 -59.707905 -19.447872 -0.566331 -0.102286 0.404490 3.816491 9.591886 -18.812263 76.916672 51.492241 36.605915 14.393044 61.566483 5.152966 -0.854445 -0.294575 -0.235665
+-0.015629 1.653518 -0.121831 -6.413427 -43.556396 6.810956 5.758468 -1.113977 -0.148297 -2.971282 0.508582 16.795404 -1.093626 0.785855 -0.248032 0.819832 0.594512 0.902399 2.577854 4.773362 -12.325134 0.070174 0.216528 12.493884 -0.339645 -0.594409 -0.032351 0.662205 0.202237 0.492637 5.809247 -0.016117 -8.234126 0.608593 -1.360903 14.243618 0.220945 -2.177500 28.592331 7.149487 12.864558 4.956171 -13.939013 18.381048 -15.768514 13.005028 -19.239588 -15.432404 -79.147278 -68.317902 55.433243 27.881001 -57.690834 -19.729433 -0.602868 -0.130434 0.413066 3.223720 9.842345 -18.926743 77.674423 54.088097 40.439648 8.925491 64.015701 2.446074 -0.885967 -0.297864 -0.267894
+-0.009511 1.652362 -0.122952 -6.929716 -43.515507 7.495130 5.519564 -0.751940 2.094325 -2.186687 0.225381 12.160829 -1.099132 0.797103 -0.248010 0.833374 0.600344 0.919265 2.269024 4.885890 -12.946620 0.674467 0.160533 12.058118 -0.338613 -0.611228 -0.037628 0.672390 0.200799 0.500881 4.820080 -0.626984 -8.584022 1.205361 -2.215324 14.415998 1.435496 -3.089177 29.269243 7.063026 13.389710 5.056177 -14.251827 18.610365 -15.521502 12.593791 -19.622505 -15.151218 -81.647087 -68.300377 57.171257 29.932955 -57.071125 -21.068310 -0.609943 -0.114523 0.404766 3.399432 10.797357 -18.948591 77.225815 57.010139 43.767872 3.393359 65.383881 -0.394404 -0.891226 -0.321322 -0.266715
+-0.003946 1.653317 -0.123815 -6.885468 -44.663975 7.695644 5.187340 -0.291453 3.890344 -2.541987 0.223339 8.532451 -1.117140 0.801245 -0.267242 0.834591 0.594175 0.939182 1.802652 5.030499 -13.570665 0.711658 0.187010 11.936299 -0.346661 -0.600188 -0.049527 0.668507 0.178776 0.506545 3.192840 -0.801445 -8.758616 1.720175 -2.692236 14.665085 2.629276 -3.557991 29.969830 7.070270 13.811339 5.552103 -14.908219 18.893860 -16.259546 11.855654 -20.295658 -14.865569 -83.178001 -67.945152 57.457966 31.336916 -56.571087 -22.084843 -0.612736 -0.128142 0.425917 3.816317 12.269733 -18.680784 76.948586 59.026657 45.520245 -1.865840 65.493958 -3.497915 -0.894533 -0.304211 -0.267270
+0.001761 1.655233 -0.124346 -6.579142 -46.234596 8.046661 4.656163 0.081303 4.554468 -3.113094 0.278055 6.232237 -1.127210 0.823834 -0.263681 0.814377 0.578803 0.926491 1.274173 5.147223 -14.523710 0.477030 0.218763 11.626559 -0.341266 -0.602457 -0.036708 0.660191 0.204042 0.512253 1.746988 -0.730604 -8.866467 2.042861 -2.838937 14.719042 3.544269 -3.740258 30.349012 7.169073 13.989533 5.682276 -15.478142 19.064768 -16.509010 10.911860 -20.253353 -14.677760 -86.460815 -67.311989 59.288643 31.654510 -56.379906 -22.451283 -0.646311 -0.160174 0.423832 4.626831 13.185744 -18.693058 78.480377 60.003563 47.908428 -2.020316 64.956230 -3.200493 -0.911410 -0.279415 -0.275454
+0.009333 1.657620 -0.124338 -6.472995 -47.341961 8.576585 4.205546 0.213702 4.044258 -3.587841 0.330169 5.425428 -1.126349 0.809526 -0.264870 0.823958 0.597954 0.940228 0.849821 5.131092 -15.312308 0.103994 0.243861 11.041361 -0.350120 -0.585546 -0.033320 0.666741 0.193453 0.505179 1.429579 -0.797612 -8.716608 2.139693 -2.915079 14.693138 3.740379 -3.784433 30.401634 7.043937 14.150191 5.797968 -15.883853 19.073729 -17.120924 10.346807 -20.345032 -14.659486 -89.258263 -66.284660 60.292755 31.098484 -57.209187 -22.589682 -0.637520 -0.180510 0.429691 4.761446 13.555538 -18.738310 80.210358 60.019650 49.298573 -1.498041 65.180580 -2.789700 -0.907889 -0.264516 -0.272584
+0.017558 1.660437 -0.124030 -6.268582 -47.881737 8.854125 3.464362 0.107938 3.181649 -3.432943 0.272249 5.332133 -1.106604 0.773785 -0.273964 0.839897 0.616288 0.956771 0.406110 4.787937 -15.489355 -0.344432 0.191002 9.758792 -0.364568 -0.562914 -0.036360 0.660200 0.154695 0.506582 1.649841 -0.911833 -8.468642 2.077375 -2.954264 14.714210 3.544783 -3.753711 30.269840 6.802404 14.052200 6.278881 -16.291964 18.974131 -17.704203 10.014317 -20.816105 -14.630104 -90.282364 -65.453041 59.759747 30.129396 -57.729111 -22.358538 -0.604684 -0.171517 0.439503 4.535153 13.596904 -18.583553 80.765663 59.084404 48.395939 -0.569358 66.139709 -2.427980 -0.887886 -0.259113 -0.248803
+0.024932 1.661747 -0.123666 -5.774625 -48.506908 9.085707 2.614579 -0.050837 2.036926 -3.463555 0.237043 5.522469 -1.063135 0.737336 -0.262337 0.850471 0.632353 0.959339 -0.112639 4.358645 -15.707052 -0.908793 0.130067 8.416176 -0.378207 -0.551583 -0.034225 0.647481 0.134903 0.513983 1.871063 -1.086206 -8.289625 1.702105 -2.926984 14.552122 2.979524 -3.672489 29.695045 6.647815 14.124891 6.812924 -16.372850 19.085279 -17.664579 10.502190 -20.661245 -15.201012 -90.221375 -64.278061 58.313332 25.227022 -58.710171 -19.633062 -0.572811 -0.147708 0.432977 4.751923 12.818569 -18.327557 82.402374 57.111286 47.400349 2.960052 67.184059 -0.406084 -0.858947 -0.269306 -0.219772
+0.031043 1.661386 -0.123611 -5.377493 -49.274864 9.322409 2.131159 -0.111259 1.092507 -3.976084 0.309012 5.863755 -1.025827 0.721481 -0.249544 0.836927 0.618318 0.944057 -0.604539 4.050637 -15.948699 -1.127587 0.053991 7.163304 -0.375311 -0.548874 -0.028757 0.622785 0.134066 0.520451 1.838435 -0.905329 -8.154225 1.573599 -2.645225 14.307020 2.816289 -3.331951 29.011986 6.591502 13.913296 7.036322 -16.348001 19.110130 -17.179478 10.881913 -21.098469 -15.744227 -90.360291 -63.713367 57.684105 20.660542 -58.324493 -16.694958 -0.562860 -0.128252 0.419226 5.057077 12.476528 -17.941404 80.768524 55.652431 44.213364 4.705201 67.917755 0.458741 -0.837151 -0.274073 -0.201588
+0.036447 1.659650 -0.122785 -5.281791 -49.636047 9.618383 1.888535 -0.184299 0.406428 -4.302277 0.337856 6.122027 -0.965617 0.679858 -0.243522 0.837380 0.631183 0.925393 -1.007041 3.752043 -15.998919 -0.935912 -0.043269 5.980521 -0.379512 -0.550163 -0.028129 0.601935 0.117710 0.537046 2.434662 -0.888802 -8.131194 1.270829 -2.427172 14.036299 2.224445 -3.116610 28.279497 6.660919 13.862987 7.469388 -16.024477 19.298777 -16.575005 11.597098 -21.390266 -16.256451 -89.184990 -63.032146 55.885300 15.832952 -58.088898 -13.656969 -0.540590 -0.075053 0.390487 4.910627 12.040683 -17.521587 80.955994 53.802822 41.872486 6.294748 67.669899 0.963872 -0.804616 -0.296598 -0.155846
+0.041660 1.657940 -0.121614 -5.519197 -49.605152 10.036591 1.999714 -0.232633 -0.278105 -4.897634 0.411094 6.522964 -0.919088 0.621024 -0.238613 0.845250 0.649124 0.914100 -1.107759 3.589437 -16.049902 -0.967949 -0.086224 5.304147 -0.391172 -0.526863 -0.020104 0.585343 0.085673 0.531035 3.086859 -0.884777 -7.949316 1.180746 -2.246736 13.757518 1.977015 -2.857955 27.356874 6.458653 13.692559 8.186945 -15.852287 19.265665 -16.475861 11.546116 -21.749334 -16.434526 -88.645180 -61.485912 53.443806 9.938176 -58.401215 -10.271932 -0.486820 -0.052285 0.393372 4.690033 11.603480 -17.109907 79.806252 51.520981 38.171230 10.749758 67.738121 3.542996 -0.770098 -0.298185 -0.126424
+0.046110 1.655880 -0.121511 -5.346190 -49.173733 10.048797 1.917262 -0.353518 -1.104606 -5.477421 0.511152 7.359171 -0.877000 0.594389 -0.218418 0.806916 0.605841 0.877691 -1.339873 3.501498 -16.382124 -1.248385 -0.097400 5.231574 -0.380703 -0.490192 -0.005740 0.540049 0.090139 0.509067 3.116958 -0.870246 -7.545007 1.188169 -2.145591 13.448503 2.106918 -2.618797 26.097023 6.284989 13.591178 8.933543 -15.135174 19.193541 -15.749553 10.937140 -22.790348 -16.320213 -86.314384 -59.476040 48.946125 2.471347 -58.989697 -6.025545 -0.455803 -0.067012 0.401371 4.853712 11.953414 -16.529488 76.978729 49.035892 33.332592 18.638786 67.594078 8.579813 -0.733749 -0.265663 -0.126498
+0.050773 1.653659 -0.121374 -5.391473 -48.710621 10.250090 2.027637 -0.505501 -2.038249 -5.863139 0.586008 8.369407 -0.852626 0.554730 -0.221162 0.795097 0.592508 0.861273 -1.326099 3.550413 -16.915388 -1.715844 -0.076003 5.523638 -0.387742 -0.455855 -0.005836 0.513414 0.062845 0.496346 3.203425 -0.794127 -7.074530 1.232844 -1.989836 13.110909 2.322623 -2.342943 24.812037 6.321569 13.192057 9.625464 -14.632455 18.971157 -15.732099 10.149632 -23.322330 -16.620564 -85.172020 -57.131077 45.054642 -7.118002 -57.804947 -0.524927 -0.409888 -0.070343 0.426631 4.889943 12.002140 -16.083113 75.060051 46.177998 28.621929 24.905453 65.980881 11.947321 -0.704013 -0.241795 -0.117339
+0.055112 1.649976 -0.120476 -5.293961 -47.953358 10.497688 2.154961 -0.692010 -3.131081 -6.283369 0.665802 9.389389 -0.817303 0.533133 -0.208708 0.768745 0.558134 0.836564 -1.495044 3.673358 -17.859495 -2.161002 -0.043866 6.412472 -0.385248 -0.428509 0.003951 0.471933 0.059712 0.490823 3.366324 -0.841835 -6.683656 1.144231 -1.938038 12.597975 2.447562 -2.237129 23.291262 6.324219 12.568447 10.208038 -14.122289 18.686655 -15.177151 9.719419 -22.911745 -16.879511 -84.739273 -54.613197 41.959877 -16.604340 -55.848263 4.634556 -0.385034 -0.075838 0.437635 5.108632 11.309784 -15.649613 74.939606 42.879398 24.665571 29.090019 62.523048 13.160874 -0.676342 -0.216955 -0.108009
+0.059757 1.647180 -0.118633 -5.302130 -46.612427 10.746910 2.308228 -1.000390 -4.335661 -6.614056 0.711387 10.700800 -0.781744 0.506835 -0.202375 0.744644 0.521985 0.822127 -1.789793 3.734812 -18.708181 -2.280045 -0.040708 7.495085 -0.380034 -0.410630 0.005870 0.431718 0.040083 0.487112 3.765532 -0.969738 -6.342091 1.184046 -1.964829 12.088542 2.803968 -2.239013 21.910166 6.255766 11.739151 10.689406 -13.973336 18.508034 -14.365384 8.812634 -22.665823 -16.757832 -85.319992 -52.447044 39.642731 -20.552885 -51.679966 5.998483 -0.357530 -0.064613 0.443843 5.475376 10.360473 -15.217603 74.407814 39.593071 20.598122 31.128378 58.222523 12.645628 -0.645197 -0.209855 -0.095934
+0.065420 1.644949 -0.117154 -5.427540 -44.333920 10.843918 2.756126 -1.444317 -5.672246 -6.777926 0.705462 12.394989 -0.766476 0.478938 -0.202541 0.730849 0.495727 0.827638 -2.056098 3.820168 -19.514698 -2.203588 -0.050312 9.261275 -0.378896 -0.384161 0.010805 0.402850 0.009135 0.473366 4.468591 -1.445414 -5.715921 1.308857 -2.312465 11.729095 3.126073 -2.509551 20.640215 6.035393 11.112825 10.824742 -14.353500 18.398081 -14.218781 7.004889 -23.173594 -16.541067 -84.018723 -50.534496 36.170940 -22.095377 -46.706219 5.857731 -0.326100 -0.075654 0.465094 5.811011 10.063232 -15.150534 72.621315 37.037312 16.759340 31.535904 53.127449 11.101893 -0.622997 -0.192670 -0.095404
+0.072045 1.642078 -0.116980 -4.652223 -40.580994 10.249565 2.977822 -2.213176 -7.686277 -7.158882 0.688755 14.940269 -0.744488 0.439522 -0.197998 0.749786 0.521325 0.835127 -3.285902 3.518858 -20.242908 -1.598179 -0.160115 11.265115 -0.389100 -0.361604 0.016573 0.405462 -0.011673 0.460464 4.526140 -2.320081 -4.996784 1.293780 -3.029412 11.429747 3.473411 -3.203922 19.562258 6.089178 10.789883 10.601437 -13.639040 18.064959 -14.178087 6.084700 -23.231354 -16.491701 -82.813477 -48.533394 32.645943 -22.093161 -41.960434 4.915391 -0.285835 -0.071272 0.472608 5.753143 9.326966 -15.474208 70.718216 35.166328 14.048994 31.147116 48.390144 9.502047 -0.603989 -0.192389 -0.083363
+0.078329 1.639481 -0.115677 -4.039166 -37.380020 9.506545 2.927914 -2.938613 -9.052074 -7.279142 0.624617 17.243574 -0.733843 0.413355 -0.193854 0.753221 0.523080 0.833917 -4.374572 3.232094 -20.898985 -1.082501 -0.312375 13.822042 -0.401555 -0.326908 0.023027 0.394541 -0.027260 0.446990 4.823312 -3.076018 -4.203299 1.283053 -3.649585 11.199993 3.514127 -3.731237 18.540051 5.794246 10.439932 10.872869 -13.158144 17.439377 -14.327139 4.120765 -23.466368 -15.931002 -80.162827 -46.181778 28.302616 -21.938387 -37.609352 4.062568 -0.247865 -0.094603 0.500648 5.583919 9.475564 -15.545424 68.876045 33.652359 11.724177 29.231306 43.623585 7.412969 -0.588198 -0.164948 -0.081871
+0.084605 1.635856 -0.114058 -3.755568 -34.813919 9.017931 3.085687 -3.651858 -10.354903 -7.821445 0.668097 19.724806 -0.724290 0.408701 -0.193456 0.741831 0.501515 0.825046 -5.085648 3.045202 -21.837099 -0.542986 -0.520094 16.834372 -0.401134 -0.315330 0.013051 0.377212 -0.034518 0.445089 5.564223 -3.490164 -3.462853 1.290342 -3.870229 10.969480 3.369160 -3.876795 17.628319 5.523723 9.889712 10.375631 -12.552778 16.659075 -13.887792 1.677854 -23.285875 -15.208591 -77.581581 -43.983147 24.594301 -21.347328 -33.903473 3.281768 -0.231740 -0.091070 0.510287 5.728739 9.141832 -15.529655 66.954773 31.854429 9.537202 27.638260 38.865200 5.758027 -0.572394 -0.157926 -0.079069
+0.090152 1.632178 -0.112394 -3.403262 -32.989090 8.500189 3.090080 -4.113754 -11.104386 -8.442555 0.771487 21.286917 -0.710280 0.403827 -0.193826 0.722182 0.466220 0.810645 -5.685480 2.989309 -23.588095 -0.342014 -0.723596 21.241095 -0.396328 -0.305020 0.010894 0.346616 -0.043217 0.446991 6.037810 -3.588850 -2.669135 1.318733 -3.803905 10.653463 3.278777 -3.718045 16.624069 5.429049 9.262973 10.152700 -12.197408 16.071753 -13.294462 -1.349499 -22.502745 -14.363648 -75.219315 -41.628216 21.271864 -20.064365 -29.805319 2.374411 -0.218976 -0.083991 0.520432 5.536554 8.492969 -15.240474 65.425079 29.779852 7.567086 25.802567 34.194653 4.266063 -0.558312 -0.148548 -0.073258
+0.095481 1.629473 -0.110172 -3.334122 -31.344221 7.811875 3.351379 -4.316428 -11.063261 -9.298347 0.937335 22.033400 -0.689912 0.363937 -0.207350 0.731362 0.468459 0.818316 -5.819951 3.058365 -25.497442 -0.364857 -0.890390 26.363552 -0.405666 -0.279739 -0.000129 0.330689 -0.088644 0.442846 6.311384 -3.578702 -1.601789 1.718378 -3.716057 10.377161 3.749720 -3.616927 15.713515 4.782694 8.640299 10.450081 -12.011909 15.353668 -13.190159 -3.850189 -21.759279 -13.490373 -72.640694 -39.642048 18.165287 -17.126104 -26.735561 1.163237 -0.172690 -0.064552 0.536757 6.209223 8.137712 -15.045162 62.200516 27.879116 5.806174 24.360037 28.679926 3.186207 -0.530866 -0.145853 -0.050635
+0.101856 1.626541 -0.107631 -2.855600 -29.450518 6.683204 2.893708 -4.608005 -10.756348 -9.644609 1.004357 23.003426 -0.678482 0.338515 -0.217568 0.723085 0.447610 0.812042 -6.404965 2.954863 -27.601337 -0.203286 -1.163822 32.067871 -0.415417 -0.234679 -0.001782 0.300252 -0.119911 0.435331 6.261549 -3.621241 -0.182850 2.180018 -3.794796 10.020690 4.288009 -3.625567 14.534997 3.831196 7.921453 11.326707 -11.752654 14.255855 -13.344999 -6.215108 -21.321112 -12.427036 -69.406548 -37.072773 14.570958 -14.190797 -24.220568 0.088817 -0.131624 -0.084574 0.573870 6.855547 8.504256 -14.322910 58.582947 25.681368 3.904279 22.017820 23.576063 2.106881 -0.508782 -0.104326 -0.039798
+0.108980 1.623966 -0.105440 -2.723150 -27.932606 5.635265 2.712929 -4.813019 -10.472246 -10.119644 1.150131 24.116980 -0.673374 0.314505 -0.231421 0.718763 0.445225 0.801680 -6.691819 3.079387 -29.902905 0.070381 -1.444628 37.795067 -0.430214 -0.181526 -0.004979 0.281600 -0.141277 0.426583 6.789803 -3.691722 1.488590 2.592946 -3.780725 9.747213 4.403991 -3.533485 13.484839 2.744977 7.700224 12.089128 -11.140582 13.081986 -14.175436 -8.084806 -20.713964 -11.708460 -66.024620 -34.458389 11.332027 -11.020774 -21.438622 -0.841928 -0.097585 -0.121823 0.611253 7.555381 8.497947 -13.813388 55.422333 23.877342 2.475344 18.792103 18.776834 1.139875 -0.491107 -0.046234 -0.028338
+0.115295 1.621116 -0.102983 -2.495443 -26.280951 4.348070 2.442348 -5.055665 -10.023326 -10.582248 1.317064 25.364876 -0.672470 0.287845 -0.237984 0.715858 0.438845 0.791396 -6.766778 3.206179 -32.194660 0.263626 -1.714481 43.795910 -0.436268 -0.125258 -0.000960 0.266797 -0.157468 0.399156 7.112445 -3.866680 3.392800 2.979767 -3.884837 9.434582 4.469942 -3.548762 12.360051 1.561258 7.796877 12.856572 -10.119952 12.006000 -14.783854 -9.160623 -19.783697 -11.121583 -62.669003 -31.926392 8.742968 -8.672855 -19.054754 -1.357062 -0.052632 -0.162017 0.651091 8.535338 7.598685 -13.142087 52.223011 21.846369 0.988571 16.367065 16.431997 0.643504 -0.472848 0.007767 -0.031653
+0.121650 1.619529 -0.100139 -2.398540 -24.582956 2.902677 2.131619 -5.065949 -8.908701 -10.783195 1.434792 26.044443 -0.682050 0.250719 -0.257115 0.742176 0.457198 0.811764 -6.397417 3.647838 -34.433758 0.370956 -1.873216 49.838406 -0.459638 -0.072150 -0.004570 0.266195 -0.205717 0.383250 7.290061 -3.869615 5.479620 3.580310 -3.928139 9.217341 4.835080 -3.525605 11.416520 0.683580 7.435403 13.507328 -9.651917 10.950624 -16.168123 -9.879373 -18.907215 -10.701279 -59.599251 -29.748726 6.808343 -6.897329 -16.836237 -1.625901 0.007793 -0.188465 0.706273 8.602891 6.605799 -12.287846 49.425083 19.517731 -0.634265 13.037437 15.636235 0.109706 -0.459547 0.046651 -0.026176
+0.127928 1.618436 -0.096939 -2.208760 -23.385796 1.331861 1.790020 -5.037875 -7.601022 -11.237442 1.604962 26.510326 -0.681876 0.204592 -0.274475 0.763898 0.482873 0.828570 -6.042880 4.158489 -36.232037 1.036411 -2.243263 54.902790 -0.485143 -0.021191 -0.008208 0.265067 -0.254825 0.368472 7.415636 -3.840186 7.724665 4.146320 -3.938944 9.068166 5.089520 -3.467563 10.542577 -0.231859 7.442299 14.200356 -9.666759 10.348071 -17.698994 -10.695885 -17.898386 -10.264501 -56.126587 -27.516502 4.990882 -5.431382 -15.129548 -1.759436 0.064350 -0.213054 0.751027 8.596458 5.660647 -11.704353 46.838070 17.569216 -1.648499 9.836167 13.006682 -0.268956 -0.441483 0.084346 -0.014633
+0.134141 1.617359 -0.091877 -2.175047 -22.502855 -0.033394 1.442016 -5.004296 -6.335374 -11.580451 1.757685 27.042522 -0.647801 0.173622 -0.270630 0.772992 0.485825 0.838400 -5.459860 4.745141 -37.654560 1.706883 -2.655010 59.103065 -0.494912 0.001233 -0.009212 0.246123 -0.283816 0.372076 8.114553 -3.976257 9.545574 4.598077 -3.864997 8.910819 5.013246 -3.345956 9.754962 -1.001537 7.293248 14.474712 -9.936454 9.855046 -17.760483 -11.828453 -16.445377 -9.789140 -52.368984 -25.280626 3.461583 -4.625863 -13.554544 -1.701028 0.100089 -0.199133 0.755116 8.290041 4.392107 -11.157803 44.434635 15.724664 -2.269015 7.302358 9.910656 -0.422149 -0.412208 0.086069 0.011751
+0.139429 1.616919 -0.086962 -1.858540 -21.448971 -1.656369 0.888064 -5.126836 -5.047823 -12.242907 1.971118 27.952705 -0.615681 0.139276 -0.264203 0.781038 0.499090 0.826399 -4.752303 5.159188 -38.227467 2.341050 -3.057036 62.024246 -0.504690 0.024116 -0.009551 0.237936 -0.300295 0.366054 8.618409 -4.335685 11.381587 4.874151 -3.995136 8.851495 4.695196 -3.417089 9.072591 -2.195494 7.657135 14.549543 -9.631670 9.209462 -17.948116 -12.417798 -14.865746 -9.102456 -48.489285 -22.627131 1.870270 -3.348772 -12.978039 -1.758532 0.142590 -0.185488 0.757652 8.490059 3.146681 -10.875352 41.980942 14.299168 -2.710303 5.103944 6.871451 -0.438732 -0.384523 0.089374 0.032075
+0.145279 1.616399 -0.080703 -1.987689 -20.319613 -2.985504 0.706570 -5.149181 -3.575767 -12.617609 2.093268 28.402304 -0.621510 0.131086 -0.250697 0.766813 0.484197 0.815888 -3.668618 5.603782 -38.432129 3.418152 -3.815818 64.042374 -0.501132 0.053684 0.006717 0.230114 -0.293987 0.334956 9.512220 -4.957158 12.669002 5.109103 -4.244118 8.977954 4.303888 -3.544610 8.780342 -2.899643 8.002971 14.370511 -9.765591 8.928611 -18.517262 -11.988320 -12.979684 -8.505713 -45.862499 -20.219334 0.759443 -1.738338 -12.751713 -1.887986 0.161790 -0.231011 0.778745 7.048268 1.408308 -10.675583 40.771896 13.135155 -3.063498 3.419028 5.025157 -0.406247 -0.380247 0.124140 0.008445
+0.150405 1.616565 -0.074521 -1.894586 -18.880018 -4.391121 0.481657 -5.295700 -2.164596 -12.952045 2.166445 28.891436 -0.630033 0.142582 -0.253220 0.727329 0.426361 0.797037 -2.630907 5.739707 -37.904804 4.469209 -4.569435 64.450294 -0.483549 0.058387 0.006610 0.199678 -0.295886 0.324848 9.759647 -5.494516 13.911802 5.429357 -4.656223 9.024693 4.294415 -3.798410 8.361103 -3.074886 7.880970 14.327673 -10.304857 8.868049 -18.220480 -12.193139 -11.478036 -7.681106 -42.719383 -17.627207 -0.263942 -0.189310 -12.348225 -1.957202 0.160933 -0.247615 0.794794 5.803906 0.075581 -10.055680 39.129917 11.509327 -3.619625 1.621444 4.144966 -0.371325 -0.374193 0.143016 -0.011654
+0.154832 1.616904 -0.067995 -1.882743 -17.358936 -5.631904 0.137725 -5.501371 -0.916787 -12.694860 2.077723 29.550722 -0.627206 0.155013 -0.244108 0.699355 0.375096 0.788940 -1.516503 5.878325 -37.532955 5.978587 -5.575004 64.459106 -0.469407 0.064039 0.010145 0.170551 -0.292572 0.318183 9.886794 -5.959762 14.860575 5.715011 -5.003253 9.114919 4.414496 -4.008487 8.049731 -3.010254 7.480557 14.010108 -10.442042 8.661354 -17.830647 -11.740071 -9.412351 -7.007250 -40.645203 -15.243233 -1.102214 1.421734 -13.038127 -2.120101 0.162378 -0.254339 0.804854 4.065310 -1.720223 -9.502506 37.865334 9.886753 -4.142363 0.112870 3.768971 -0.336539 -0.365749 0.152017 -0.026651
+0.160417 1.617483 -0.060699 -1.887914 -15.910677 -6.742328 -0.618311 -5.646820 0.535678 -12.046301 1.813194 29.865625 -0.610213 0.168314 -0.226951 0.659603 0.324452 0.757086 -0.585518 5.865366 -37.233700 7.715429 -6.666444 63.780704 -0.452771 0.056697 0.015954 0.136990 -0.270471 0.319443 10.671004 -6.626561 15.513944 5.748904 -5.205064 9.258593 3.959971 -4.088583 7.821506 -2.948819 7.156615 13.324201 -10.562287 8.470918 -17.229403 -11.438228 -7.300696 -6.615018 -38.184170 -13.297992 -1.688035 2.497124 -13.812566 -2.190413 0.151661 -0.250631 0.795968 2.446911 -4.015463 -9.051552 36.803410 8.150711 -4.753599 -1.518933 4.348881 -0.365237 -0.355870 0.155265 -0.033555
+0.165915 1.616960 -0.052456 -1.490190 -14.574328 -7.540933 -1.759423 -5.829533 1.599605 -11.689550 1.616582 30.079950 -0.609239 0.211854 -0.205383 0.590290 0.226915 0.724539 0.065190 5.642805 -36.876362 9.463140 -7.560835 61.792778 -0.415422 0.042000 0.018199 0.091344 -0.233593 0.309348 11.077460 -6.996579 15.539642 5.708070 -5.314978 9.222696 3.738240 -4.055237 7.560711 -2.657047 6.570048 12.704834 -10.919835 8.463791 -15.690054 -10.987993 -5.187271 -6.401853 -36.524437 -11.817648 -2.097512 4.168013 -14.285155 -2.344460 0.118566 -0.264619 0.786008 0.686815 -6.502624 -8.381346 35.541290 6.082051 -5.362917 -2.860470 5.193972 -0.388392 -0.349154 0.162360 -0.068609
+0.171106 1.617882 -0.044561 -1.006073 -13.803840 -8.508443 -2.746237 -5.761288 3.084855 -11.968323 1.649002 29.830801 -0.621846 0.249213 -0.191296 0.527758 0.150228 0.693692 1.059205 5.777504 -36.152599 10.692547 -7.849844 59.134991 -0.378494 0.034080 0.030050 0.059990 -0.198980 0.290624 11.152011 -7.225734 15.588461 5.632852 -5.457507 9.456184 3.526150 -4.056798 7.710233 -2.530942 6.034244 12.079504 -11.756313 8.451816 -14.921094 -11.175639 -3.053476 -6.329702 -34.059891 -10.027780 -2.528913 5.571686 -15.767790 -2.540047 0.081960 -0.300600 0.777732 -0.203889 -8.401016 -8.051851 33.242374 4.668390 -5.617304 -3.848776 5.753705 -0.377522 -0.354285 0.184400 -0.106498
+0.176478 1.620728 -0.036729 -0.406610 -13.206940 -9.828917 -3.926695 -5.543361 5.001095 -11.975647 1.562431 29.236265 -0.605870 0.235404 -0.174646 0.501454 0.138229 0.670391 2.219491 5.904577 -34.555080 11.299890 -7.582111 55.713551 -0.365749 0.038043 0.048153 0.049649 -0.186592 0.270805 11.202026 -7.514512 15.726274 5.375001 -5.591716 9.919951 2.940408 -4.147343 8.114386 -2.081576 5.591244 11.877518 -12.220236 8.634819 -14.657080 -12.036433 -1.674009 -6.001417 -30.690527 -7.703784 -3.032579 7.436668 -18.564142 -2.906068 0.079899 -0.318285 0.762967 -0.570418 -9.385583 -7.559289 31.135132 3.161576 -5.824035 -5.063494 6.330867 -0.398877 -0.347763 0.193552 -0.116251
+0.181585 1.623493 -0.028030 0.276213 -12.243917 -10.925541 -5.044120 -5.461626 6.484826 -12.113650 1.485913 28.846609 -0.622692 0.252239 -0.177419 0.513717 0.135079 0.688628 3.152166 5.742441 -32.748402 11.320073 -7.014176 51.762642 -0.364545 0.028658 0.038032 0.058784 -0.189687 0.273278 11.138654 -7.884581 14.951833 5.003368 -5.947675 10.527719 2.451710 -4.471189 9.198942 -2.240231 5.349474 11.703313 -12.293002 8.299742 -14.648385 -12.094965 -0.320884 -5.883162 -28.073393 -5.768735 -3.212739 8.910892 -19.257002 -3.104298 0.079176 -0.309282 0.767407 0.014648 -10.083215 -7.654359 28.080332 2.456949 -5.655083 -6.328747 5.859103 -0.365277 -0.353820 0.178416 -0.123510
+0.187703 1.625849 -0.019384 0.948997 -11.169830 -12.090234 -6.205921 -5.487468 7.750029 -12.270072 1.400043 28.896019 -0.614251 0.254936 -0.174718 0.524315 0.147737 0.685233 3.936343 5.381242 -30.783531 11.288417 -6.469450 47.540325 -0.366559 0.013733 0.030338 0.066280 -0.185210 0.285442 11.497007 -8.432092 14.508771 4.575527 -6.238729 11.029610 1.642748 -4.743938 9.940915 -2.526060 5.175299 11.113753 -12.130023 7.805564 -14.652235 -12.238344 0.929030 -5.919174 -25.380159 -4.183997 -3.190051 9.866738 -19.473000 -3.134611 0.078861 -0.281435 0.751820 0.236508 -10.990725 -7.711123 25.326334 1.746981 -5.389225 -7.042243 5.636880 -0.329813 -0.351790 0.156201 -0.110504
+0.193065 1.626720 -0.009959 1.516709 -10.182038 -12.921791 -7.064865 -5.638588 8.497404 -12.987692 1.524318 29.409908 -0.598530 0.237255 -0.183489 0.540163 0.167509 0.695151 4.908900 5.088339 -28.563667 11.085308 -5.740803 42.433559 -0.371213 0.007427 0.024585 0.068714 -0.207223 0.298049 11.417262 -8.636563 13.968605 4.485554 -6.467214 11.234585 1.521598 -4.931324 10.365324 -2.464418 4.806523 11.110563 -12.440313 7.651311 -14.648966 -11.645477 1.991255 -5.863386 -24.028017 -3.135989 -3.148629 10.323083 -18.225908 -2.946486 0.087290 -0.250448 0.738480 -0.959873 -11.958897 -7.447312 23.567247 0.935212 -5.259473 -7.842466 5.129245 -0.262309 -0.344164 0.136116 -0.084886
+0.197682 1.624875 -0.001072 1.953781 -9.176653 -13.187037 -7.526330 -5.930067 8.515532 -14.109015 1.814248 30.256285 -0.604168 0.249534 -0.170041 0.532370 0.156245 0.691577 5.666242 4.769866 -26.777435 11.231659 -5.129622 36.885464 -0.357742 -0.007828 0.036477 0.071792 -0.190712 0.287566 11.503110 -8.733062 12.791336 4.297537 -6.545551 11.291996 1.375769 -4.975177 10.847047 -2.383180 4.415726 10.993388 -12.934181 7.620457 -13.793324 -10.655560 2.977595 -5.967607 -22.697716 -2.777072 -2.927337 9.957746 -16.833422 -2.644819 0.076326 -0.257731 0.725798 -2.167334 -13.120697 -7.042492 21.803942 -0.052955 -5.041074 -7.735918 5.238700 -0.248794 -0.352818 0.124083 -0.100952
+0.202215 1.622447 0.008235 2.448682 -8.356561 -13.450181 -7.877079 -6.188453 8.431261 -15.576659 2.252379 31.159008 -0.598571 0.254664 -0.154423 0.539586 0.167877 0.695055 6.516151 4.564859 -24.830172 10.912866 -4.308444 31.196280 -0.354991 -0.026848 0.038192 0.084091 -0.174946 0.286965 11.573364 -8.923255 11.627342 3.975466 -6.685982 11.402855 1.041291 -5.135677 11.418332 -2.181147 4.167827 10.772692 -13.010827 7.578401 -13.137735 -10.077913 4.352905 -6.223819 -21.219194 -2.141149 -2.757571 9.944093 -16.126392 -2.469346 0.069230 -0.247309 0.704824 -2.731207 -14.117768 -7.233391 19.786867 -0.068752 -4.672304 -8.087139 5.048856 -0.261509 -0.354468 0.098691 -0.103191
+0.206801 1.619516 0.016788 2.786683 -7.637924 -13.842036 -8.103809 -6.427369 8.446346 -16.739782 2.635273 32.203377 -0.592900 0.252512 -0.166239 0.553172 0.191362 0.688646 7.454468 4.416574 -22.449331 10.176303 -3.389392 25.191154 -0.353870 -0.053241 0.034468 0.095390 -0.178290 0.306808 11.792910 -9.076713 10.506375 3.685543 -6.803295 11.677050 0.640462 -5.262598 12.224933 -2.152959 4.107105 10.590669 -13.219475 7.525066 -12.941433 -9.822303 5.423920 -6.269403 -19.306263 -1.167899 -2.527622 9.634776 -16.665014 -2.404252 0.056142 -0.206853 0.678734 -2.770318 -14.699391 -7.437585 17.794374 0.024914 -4.264306 -8.372012 5.305501 -0.306069 -0.364081 0.069364 -0.078687
+0.211816 1.615256 0.025531 3.174287 -6.853773 -14.296515 -8.387883 -6.648635 8.555002 -18.129774 3.115965 33.321651 -0.569421 0.241591 -0.161353 0.576049 0.227869 0.694772 8.175173 4.123074 -20.040339 9.147344 -2.592812 19.726526 -0.372583 -0.065819 0.032260 0.104084 -0.181297 0.334243 11.961381 -9.134136 9.740479 3.471229 -6.830770 11.823802 0.264697 -5.294850 12.673656 -1.842391 3.666550 10.645670 -13.441114 7.366487 -13.118397 -9.513453 6.524550 -6.731490 -17.901108 -1.097103 -2.321706 9.492599 -16.394730 -2.287619 0.055952 -0.179758 0.661451 -3.781359 -15.804683 -7.406123 16.705795 -0.257333 -4.038604 -8.600548 6.224546 -0.384813 -0.360754 0.048516 -0.047453
+0.216224 1.608040 0.035131 4.024562 -5.872289 -14.642283 -9.198136 -6.860587 8.581141 -19.530458 3.640507 34.533554 -0.579719 0.253971 -0.155659 0.546840 0.207574 0.676913 8.536102 3.700110 -17.784891 7.390490 -1.835848 14.727482 -0.353685 -0.065003 0.039600 0.103787 -0.159785 0.313112 11.468879 -8.959882 9.120256 3.207470 -6.883799 11.685587 0.094433 -5.330815 12.655455 -1.645102 3.692533 10.653983 -13.556220 7.550326 -12.820971 -8.396857 7.524016 -7.196652 -16.704649 -1.651066 -2.020716 8.377947 -14.339320 -1.900223 0.035184 -0.212803 0.651831 -5.057623 -17.278666 -7.363119 15.874871 -0.451871 -3.816604 -8.187613 7.389155 -0.448485 -0.365736 0.065905 -0.071869
+0.220202 1.600242 0.045119 4.652291 -4.303390 -15.109838 -9.622871 -7.251557 8.833234 -20.994297 4.199568 35.949417 -0.598364 0.258581 -0.167188 0.547445 0.215617 0.683633 8.627649 3.233695 -15.915921 5.674345 -1.375939 11.181055 -0.347103 -0.066404 0.036311 0.117678 -0.159872 0.303920 11.206360 -9.162292 8.149042 2.664571 -7.193390 11.761765 -0.441466 -5.649238 13.152406 -1.220223 3.763769 10.648293 -13.470514 7.756055 -13.140706 -7.481570 8.353357 -7.507329 -14.938253 -1.851918 -1.652692 6.814520 -12.610357 -1.557185 0.021610 -0.222909 0.648065 -5.657560 -18.414675 -7.735792 15.230223 -0.335267 -3.684000 -8.878238 7.703172 -0.504095 -0.376232 0.069974 -0.080859
+0.224374 1.591745 0.054602 5.171485 -3.457431 -15.370790 -9.825744 -7.448458 8.913004 -22.667845 4.944061 37.109230 -0.591631 0.253804 -0.164216 0.557258 0.228446 0.684968 8.518587 2.939024 -14.829436 4.944679 -1.191964 9.281343 -0.343713 -0.077966 0.040118 0.125604 -0.158084 0.305579 11.167620 -9.222609 7.832871 2.365947 -7.227389 11.530937 -0.845358 -5.731473 12.915031 -0.981042 3.773301 10.388954 -13.276467 7.836535 -12.853318 -6.722301 9.333761 -7.985518 -13.801444 -2.412543 -1.430594 6.226957 -11.007538 -1.342433 0.021177 -0.204437 0.634001 -6.706178 -19.608217 -7.942707 14.592486 -0.076018 -3.491260 -9.746717 8.378202 -0.583484 -0.378160 0.050233 -0.074835
+0.228646 1.584113 0.061967 4.831555 -2.748364 -15.783571 -9.225907 -7.776366 8.926030 -24.031298 5.731648 38.716942 -0.597881 0.277068 -0.165818 0.534448 0.198134 0.663393 8.674477 2.893362 -14.287873 5.410257 -1.265435 8.954817 -0.324279 -0.096132 0.043077 0.114325 -0.140422 0.309628 11.981267 -9.557547 8.165059 2.365206 -7.284143 11.348562 -1.261078 -5.744738 12.413712 -1.155864 3.925361 9.609926 -13.480472 7.815515 -12.445586 -6.881211 9.920022 -8.470833 -12.467811 -2.588734 -1.232047 5.971716 -9.312444 -1.180564 -0.004238 -0.194875 0.619768 -7.286872 -20.409159 -7.970345 13.427250 0.127721 -3.174537 -10.771729 9.433916 -0.667027 -0.388629 0.045664 -0.080765
+0.232411 1.577109 0.067838 4.144207 -2.425409 -15.781723 -8.203087 -7.968066 8.519644 -25.089634 6.510585 40.094185 -0.579136 0.307647 -0.131935 0.487959 0.144525 0.630558 8.906473 3.192267 -15.039022 6.293676 -1.476150 10.436006 -0.305540 -0.118252 0.055447 0.083143 -0.092260 0.315156 13.385659 -9.779045 7.938061 2.355916 -7.076808 11.100707 -1.788212 -5.547588 12.016577 -0.932139 3.678276 9.006067 -13.877441 7.967982 -11.015976 -7.067632 9.342567 -8.069016 -10.995346 -2.142030 -1.045620 5.361242 -7.672340 -1.006917 -0.037122 -0.205235 0.597120 -8.266223 -19.996689 -7.042833 12.910398 -0.900626 -3.110002 -12.091113 10.091917 -0.735080 -0.384823 0.044058 -0.095253
+0.236132 1.572569 0.070964 3.597286 -2.611845 -16.187992 -7.489793 -7.887073 8.349902 -25.800768 7.256255 41.346813 -0.531356 0.278513 -0.124628 0.488078 0.154872 0.620352 8.746735 3.552403 -16.098890 7.686231 -1.858089 13.307311 -0.310598 -0.125455 0.055216 0.066379 -0.104139 0.333931 14.335569 -9.991561 8.815681 2.481429 -6.824279 11.091916 -2.123575 -5.359133 11.562819 -0.885094 3.771662 8.164620 -14.169802 8.207080 -10.830535 -7.799534 8.883418 -7.355741 -9.854422 -0.736476 -0.935953 5.340904 -7.290670 -0.889146 -0.027120 -0.160519 0.570353 -8.677763 -19.193880 -6.446342 12.455900 -1.332025 -3.024599 -13.342148 10.396764 -0.788946 -0.361597 0.021108 -0.057897
+0.238442 1.569771 0.073238 3.347018 -2.652537 -16.740406 -7.375207 -7.711689 8.383319 -25.727104 7.586590 42.271820 -0.463973 0.230246 -0.111409 0.505858 0.181223 0.617479 8.021312 3.660187 -16.761732 9.231949 -2.305269 15.797264 -0.325900 -0.115557 0.060151 0.049510 -0.127910 0.352130 14.189692 -9.782053 10.172961 2.975234 -6.529137 10.956674 -1.669143 -5.116862 10.777116 -1.200501 3.797822 8.106646 -14.033078 8.104652 -10.478606 -7.993258 8.264083 -6.661626 -10.299190 0.147855 -1.115474 5.471440 -6.472231 -0.790633 0.010795 -0.111835 0.550053 -9.272883 -18.396490 -5.630602 12.047355 -2.115676 -2.988931 -14.155423 10.398777 -0.760044 -0.324367 -0.001117 -0.007940
+0.239300 1.567968 0.073541 3.232635 -2.714440 -17.350124 -7.334579 -7.424700 8.558422 -25.526226 7.887050 43.080967 -0.447463 0.204414 -0.111069 0.502641 0.172903 0.606165 7.340649 3.785547 -17.041624 10.449183 -2.607938 17.317030 -0.324861 -0.094518 0.060861 0.035556 -0.140497 0.337043 13.701658 -9.486518 12.066614 3.393023 -6.236355 10.768343 -1.294028 -4.821706 9.665657 -1.459673 4.129537 8.364676 -13.016049 7.899854 -10.193143 -7.596145 7.995392 -6.292735 -11.293535 0.554614 -1.373175 5.006302 -4.492879 -0.680459 0.045295 -0.104305 0.563128 -10.157625 -17.852879 -5.125590 12.633853 -2.311388 -3.170700 -14.824760 10.544926 -0.756092 -0.304272 0.005752 -0.005393
+0.238564 1.566532 0.074194 3.325954 -2.423187 -17.376730 -7.334501 -7.138654 8.343206 -25.127584 8.075340 43.822269 -0.447108 0.171137 -0.127983 0.516570 0.187323 0.621114 6.550024 3.865166 -17.312525 11.427946 -2.741930 17.661400 -0.331139 -0.075508 0.056071 0.035816 -0.177751 0.325450 13.008883 -8.993628 12.844796 3.521046 -5.916663 10.562853 -1.005907 -4.542493 9.142510 -1.138466 3.693968 8.605086 -12.772305 7.698024 -10.650091 -7.479589 7.651973 -6.116244 -11.652186 0.886873 -1.537213 3.645853 -1.769328 -0.583025 0.076684 -0.096917 0.578621 -10.745539 -17.122847 -4.673400 13.821847 -2.803336 -3.496293 -15.482805 10.930993 -0.831296 -0.294332 0.009093 0.003584
+0.239153 1.566843 0.075885 3.421980 -2.739570 -16.814859 -7.461777 -6.667479 7.809859 -24.639397 8.146693 43.947014 -0.430532 0.148933 -0.102314 0.533586 0.205458 0.645152 6.055876 4.020766 -17.621496 12.238129 -2.710548 17.189711 -0.336762 -0.067415 0.065153 0.047211 -0.185195 0.305626 12.452289 -8.537021 12.897413 3.652378 -5.638501 10.291553 -0.624201 -4.363271 8.798929 -0.895484 3.114164 8.706623 -13.015443 7.644840 -10.131007 -7.753488 8.381293 -6.008514 -12.298010 1.854503 -1.687602 2.822390 -1.896179 -0.552010 0.108215 -0.106698 0.577784 -11.160137 -16.421246 -4.610118 14.126824 -1.905852 -3.442018 -15.352974 11.317345 -0.952855 -0.276235 -0.006753 -0.006018
+0.239177 1.568809 0.075778 3.635858 -2.996314 -16.444433 -7.990368 -6.281932 7.378393 -23.796600 7.970345 44.079601 -0.443616 0.148955 -0.098127 0.547156 0.214189 0.665587 5.968394 4.145527 -17.386885 12.070896 -2.459974 16.260868 -0.335538 -0.061054 0.062121 0.063255 -0.192392 0.288797 11.827845 -8.069633 12.835941 3.734097 -5.432897 10.364620 -0.277183 -4.170524 9.002407 -1.296627 2.593288 8.650102 -13.169559 7.001642 -10.244490 -8.438615 9.182777 -6.225212 -12.940074 2.511759 -1.765737 2.479276 -3.195770 -0.586702 0.122088 -0.121010 0.583306 -10.258843 -15.881330 -4.890172 13.244956 -0.917805 -3.141329 -14.945401 12.025268 -1.090425 -0.274869 -0.010445 -0.019491
+0.237855 1.571667 0.074308 3.742484 -3.022104 -16.182823 -8.155717 -5.972003 7.115982 -23.271181 7.831366 43.896961 -0.454370 0.166697 -0.093497 0.549135 0.199649 0.676859 6.399158 4.287436 -16.850082 11.069496 -2.047534 14.816210 -0.340110 -0.047780 0.054480 0.059340 -0.188815 0.287366 11.079630 -7.701436 12.968838 3.806796 -5.352726 10.448554 0.070969 -4.042615 9.084357 -1.837973 2.108558 9.006285 -12.976683 6.125064 -10.396426 -8.787158 9.857566 -6.270024 -14.229845 3.270169 -1.998384 3.380275 -4.951536 -0.670378 0.126871 -0.138003 0.599859 -9.521758 -15.276771 -5.001869 12.978760 -0.229275 -3.026392 -14.286368 13.509858 -1.280340 -0.273381 0.003472 -0.028202
+0.237874 1.574979 0.073350 3.916366 -2.999098 -15.497661 -8.379184 -5.687141 6.592358 -22.912998 7.669127 43.419495 -0.474225 0.205595 -0.103315 0.518960 0.159867 0.626114 6.770722 4.265765 -16.439150 9.820209 -1.645097 12.761703 -0.324324 -0.066942 0.048884 0.046597 -0.155477 0.297358 10.853627 -7.473538 12.355332 3.533782 -5.250336 10.355438 -0.090546 -3.914981 9.207302 -2.497175 2.057365 9.405300 -12.175316 5.221722 -9.648104 -9.085279 10.289204 -6.179782 -15.580684 4.047948 -2.249991 5.602591 -7.238420 -0.863319 0.100241 -0.130031 0.599009 -8.066611 -14.656738 -5.179974 12.438390 0.248389 -2.882872 -13.990202 15.914768 -1.600016 -0.292725 0.011596 -0.037084
+0.237441 1.578211 0.070620 3.966943 -2.758923 -14.997231 -8.255903 -5.275952 6.219133 -22.613592 7.577706 42.818169 -0.486116 0.206624 -0.111840 0.507172 0.149262 0.588332 7.219385 4.358348 -16.288055 8.392530 -1.305886 11.431644 -0.322421 -0.045340 0.054456 0.039325 -0.143085 0.286862 11.052332 -7.310450 12.500518 3.238065 -4.955773 10.136659 -0.594737 -3.594270 8.804580 -3.663041 2.154204 9.779023 -11.004403 4.005689 -10.240213 -8.505431 10.448475 -5.773791 -18.117880 4.637877 -2.785499 6.715659 -8.673582 -1.064377 0.112852 -0.150194 0.621550 -7.738446 -13.803526 -4.988966 13.479264 0.211893 -3.157707 -13.342627 17.015072 -1.690594 -0.298428 0.048389 -0.043107
+0.237398 1.579882 0.068655 3.915880 -1.910652 -14.186563 -8.201230 -5.107973 5.733835 -22.151482 7.343387 42.362785 -0.511901 0.222026 -0.109240 0.485651 0.130104 0.557590 7.463756 4.280293 -16.385405 7.268109 -1.066722 9.818549 -0.300969 -0.027601 0.069566 0.044621 -0.111182 0.250634 11.261729 -7.288606 11.584753 2.795177 -4.878383 9.998405 -1.089216 -3.528922 8.968927 -4.448556 2.584807 9.904210 -9.842669 3.384850 -10.298676 -7.812850 10.518723 -5.223654 -20.149229 5.139461 -3.193446 7.856315 -11.169394 -1.391444 0.107171 -0.194572 0.631180 -6.759946 -12.934830 -5.323911 13.938816 1.061456 -3.255354 -12.383081 17.219070 -1.687908 -0.312584 0.083752 -0.078546
+0.236360 1.581114 0.064963 3.929877 -0.941418 -13.533870 -7.996876 -4.990278 5.135885 -21.927469 7.293117 42.274246 -0.549865 0.234974 -0.117861 0.492396 0.136284 0.549065 7.582891 4.309534 -16.800430 6.249775 -0.886080 8.812644 -0.297516 -0.018000 0.073336 0.065061 -0.097271 0.230101 10.937512 -7.263999 11.058602 2.400058 -4.923978 10.019734 -1.322454 -3.577488 9.265025 -5.040269 3.045179 9.654984 -8.846375 2.926775 -11.206724 -7.393446 10.881449 -5.031012 -22.179565 5.405029 -3.609457 8.773015 -13.110270 -1.729870 0.110542 -0.218408 0.653744 -5.507053 -12.225116 -6.204278 14.523633 2.753454 -3.305740 -11.148066 16.988642 -1.627354 -0.333915 0.102853 -0.105414
+0.234845 1.581649 0.060721 3.986720 0.293346 -12.739963 -7.654302 -4.882473 4.416079 -21.998569 7.350576 42.115250 -0.547735 0.250104 -0.097882 0.497172 0.134265 0.534943 7.582975 4.293560 -17.427608 5.116940 -0.724834 7.756304 -0.291911 -0.022962 0.084830 0.069134 -0.063990 0.225600 10.813659 -7.430016 10.891404 1.969849 -4.983264 9.676713 -1.745103 -3.714412 8.829390 -5.708045 3.450609 9.289143 -7.832101 2.426238 -10.875951 -7.104867 11.702751 -5.084884 -23.953802 5.307051 -3.929873 8.978323 -14.319538 -1.925886 0.110809 -0.216004 0.649272 -4.346658 -11.749608 -7.279705 15.521336 4.790210 -3.314195 -9.785967 16.417763 -1.509638 -0.339683 0.096390 -0.114652
+0.233412 1.581572 0.055803 3.775319 1.672165 -11.777369 -7.033292 -4.788127 3.521564 -22.137239 7.445682 41.968452 -0.515993 0.230168 -0.089332 0.507043 0.161869 0.500739 7.698678 4.313052 -18.264874 4.180147 -0.594026 6.658639 -0.287723 -0.032990 0.084378 0.080215 -0.046340 0.222400 11.285539 -7.720548 10.262361 1.398567 -4.948231 9.393126 -2.533347 -3.817032 8.643242 -6.390893 4.103488 8.806616 -6.189029 1.904761 -10.325876 -6.523434 12.216082 -4.812400 -25.931305 5.195932 -4.311809 8.751471 -15.619110 -2.088205 0.126039 -0.166522 0.616119 -3.088890 -11.064935 -8.197205 16.603577 6.510370 -3.252963 -7.919317 15.592102 -1.325857 -0.327689 0.067163 -0.094621
+0.230897 1.580863 0.050187 4.015799 3.678971 -10.785007 -6.931099 -4.929534 2.397871 -21.978741 7.430902 42.452541 -0.477851 0.208516 -0.066912 0.530927 0.204815 0.492551 7.210684 4.170346 -19.322847 3.342558 -0.494656 5.710546 -0.292831 -0.040698 0.091523 0.097800 -0.031054 0.223175 10.415236 -7.448551 9.125325 1.036125 -4.891435 9.295308 -2.451778 -3.881030 9.031610 -6.138915 3.527831 8.738290 -4.978232 1.146277 -9.697126 -6.564608 12.156527 -4.697127 -27.791201 4.649632 -4.682385 8.688181 -17.831499 -2.418213 0.138719 -0.133231 0.580192 -1.508436 -10.180712 -8.818911 17.569128 7.265364 -3.296164 -6.512549 14.376296 -1.200077 -0.317080 0.034944 -0.071596
+0.229337 1.580562 0.044019 4.110227 5.690945 -10.244308 -6.929873 -5.036515 1.840681 -21.676477 7.306552 42.726692 -0.495579 0.220861 -0.066152 0.528701 0.203812 0.481851 6.676253 3.980944 -19.938200 2.722808 -0.462652 4.965367 -0.286320 -0.041199 0.094890 0.107734 -0.015076 0.212900 10.124492 -7.383855 8.667751 0.654095 -4.869855 9.284740 -2.775603 -3.868451 9.219626 -6.245075 2.965687 8.491001 -4.417862 0.373769 -10.003896 -7.289856 11.837891 -4.838820 -28.685011 4.091335 -4.803697 8.299001 -20.205982 -2.751060 0.133615 -0.147711 0.582997 -0.020337 -9.361313 -9.387289 18.991123 7.890006 -3.470946 -5.426448 13.439445 -1.115033 -0.329365 0.042717 -0.086118
+0.227885 1.580740 0.036558 3.989285 7.949725 -9.934842 -7.068533 -5.204543 1.643520 -20.526823 6.693830 42.749378 -0.508891 0.215092 -0.072599 0.543176 0.224990 0.481077 6.195630 3.750312 -20.308958 2.124880 -0.445103 4.174116 -0.292244 -0.030613 0.096160 0.123765 -0.016537 0.204749 10.131637 -7.436130 8.328128 0.316831 -4.869542 9.379216 -3.204801 -3.871868 9.497863 -6.320107 2.476312 8.564158 -3.651485 -0.358465 -10.802533 -8.144701 11.110174 -5.017533 -29.684099 3.367062 -4.971554 8.151765 -21.797413 -3.052512 0.144774 -0.157932 0.594302 1.288811 -8.415938 -9.779671 20.788771 8.305515 -3.690272 -4.315142 12.585699 -1.044921 -0.337616 0.052764 -0.089072
+0.226155 1.581065 0.028907 3.769262 10.142946 -9.510277 -6.915069 -5.322228 1.394679 -19.605961 6.208193 42.629673 -0.510372 0.215335 -0.076032 0.543365 0.226132 0.487787 5.713652 3.548740 -20.770416 1.664305 -0.443494 3.353856 -0.290367 -0.026321 0.090741 0.126217 -0.022510 0.201783 10.316546 -7.432814 8.029937 0.058176 -4.764056 9.331895 -3.617023 -3.772039 9.562066 -6.183808 1.687234 8.672363 -3.677676 -0.877481 -10.900681 -9.766968 10.159907 -5.444710 -30.188738 2.365940 -5.018300 8.369763 -23.435642 -3.397267 0.143089 -0.161792 0.589737 2.599916 -7.522945 -9.998303 22.741796 8.443540 -3.925492 -3.408916 12.107288 -1.021405 -0.335550 0.055184 -0.087100
+0.222817 1.580833 0.020355 3.618756 12.252890 -9.076368 -6.690907 -5.411732 1.122130 -18.549414 5.688759 42.417320 -0.538027 0.242453 -0.073322 0.554020 0.229933 0.479347 4.936792 3.344814 -21.383074 1.699067 -0.449997 2.620759 -0.284977 -0.039939 0.098484 0.144329 0.004372 0.199168 9.816666 -6.962046 7.528543 -0.039398 -4.484248 9.457363 -3.540447 -3.473099 9.998437 -6.029660 0.806877 8.952204 -2.826485 -1.948157 -10.763220 -11.109665 9.095212 -6.498713 -30.926548 0.077262 -4.825849 7.688038 -24.054075 -3.533066 0.132304 -0.169422 0.593304 4.921353 -6.842754 -10.428096 23.844744 8.481438 -4.067387 -2.322381 12.109526 -1.006630 -0.362359 0.050860 -0.103329
+0.219574 1.580364 0.011425 3.550957 14.287050 -8.726614 -6.379864 -5.428999 0.794932 -17.746920 5.337739 42.294090 -0.535887 0.226656 -0.084761 0.580355 0.268597 0.482841 4.350528 3.155591 -21.945658 1.090674 -0.427852 1.924945 -0.299845 -0.040489 0.085117 0.164848 -0.009739 0.206339 9.103741 -6.473783 7.299942 -0.109634 -4.198224 9.543425 -3.346781 -3.215122 10.306419 -5.728807 -0.407918 9.457000 -2.026471 -3.029159 -11.204853 -12.260705 8.086427 -7.409365 -32.157204 -2.181705 -4.767282 6.970241 -24.860491 -3.664497 0.148826 -0.147639 0.590159 6.565689 -5.866500 -10.769029 25.746321 8.863983 -4.256690 -1.788428 11.721493 -1.041462 -0.361173 0.037906 -0.084140
+0.216007 1.578797 0.002593 3.490875 16.290594 -8.369267 -6.123561 -5.512448 0.225715 -16.835335 4.993694 42.538658 -0.529575 0.207246 -0.086186 0.615729 0.312163 0.498897 3.516533 3.003710 -22.705107 0.668865 -0.408122 1.784638 -0.314774 -0.037352 0.088549 0.183948 -0.024658 0.213033 8.206921 -5.884849 7.235759 -0.100704 -3.860188 9.605570 -2.969213 -2.920262 10.506064 -5.384141 -1.912697 9.630924 -1.621377 -4.116765 -11.796526 -13.357919 6.874176 -8.138259 -33.406586 -4.287539 -4.698488 5.737362 -26.136980 -3.716217 0.166870 -0.136341 0.588231 7.898942 -4.715439 -10.719953 27.507015 9.022906 -4.338861 -0.610406 11.896057 -1.024677 -0.364636 0.026022 -0.063349
+0.212224 1.577393 -0.006190 3.340810 18.523157 -8.042706 -5.865916 -5.697076 -0.416960 -15.923670 4.634014 42.836346 -0.536444 0.210563 -0.089110 0.599900 0.297343 0.479028 2.465173 2.803395 -23.360516 0.585940 -0.401643 1.831574 -0.303996 -0.036967 0.085269 0.181694 -0.016078 0.199682 7.528837 -5.509830 7.462965 -0.149009 -3.666417 9.473260 -2.767115 -2.749368 10.227280 -5.084553 -2.815793 9.776386 -0.847751 -4.947966 -11.539871 -14.476995 5.471475 -8.519284 -34.511204 -5.950130 -4.605996 4.380730 -27.435734 -3.686648 0.166957 -0.139515 0.586323 9.410004 -3.304622 -10.528950 29.007563 9.310977 -4.369510 0.753923 12.473527 -0.974835 -0.365232 0.031272 -0.074194
+0.207780 1.576716 -0.015326 3.287005 20.838064 -7.844714 -5.518689 -5.826994 -0.980344 -15.070426 4.300341 42.896290 -0.534537 0.212007 -0.085149 0.596286 0.289448 0.476515 1.264955 2.684575 -24.172754 0.426945 -0.366344 2.753053 -0.300671 -0.028023 0.083905 0.178467 -0.011404 0.191490 6.621900 -5.139517 7.803907 -0.199702 -3.535221 9.445150 -2.494071 -2.652894 10.059346 -4.773354 -3.821144 10.110120 -0.015896 -5.843062 -11.397410 -15.678273 3.577830 -8.493804 -35.572437 -7.095898 -4.682981 3.000078 -29.461643 -3.713570 0.172351 -0.146007 0.587641 11.145553 -1.264125 -10.237552 30.348742 9.749285 -4.419700 1.657949 12.984951 -0.966791 -0.360956 0.037398 -0.078080
+0.202620 1.577025 -0.024810 3.256681 22.984734 -7.872527 -5.162873 -5.859348 -1.408191 -14.382940 4.094215 42.937103 -0.539098 0.207744 -0.082608 0.600674 0.291186 0.468888 -0.207190 2.664389 -25.038120 0.797997 -0.322369 4.699804 -0.302919 -0.010965 0.090315 0.180230 -0.005879 0.179071 5.797762 -4.752203 8.556449 -0.271644 -3.353103 9.426964 -2.341650 -2.505987 9.730827 -4.784332 -4.614678 10.739384 1.244864 -6.861841 -11.686688 -16.594900 1.732789 -8.498295 -36.596138 -8.472041 -4.625274 1.232092 -31.370882 -3.566630 0.189349 -0.161561 0.603688 12.708038 1.014437 -10.021794 31.675770 10.688722 -4.352881 2.392825 12.995306 -0.928877 -0.362566 0.053165 -0.085564
+0.197631 1.578051 -0.033862 2.829273 25.304111 -7.843194 -4.616441 -5.980406 -2.100504 -13.393435 3.729141 42.964241 -0.530055 0.178920 -0.086158 0.605119 0.311920 0.469364 -1.889207 2.667138 -26.108799 1.948417 -0.339328 6.981335 -0.311025 0.009784 0.090043 0.183934 -0.022455 0.166879 5.214069 -4.490573 9.074948 -0.133009 -3.294852 9.350096 -1.899279 -2.502079 9.444696 -4.713366 -5.866538 11.395557 1.495125 -7.722886 -12.131602 -17.307749 0.277800 -8.493655 -38.308933 -10.029378 -4.505558 -0.954443 -33.294331 -3.227742 0.209214 -0.176359 0.606336 13.183927 3.151016 -9.768736 33.386993 11.832898 -4.183924 3.019323 13.261099 -0.913734 -0.352236 0.068232 -0.076462
+0.193223 1.579373 -0.042578 2.484049 27.977200 -7.751638 -4.311097 -6.176940 -2.884927 -12.196054 3.263193 43.070892 -0.541206 0.169968 -0.093550 0.598434 0.308080 0.448574 -3.990055 2.576065 -27.252754 3.420485 -0.471439 9.995322 -0.312175 0.030379 0.093349 0.182591 -0.019568 0.149795 4.723536 -4.344171 9.331675 -0.129103 -3.378669 9.279859 -1.612962 -2.613530 9.213121 -4.821572 -6.535404 12.433414 2.953179 -8.676460 -12.525736 -17.024481 -0.717313 -8.231140 -41.065678 -11.602469 -4.369796 -2.967537 -36.218510 -3.001929 0.227194 -0.198091 0.630069 13.138674 5.245288 -9.554245 35.690285 13.279067 -3.963859 3.592250 13.918047 -0.905734 -0.354573 0.095316 -0.088315
+0.189072 1.581584 -0.049957 1.865449 30.718611 -7.708497 -3.815501 -6.392940 -3.783800 -10.971092 2.815003 43.304989 -0.534970 0.167854 -0.084985 0.606785 0.311432 0.452643 -6.223923 2.558901 -28.502472 5.851733 -0.823917 13.767307 -0.316229 0.043373 0.094435 0.182772 -0.014767 0.144054 4.592986 -4.333395 9.320169 -0.114940 -3.472768 9.247038 -1.439753 -2.778500 9.155622 -4.868971 -7.447747 13.027915 3.870798 -9.664237 -12.613807 -17.200693 -1.608177 -8.112102 -43.106060 -13.259000 -4.006097 -5.770580 -39.520477 -2.308715 0.240749 -0.203619 0.634872 13.289014 7.497856 -9.622794 37.697971 15.197155 -3.475591 4.001468 13.937556 -0.895281 -0.348751 0.100176 -0.087928
+0.183434 1.586262 -0.058541 1.354488 33.492352 -8.010381 -3.657483 -6.613099 -4.373858 -9.373219 2.160142 43.303696 -0.573775 0.160410 -0.114128 0.631004 0.333316 0.470132 -8.697450 2.512557 -29.453897 9.226365 -1.555251 18.160492 -0.334760 0.066750 0.087823 0.200052 -0.042485 0.139982 4.095198 -4.177905 10.162710 0.115392 -3.627291 9.343244 -0.937899 -2.929913 9.061774 -4.925704 -8.555503 13.678267 4.634355 -10.417125 -14.409803 -18.023531 -3.492726 -7.916337 -44.503078 -14.743550 -3.742747 -8.245678 -43.131371 -1.610453 0.262669 -0.227501 0.681649 13.618281 10.377492 -9.356873 38.796154 16.679996 -3.279438 4.152055 15.609466 -0.961879 -0.365449 0.127999 -0.095035
+0.176217 1.592012 -0.068292 0.799060 36.031700 -8.099056 -3.281379 -6.738570 -5.465189 -7.982557 1.680459 43.266087 -0.566937 0.115050 -0.133147 0.660233 0.386010 0.471406 -11.225476 2.588183 -30.847837 13.429811 -2.744313 22.998085 -0.355908 0.096970 0.083642 0.217307 -0.070753 0.133214 3.846922 -3.873697 10.806840 0.361600 -3.546401 9.458077 -0.480839 -2.924969 9.071146 -5.239531 -9.521555 14.326625 6.134569 -11.360838 -16.173449 -17.974445 -5.779720 -7.498515 -46.566113 -16.905218 -3.198153 -9.844667 -46.421879 -1.112694 0.299874 -0.225781 0.696549 13.410293 13.657501 -8.780685 39.728176 17.928946 -3.231884 3.462525 18.221159 -1.250502 -0.358443 0.144400 -0.071750
+0.171716 1.597739 -0.076033 -0.032820 38.894947 -8.414475 -2.958220 -6.839622 -6.135656 -6.211365 0.963992 42.859600 -0.571935 0.092545 -0.145623 0.692347 0.433616 0.478547 -13.706189 2.448046 -31.291513 18.053425 -4.395908 26.954058 -0.385581 0.120470 0.080358 0.237111 -0.084937 0.139118 4.136022 -3.832840 10.867440 0.535374 -3.585797 9.711209 -0.327272 -2.992548 9.469954 -5.224710 -10.536887 14.897994 7.549404 -12.029225 -18.052181 -17.926872 -8.213971 -6.929181 -48.450596 -19.065207 -2.565194 -11.832041 -51.055241 -0.311980 0.324362 -0.234166 0.723374 12.128415 17.020140 -8.116495 40.463005 19.111759 -3.092690 3.265156 21.091084 -1.503549 -0.363474 0.163179 -0.058007
+0.166892 1.606453 -0.082594 -0.986604 41.164921 -9.050812 -2.338379 -6.536524 -6.123587 -4.565276 0.398401 41.492256 -0.598095 0.095629 -0.174320 0.713298 0.455097 0.479037 -15.436587 2.733941 -31.114683 22.152109 -6.075501 30.274235 -0.401053 0.138537 0.068341 0.251989 -0.092328 0.146244 4.486831 -3.650137 10.774572 0.768417 -3.542802 10.123421 -0.219267 -2.918562 10.168700 -5.561408 -11.080263 15.945494 9.239957 -12.714532 -19.686199 -17.813103 -11.346509 -6.293537 -49.703735 -21.218960 -1.877871 -13.144697 -54.774200 0.236067 0.335323 -0.241181 0.755782 11.018990 20.890614 -7.532472 40.089783 20.403116 -3.088251 2.579782 23.512043 -1.844808 -0.375570 0.188226 -0.054556
+0.160669 1.615805 -0.088245 -1.853320 43.062630 -9.441301 -1.339475 -6.037842 -6.332682 -3.387012 0.132577 39.805664 -0.619465 0.109737 -0.177787 0.722688 0.471034 0.472999 -16.483078 3.285605 -30.935383 25.272814 -7.653162 33.403931 -0.400728 0.145437 0.068078 0.273476 -0.072611 0.136654 4.428743 -3.256482 10.213517 0.996265 -3.393944 10.690474 0.089975 -2.768482 11.277493 -5.710121 -11.815079 16.473843 10.322266 -13.455010 -20.496716 -17.237873 -14.124852 -6.098426 -50.826546 -24.112024 -0.599019 -13.688970 -57.544189 0.584880 0.330893 -0.263808 0.761597 9.987198 23.809050 -7.424174 38.840832 21.946421 -3.125399 2.746468 27.756496 -2.139348 -0.388964 0.203511 -0.066864
+0.154318 1.626315 -0.094638 -3.073774 44.850723 -9.905937 -0.344240 -5.578189 -6.716943 -1.911630 -0.279858 37.920002 -0.623508 0.096479 -0.165812 0.744080 0.513826 0.461181 -16.938362 3.848876 -30.790859 28.068054 -9.270862 36.143795 -0.402151 0.150942 0.079236 0.306245 -0.052972 0.110588 5.211053 -3.336648 9.509777 1.031199 -3.293776 11.254478 -0.178179 -2.707068 12.427032 -5.961352 -12.370652 16.709988 11.296601 -14.166090 -21.112555 -16.655561 -16.645897 -5.943945 -51.455486 -26.810942 0.572534 -13.033577 -60.670258 0.385723 0.345693 -0.273928 0.750689 8.647395 26.343460 -7.789784 38.213287 23.906502 -3.027874 2.377561 31.528460 -2.609058 -0.397251 0.200191 -0.074216
+0.148531 1.635633 -0.100803 -3.933380 46.278973 -9.955809 0.413590 -5.102113 -7.086916 -0.932157 -0.491077 35.874622 -0.639863 0.111243 -0.174512 0.760998 0.540621 0.437238 -17.193575 4.362242 -30.709711 30.442806 -10.772586 38.339657 -0.402071 0.133349 0.080059 0.331685 -0.029798 0.119525 6.140442 -3.352044 8.535958 0.901594 -3.103024 11.807942 -0.672497 -2.527911 13.692346 -6.163641 -12.825690 16.548044 12.354906 -14.784432 -21.978983 -15.088415 -18.759619 -6.019587 -52.421284 -29.914448 2.272311 -11.611681 -64.063637 -0.263262 0.338116 -0.257264 0.743823 7.017131 28.010439 -8.476720 38.743263 26.015669 -2.845664 1.119649 35.386250 -3.466334 -0.418539 0.190524 -0.071105
+0.142627 1.644654 -0.106625 -4.394501 47.968857 -9.604960 0.657915 -4.733649 -7.321080 0.089162 -0.752888 33.365192 -0.668674 0.165574 -0.183821 0.742590 0.521443 0.398544 -17.627085 4.568457 -30.288893 32.563927 -12.124274 39.766102 -0.385010 0.102899 0.073843 0.338087 0.019461 0.138895 6.942648 -3.350641 7.566299 0.700247 -2.982768 12.279763 -1.249782 -2.383368 14.820922 -6.096032 -13.441024 15.856439 13.158281 -15.428647 -22.558655 -13.408677 -20.584801 -6.537934 -52.518108 -33.455959 4.535246 -10.482761 -66.780449 -0.520075 0.292532 -0.255472 0.731951 5.890178 28.982708 -9.354383 39.226479 28.550785 -2.334633 -0.334999 38.468678 -4.334949 -0.444521 0.194979 -0.081779
+0.137206 1.653511 -0.112177 -4.691928 49.484642 -9.036269 0.941338 -4.341800 -7.423440 0.383917 -0.763143 30.667219 -0.694495 0.208821 -0.179007 0.735090 0.526543 0.351110 -17.716873 4.716155 -29.748976 33.810562 -13.147319 41.044502 -0.360803 0.067176 0.078932 0.368001 0.079686 0.134477 7.611152 -3.423563 6.156785 0.419732 -2.923985 12.849116 -1.851515 -2.331616 16.350416 -5.897556 -13.818178 14.803720 14.000675 -16.115679 -22.806025 -11.285778 -21.951818 -7.596064 -52.932182 -37.586761 7.357834 -7.134709 -67.640076 -2.259878 0.257978 -0.250388 0.700944 4.518273 29.397842 -10.628153 39.539623 31.923159 -1.339439 -2.295041 41.609447 -5.461801 -0.473009 0.181154 -0.101665
+0.132061 1.661358 -0.116892 -4.721579 50.519264 -8.231894 1.369676 -3.931972 -7.428536 0.069967 -0.589116 27.996649 -0.705249 0.243011 -0.159639 0.734859 0.538727 0.313279 -17.462400 4.917012 -29.297411 34.568932 -14.030864 42.485584 -0.340604 0.034988 0.090503 0.395314 0.141447 0.127457 7.829512 -3.335648 4.849782 0.209402 -2.813303 13.250191 -2.196557 -2.252837 17.614441 -5.549158 -14.082881 13.704345 14.663925 -16.709972 -22.696003 -8.531152 -23.391979 -8.679949 -53.343193 -41.482845 10.101558 -1.912550 -67.067848 -5.372011 0.229854 -0.244411 0.663624 2.932108 29.817005 -11.610174 39.405567 34.995018 -0.163858 -3.843818 44.598351 -6.436661 -0.494800 0.160975 -0.116155
+0.128070 1.668131 -0.121087 -4.765068 51.619850 -7.472770 1.687264 -3.538800 -7.139813 -0.021548 -0.550014 24.713989 -0.711897 0.259648 -0.139709 0.757639 0.578440 0.300162 -16.783701 4.947324 -28.501793 34.548111 -14.707168 43.973442 -0.337574 -0.001493 0.097800 0.436337 0.177332 0.123631 7.923903 -3.287674 3.454765 0.036565 -2.742622 13.537065 -2.399040 -2.254027 18.830299 -4.749619 -14.726138 12.635323 14.308443 -17.039587 -22.261341 -6.170968 -24.408869 -9.756115 -53.373894 -45.434513 12.881877 4.733017 -65.473183 -9.183408 0.214087 -0.222208 0.624443 0.880408 30.138102 -12.370649 39.587921 37.750633 1.172552 -6.238890 47.454464 -7.925097 -0.517609 0.118406 -0.120527
+0.124859 1.673492 -0.124551 -4.546903 52.472927 -6.440916 1.790508 -3.155471 -6.712024 0.006666 -0.538840 21.043997 -0.741445 0.317358 -0.127913 0.740768 0.552199 0.279518 -16.014681 4.871949 -27.506166 34.232586 -15.069905 44.868546 -0.301013 -0.040530 0.099281 0.454912 0.228842 0.111434 8.023895 -3.151315 2.042318 -0.236207 -2.600844 13.690130 -2.729212 -2.113617 19.842817 -4.128011 -15.161515 11.507362 13.993971 -17.594133 -21.337301 -3.516108 -24.910122 -10.827344 -53.465519 -49.066177 15.660485 10.845249 -62.916119 -12.373714 0.171895 -0.221116 0.588836 -0.983713 29.978006 -12.921232 39.739288 40.512497 2.811495 -8.581274 50.315239 -9.412786 -0.540438 0.094500 -0.153488
+0.121854 1.676808 -0.127705 -4.199746 53.300293 -5.104796 2.011855 -2.797463 -6.613676 -0.297071 -0.445910 17.846504 -0.766706 0.393060 -0.121096 0.698258 0.501681 0.214382 -15.122671 4.816261 -26.472750 33.415573 -15.000266 45.211437 -0.256473 -0.096737 0.093961 0.458889 0.304505 0.116285 8.007273 -2.930420 0.612796 -0.493445 -2.432881 13.695381 -2.954969 -1.909390 20.669956 -3.729801 -15.489372 10.222374 14.363081 -18.483309 -20.452068 -0.516053 -24.818974 -11.770927 -55.440075 -52.854946 19.578350 17.035805 -60.294605 -15.535601 0.114273 -0.199549 0.545407 -2.414251 29.132845 -13.523192 40.007385 43.564026 4.947254 -10.685788 52.179882 -10.543545 -0.563612 0.071504 -0.182300
+0.118274 1.679088 -0.130254 -3.258121 54.340790 -3.223927 1.884056 -2.521969 -6.641483 -0.738588 -0.356498 15.033443 -0.786429 0.462044 -0.113364 0.672532 0.466679 0.157387 -14.276792 4.649783 -25.241364 31.972466 -14.392402 44.932030 -0.219025 -0.165812 0.096303 0.466160 0.372005 0.135307 7.085906 -2.563354 -0.670349 -0.628186 -2.313606 13.572267 -2.657947 -1.830939 21.292379 -2.972504 -15.984257 8.863647 14.277975 -19.240900 -19.270519 2.247758 -24.691788 -12.692981 -57.466736 -56.847778 24.138208 21.543144 -57.074776 -17.199856 0.058151 -0.159590 0.499103 -3.120981 28.574865 -13.730799 39.697868 46.499565 6.885114 -13.931258 53.517982 -12.202740 -0.594531 0.029750 -0.197572
+0.115765 1.680051 -0.132402 -2.372653 54.892162 -1.302026 1.798462 -2.161704 -6.592886 -1.374662 -0.240132 12.139935 -0.785975 0.504077 -0.088770 0.659712 0.475048 0.084610 -13.029270 4.599431 -23.689720 29.901279 -12.982606 43.378571 -0.176936 -0.230933 0.113545 0.496891 0.453736 0.130870 6.270736 -2.257029 -2.202848 -0.801386 -2.127399 13.521660 -2.435039 -1.698844 22.225773 -2.369886 -16.387335 7.009543 14.367639 -20.225208 -18.367674 4.681623 -23.712393 -13.480686 -61.294563 -60.470791 29.778421 25.807856 -54.062775 -18.728111 0.013014 -0.118481 0.420013 -3.867907 27.760944 -14.162540 39.734589 49.959095 9.323121 -17.782619 54.002815 -14.106361 -0.620794 -0.021250 -0.204888
+0.112986 1.679949 -0.133680 -0.792905 55.117901 0.992292 1.331171 -1.825020 -6.295365 -2.043552 -0.140157 9.480446 -0.806420 0.542573 -0.069253 0.657416 0.492128 0.048487 -12.006227 4.464552 -21.888779 27.517517 -11.207448 40.990120 -0.151873 -0.275528 0.123679 0.536979 0.516732 0.115415 4.665720 -1.940511 -3.655426 -1.080963 -2.009114 13.416307 -2.087149 -1.627495 23.073221 -1.301061 -16.551044 5.809267 13.975609 -20.398928 -17.605257 7.058963 -22.867157 -14.088727 -64.752594 -63.495991 35.174774 29.102512 -50.911228 -19.560602 -0.026070 -0.111168 0.369820 -5.647641 27.745802 -14.611363 40.926132 53.300507 11.981313 -22.539183 52.508587 -16.325834 -0.650313 -0.053849 -0.229089
+0.110443 1.678638 -0.135065 0.689970 55.309681 3.017497 0.712117 -1.525772 -5.918084 -2.489396 -0.095539 7.264932 -0.796555 0.562162 -0.039260 0.664602 0.518503 -0.000107 -10.791027 4.340140 -19.392477 24.839870 -8.935286 36.903790 -0.134061 -0.318434 0.134922 0.569795 0.577360 0.106810 3.188261 -1.623040 -4.846014 -1.245507 -1.824696 13.449485 -1.734775 -1.503938 23.828091 -0.655398 -16.558241 4.449826 14.372648 -20.930107 -17.078518 9.612616 -22.311209 -14.395437 -66.392403 -65.933136 39.015152 32.935078 -49.109322 -21.000660 -0.040477 -0.070331 0.312961 -6.989347 28.121992 -15.001750 39.929863 56.287239 13.442595 -25.634418 50.352642 -17.219332 -0.663450 -0.102301 -0.232946
+0.106840 1.676070 -0.136416 2.301018 55.495644 5.225068 0.136649 -1.301191 -6.003906 -3.139930 -0.030604 5.361740 -0.791643 0.598247 -0.007455 0.636454 0.498858 -0.056506 -9.415196 4.088541 -16.926962 21.280912 -6.608449 32.432419 -0.101092 -0.366363 0.156036 0.573975 0.645436 0.102147 1.486730 -1.276938 -5.811574 -1.339177 -1.625680 13.308718 -1.164265 -1.270748 24.099091 0.122562 -16.696753 3.312419 13.982677 -21.384287 -15.820205 11.485244 -22.223478 -14.397874 -67.658150 -67.822037 42.112904 35.702618 -47.122803 -21.767176 -0.081452 -0.054435 0.259550 -8.356370 28.885790 -14.853574 37.338409 58.112141 13.393728 -28.892778 48.827816 -18.279493 -0.682336 -0.132696 -0.248042
+0.104332 1.673137 -0.138227 3.085291 55.201031 6.583440 -0.182547 -1.107644 -6.131724 -3.486523 -0.002874 3.804310 -0.774682 0.613866 0.017077 0.615278 0.481965 -0.093948 -7.659652 3.835726 -14.356615 17.591459 -4.572694 27.843292 -0.079045 -0.387056 0.167921 0.568818 0.686795 0.096004 0.669106 -0.811065 -6.553516 -1.355054 -1.195394 13.194625 -0.869005 -0.763251 24.211855 0.569497 -17.043695 2.612498 14.208424 -21.997995 -15.270849 12.650104 -22.158976 -14.445641 -70.607552 -69.651314 46.479816 36.791348 -44.981388 -21.559603 -0.098274 -0.040712 0.222557 -9.119526 28.959354 -14.593018 34.873951 59.328346 13.131479 -30.959402 48.125580 -18.858667 -0.681409 -0.148675 -0.252443
+0.101685 1.669944 -0.139328 3.440435 54.120106 7.253881 -0.327975 -0.966965 -6.204790 -3.845398 0.030914 2.937017 -0.768880 0.620936 0.033052 0.599479 0.476993 -0.131315 -5.748344 3.571602 -11.632558 13.994715 -2.931813 23.635168 -0.055769 -0.409885 0.177687 0.576763 0.718004 0.079172 0.054127 -0.220166 -7.222698 -1.366285 -0.596868 13.257779 -0.665200 -0.087652 24.573917 0.785538 -17.182543 1.930159 14.138578 -22.439123 -14.657471 13.215646 -22.514431 -14.361300 -72.916046 -71.137932 49.822723 38.065071 -42.924686 -21.498182 -0.108553 -0.025506 0.186367 -9.584297 29.608854 -14.482474 32.095570 60.248268 12.352732 -31.489964 47.351395 -18.650467 -0.685298 -0.170123 -0.262035
+0.098765 1.667765 -0.140795 3.705465 52.135876 7.563731 -0.634769 -0.985742 -6.384923 -3.967617 0.028612 2.851323 -0.733407 0.593263 0.055491 0.613572 0.508526 -0.152162 -4.228597 3.184979 -9.141521 10.468566 -1.651037 19.803923 -0.055230 -0.414818 0.191513 0.586018 0.730800 0.069975 -0.178917 0.590098 -7.646791 -1.499009 0.337605 13.456400 -0.790496 0.859650 24.964397 0.559576 -16.949734 1.702214 14.728318 -22.738453 -14.576132 13.943546 -22.919796 -14.628919 -73.628769 -72.062859 51.199928 37.536575 -41.313354 -20.662922 -0.086744 0.005011 0.156555 -9.482147 30.307566 -14.418263 30.040119 61.405636 11.847075 -31.358892 46.619648 -18.184090 -0.672619 -0.195990 -0.244785
+0.095412 1.666003 -0.142819 3.897967 49.956551 7.945073 -0.835268 -0.994800 -6.756844 -4.159813 0.035783 2.472673 -0.761857 0.639733 0.057832 0.585431 0.472841 -0.191228 -3.390173 2.775713 -7.327933 7.811741 -0.870193 16.256784 -0.041512 -0.421091 0.191806 0.583036 0.775388 0.068135 0.157326 1.451674 -7.918721 -1.763887 1.283587 13.637240 -1.321790 1.970589 25.279144 0.132657 -17.040478 1.363859 15.331385 -23.328138 -15.201108 14.069064 -23.202278 -14.966962 -74.900719 -72.624817 52.846272 36.863003 -40.433186 -20.076008 -0.111019 -0.022263 0.165581 -9.620315 30.997015 -14.753606 29.495163 62.514088 11.926205 -30.272646 45.762093 -17.296398 -0.689332 -0.170738 -0.273464
+0.091653 1.665427 -0.145888 4.312086 48.742527 8.651112 -1.267901 -1.120650 -7.363928 -3.927954 -0.017736 2.007799 -0.784652 0.667005 0.053832 0.589126 0.479262 -0.204507 -3.074463 2.334141 -6.427413 6.136187 -0.500483 13.593515 -0.039706 -0.431810 0.183195 0.601509 0.798533 0.070578 0.326973 1.923448 -8.098138 -1.979100 1.878178 13.755208 -1.468070 2.656774 25.650402 -0.320981 -17.012539 0.838655 15.417466 -23.638208 -15.848079 13.990120 -23.491034 -15.341755 -77.930733 -72.656303 55.037014 36.375736 -39.230991 -19.693182 -0.123361 -0.026028 0.163329 -9.793149 31.793833 -15.295434 29.589550 63.675911 12.513328 -28.640936 45.407253 -16.345547 -0.701877 -0.169262 -0.283468
+0.088002 1.665125 -0.149236 4.501782 47.991787 9.502778 -1.567154 -1.301594 -8.329415 -3.535054 -0.081842 1.741989 -0.802597 0.684757 0.039981 0.602603 0.494486 -0.214386 -3.045985 2.127106 -6.651189 5.411744 -0.371149 12.115112 -0.035919 -0.454349 0.175064 0.621735 0.803925 0.082878 0.959851 2.374315 -8.147620 -2.129027 2.486639 13.625222 -1.678009 3.319854 25.686594 -0.743208 -17.362083 0.332323 15.154826 -24.157352 -16.242849 13.197869 -23.827110 -15.367462 -84.174477 -72.335609 59.836182 36.009281 -38.454174 -19.556496 -0.131846 -0.004850 0.152749 -10.089988 32.153591 -16.014200 31.557972 64.344025 14.306068 -25.902817 45.694057 -15.074304 -0.716068 -0.186516 -0.277857
+0.085864 1.664358 -0.152056 4.357199 48.056946 10.202083 -1.541206 -1.458974 -9.371375 -3.338039 -0.145400 1.436439 -0.790205 0.650547 0.035060 0.640863 0.551252 -0.195058 -2.866284 1.915725 -7.251720 5.079064 -0.357461 11.291877 -0.051994 -0.445918 0.171395 0.646115 0.779552 0.081174 2.122202 2.365496 -8.087042 -2.359376 2.746652 13.304601 -2.086706 3.539975 25.337971 -1.233855 -17.532305 0.141490 15.119608 -24.367640 -17.006695 12.299326 -24.492140 -15.525284 -87.916679 -71.367073 61.343941 34.485294 -36.580051 -18.552229 -0.104693 0.010584 0.144377 -10.357691 32.372093 -16.816174 35.862228 64.677437 17.374866 -22.408247 45.315441 -13.420506 -0.707343 -0.200197 -0.252300
+0.083659 1.663486 -0.152875 4.481395 48.717144 11.229159 -1.506186 -1.746563 -10.662601 -3.187374 -0.194939 1.672659 -0.790696 0.653744 0.050814 0.622708 0.528947 -0.202562 -3.029966 1.665542 -8.089219 5.585807 -0.538036 10.837866 -0.044540 -0.434963 0.185036 0.634671 0.792574 0.064563 2.281876 2.203046 -8.005975 -2.511377 2.668709 12.764715 -1.892890 3.375859 24.415306 -1.564923 -17.423315 0.330084 15.106267 -24.453798 -16.821606 11.703501 -25.013308 -15.621318 -90.749596 -69.434044 60.911686 32.497971 -34.802826 -17.526775 -0.104625 -0.021541 0.152061 -9.781490 32.639088 -17.248283 41.267487 64.379097 21.050037 -17.403309 45.503872 -11.094868 -0.706645 -0.182058 -0.271120
+0.081433 1.662611 -0.152316 4.537762 49.026669 11.842216 -1.513544 -1.891543 -11.292871 -2.788465 -0.261638 1.423785 -0.774746 0.612598 0.033162 0.658000 0.571083 -0.164493 -3.255824 1.469867 -8.872176 6.203793 -0.732421 11.028582 -0.070961 -0.409952 0.169279 0.642828 0.742670 0.071686 2.249299 2.036830 -7.920214 -2.575247 2.564997 12.438123 -1.540122 3.139765 23.828650 -2.026118 -17.326401 0.966563 15.329157 -24.199612 -17.587408 10.904853 -25.179010 -15.937105 -92.720840 -67.124458 58.881336 30.363918 -32.735668 -16.416487 -0.068388 -0.006885 0.166931 -9.647424 33.000530 -18.185049 46.914017 63.340549 24.205454 -11.747767 45.353100 -8.513728 -0.685879 -0.183125 -0.241217
+0.079192 1.661821 -0.150866 4.882562 49.088245 12.560188 -1.646205 -1.994519 -11.730253 -2.593798 -0.276948 1.103996 -0.783290 0.629875 0.025744 0.622093 0.511723 -0.169862 -3.661989 1.384174 -9.660918 6.778508 -0.931180 11.547165 -0.064407 -0.396727 0.162346 0.609184 0.738423 0.071848 1.721237 2.052161 -7.859854 -2.630929 2.439674 12.125605 -1.150576 2.843761 22.986265 -2.266062 -17.056347 1.921646 15.527466 -23.977873 -17.125113 10.585032 -25.467415 -16.166025 -92.096764 -64.311882 54.587063 27.116297 -32.591377 -15.272180 -0.074578 -0.027446 0.194861 -8.040195 34.027721 -18.237406 52.058891 60.867493 25.269495 -6.801988 44.892387 -6.477385 -0.679810 -0.155272 -0.259965
+0.077080 1.660764 -0.150194 4.891163 49.298996 12.903920 -1.373117 -2.050375 -12.124472 -2.788312 -0.301026 0.887262 -0.781020 0.581281 -0.000643 0.655208 0.545500 -0.116903 -3.786401 1.322249 -10.318563 7.443825 -1.102855 11.907032 -0.095816 -0.355242 0.154380 0.608799 0.674809 0.073234 1.653304 2.060060 -7.563870 -2.557212 2.350304 11.908047 -0.815841 2.471697 22.056047 -2.351642 -17.028824 3.059626 15.872387 -23.246794 -17.891459 9.994926 -25.295576 -16.630726 -90.056297 -61.521477 49.970879 21.031487 -34.317795 -13.115070 -0.034842 -0.041571 0.239237 -6.797518 34.856380 -19.077749 56.475948 57.286404 24.898460 0.848842 43.729294 -3.297004 -0.665992 -0.133079 -0.240759
+0.075581 1.660223 -0.149290 5.156370 49.299538 13.119983 -1.497503 -2.198920 -12.268657 -2.729464 -0.327182 1.159377 -0.783565 0.555791 -0.023744 0.663726 0.532889 -0.048060 -4.328371 1.219764 -10.495923 8.310390 -1.310449 12.102896 -0.133338 -0.295499 0.140272 0.577394 0.610945 0.086199 1.366414 2.158886 -7.040232 -2.427647 2.258941 11.764637 -0.494538 2.209458 20.906759 -2.444399 -17.329126 4.586859 16.052788 -22.484980 -18.733454 9.007660 -25.980270 -16.963682 -86.752937 -58.920528 45.109226 13.114853 -35.913803 -9.907279 -0.009002 -0.092468 0.312361 -4.655673 36.298157 -18.884190 57.715847 52.779709 21.508251 7.616702 42.152321 -0.713929 -0.646352 -0.076203 -0.233521
+0.074039 1.660145 -0.148566 5.713187 49.824459 13.451518 -1.743251 -2.458213 -12.548515 -2.618566 -0.363211 1.814877 -0.786483 0.525021 -0.054097 0.661560 0.515255 -0.009823 -4.868898 1.036621 -10.419855 9.133850 -1.507971 12.084392 -0.162641 -0.232021 0.127880 0.544656 0.556157 0.089013 1.125299 2.039922 -6.385442 -2.395841 1.977829 11.655608 -0.446087 1.867340 19.737991 -2.823179 -17.366270 6.628657 17.273310 -21.811930 -19.744745 8.735539 -26.703094 -17.844551 -84.353661 -56.155235 40.941517 4.522118 -34.931519 -6.049644 0.025305 -0.138276 0.387438 -1.636153 37.035191 -18.094498 59.075771 48.025200 17.861216 13.302143 39.757851 1.084397 -0.624654 -0.011383 -0.230898
+0.073083 1.659351 -0.146771 6.056174 49.621754 13.558562 -1.633479 -2.515436 -12.523724 -3.137474 -0.346319 2.238423 -0.759760 0.460495 -0.074241 0.667497 0.518837 0.034681 -5.284434 1.105066 -10.308366 9.520355 -1.525271 12.103705 -0.192411 -0.162917 0.120529 0.511170 0.485184 0.083934 1.281461 1.884225 -5.767192 -2.425411 1.804386 11.461668 -0.875435 1.796514 18.503225 -3.681761 -17.133041 8.797185 18.042494 -21.308290 -20.588692 7.917057 -27.224052 -18.161848 -81.689880 -52.850731 36.326008 -3.390332 -32.716526 -2.646130 0.077336 -0.172603 0.441501 0.328119 37.369125 -16.871666 60.195213 43.979336 15.223101 16.415321 36.569405 1.750872 -0.584668 0.040649 -0.207953
+0.072225 1.657910 -0.144242 6.222787 49.329704 13.502449 -1.433889 -2.583524 -12.568765 -3.683424 -0.320416 2.849767 -0.720465 0.402833 -0.080576 0.651156 0.491172 0.055143 -5.537789 1.240691 -10.269406 9.959090 -1.563341 12.347569 -0.216733 -0.099602 0.118456 0.456482 0.427040 0.081281 1.626643 1.603362 -4.958027 -2.575586 1.579837 11.144292 -1.625325 1.762221 17.042660 -4.523530 -16.530920 10.625171 18.984337 -20.977682 -21.005888 5.460007 -28.200312 -17.344046 -77.952995 -49.019753 30.493645 -8.920753 -29.659513 -0.577901 0.128504 -0.197832 0.493621 3.389914 37.707573 -14.546169 60.476727 39.951435 12.292974 17.520931 33.188557 1.663699 -0.540439 0.090417 -0.189045
+0.072579 1.656648 -0.141967 6.068663 48.982750 13.092708 -1.275038 -2.676178 -12.624972 -3.994640 -0.311980 3.708781 -0.688832 0.333421 -0.100070 0.683049 0.515016 0.101976 -5.683858 1.390805 -10.201271 10.577806 -1.652842 12.895468 -0.253211 -0.046870 0.110512 0.435673 0.347642 0.086127 2.665548 1.094023 -4.339436 -2.886705 1.315713 10.892720 -2.841803 1.705405 16.039413 -5.164535 -15.548826 12.096003 19.783546 -20.322725 -21.678541 2.952286 -28.455566 -16.529682 -74.839020 -45.312260 25.573900 -12.479416 -25.392401 0.484022 0.196305 -0.187884 0.541870 5.444046 37.254150 -12.769888 62.033958 36.442944 10.233200 15.985066 29.018864 0.743560 -0.504401 0.107433 -0.153911
+0.072313 1.654972 -0.139609 5.475095 48.362885 12.382147 -0.824226 -2.812631 -13.001430 -3.978670 -0.307449 5.025348 -0.661843 0.300261 -0.109850 0.671723 0.496168 0.119168 -5.375193 1.652507 -10.291723 10.698443 -1.700049 13.704402 -0.273456 -0.010510 0.099592 0.399161 0.302346 0.096335 3.733293 0.557089 -3.720694 -3.145124 1.017859 10.615686 -3.931014 1.646758 15.080782 -5.588854 -14.606967 12.909463 19.854031 -19.796961 -21.773750 -0.130361 -28.346601 -15.149776 -71.731926 -41.652863 20.817795 -13.233912 -21.507406 0.455692 0.224275 -0.194925 0.574062 7.195993 36.783283 -10.976293 62.795464 33.251778 8.260902 13.735017 25.166000 -0.040252 -0.472748 0.135788 -0.134973
+0.071053 1.653111 -0.136131 5.365870 47.606838 11.957332 -0.538040 -3.057651 -13.304878 -4.192593 -0.304740 6.399856 -0.650173 0.252107 -0.115379 0.677482 0.490095 0.172096 -5.172139 1.813432 -10.405328 10.582556 -1.750540 14.726678 -0.299217 0.050152 0.097882 0.372158 0.239246 0.079847 3.885468 0.141295 -2.767048 -3.308509 0.747439 10.234798 -4.435966 1.553199 13.910095 -6.260769 -14.032915 14.104314 19.477415 -19.237778 -22.176252 -3.312828 -27.336796 -13.724944 -69.054184 -37.969772 16.503103 -12.997993 -18.359997 0.165917 0.270593 -0.237211 0.626109 8.999011 36.399685 -9.411306 63.235405 29.776789 6.474898 13.439345 20.425074 -0.066040 -0.444366 0.178019 -0.131684
+0.070421 1.649330 -0.132280 4.824483 46.797722 11.392849 -0.083983 -3.394823 -14.077321 -4.293402 -0.300665 8.456056 -0.634155 0.229818 -0.122591 0.656022 0.450906 0.187335 -4.734184 2.077147 -10.795070 10.579069 -1.847365 15.975374 -0.309027 0.081003 0.093228 0.329289 0.196039 0.084422 4.108383 -0.183911 -1.766162 -3.243842 0.505394 9.733383 -4.532923 1.434235 12.593848 -7.003399 -13.480977 14.350963 18.841665 -19.048658 -22.202625 -6.427839 -25.577593 -11.991044 -67.157104 -34.113861 12.289431 -11.049267 -17.101004 -0.551275 0.293133 -0.251012 0.659670 11.165059 35.918949 -7.724825 62.905212 26.482115 5.093244 12.972432 14.852954 0.108594 -0.419988 0.206679 -0.124221
+0.068262 1.645043 -0.127798 4.175603 45.557297 10.881368 0.448597 -3.728263 -15.026337 -4.297830 -0.260523 10.802460 -0.614247 0.221575 -0.113740 0.599972 0.372359 0.181538 -4.251351 2.433985 -11.365546 10.651768 -1.925857 17.210424 -0.291211 0.104595 0.103873 0.267363 0.181165 0.073371 4.026907 -0.312265 -0.623641 -3.172777 0.416439 9.113387 -4.541625 1.421509 11.086587 -7.507260 -12.729448 14.226683 18.121353 -18.877125 -21.256618 -9.175915 -23.504866 -10.361178 -65.151901 -30.284336 8.537227 -9.121081 -16.351141 -1.149289 0.294063 -0.280362 0.676108 13.987885 34.725685 -5.470861 61.839397 23.133219 3.524296 11.366380 10.243397 0.161910 -0.396158 0.240859 -0.135098
+0.065062 1.640641 -0.122517 3.412129 43.764992 10.115116 0.985803 -4.085879 -16.042143 -4.126146 -0.223476 13.661530 -0.613642 0.220927 -0.121255 0.561487 0.298364 0.202701 -3.609402 2.853647 -11.758275 10.677591 -1.968582 18.319479 -0.297043 0.129127 0.095936 0.211727 0.141164 0.080597 3.531725 -0.253081 0.892367 -3.065955 0.415709 8.368942 -4.364793 1.486223 9.405380 -7.611533 -12.066051 14.440909 17.307844 -18.250181 -20.697237 -11.348995 -20.444183 -9.172819 -63.677010 -26.558044 5.366391 -6.893565 -15.402795 -1.734634 0.302791 -0.301576 0.724223 15.546034 32.418419 -3.771429 61.089897 19.951551 2.112639 10.172945 6.662013 0.296893 -0.378721 0.272346 -0.147324
+0.062703 1.635013 -0.117283 2.547572 41.254810 9.590787 1.434347 -4.510625 -17.496738 -3.671793 -0.182095 17.110561 -0.587604 0.239457 -0.098354 0.486555 0.185531 0.202223 -3.313914 3.312979 -12.456188 11.156573 -2.086648 19.510107 -0.268126 0.131424 0.100042 0.137139 0.139845 0.078573 3.180734 -0.130206 2.323437 -3.089445 0.572474 7.443666 -4.492903 1.658461 7.478240 -7.205336 -11.211704 13.523434 15.947338 -17.675100 -18.471857 -13.653336 -16.838743 -8.284184 -61.181000 -22.719866 2.679110 -5.590855 -13.611327 -1.902488 0.279948 -0.316662 0.723500 17.166412 29.084427 -2.380426 59.493000 16.912361 0.801035 8.886380 3.304665 0.423479 -0.351249 0.285523 -0.167323
+0.059131 1.630016 -0.112290 1.213431 38.326046 8.412236 2.212956 -4.774106 -19.006292 -3.330813 -0.102043 21.463533 -0.549878 0.203116 -0.101125 0.470505 0.157558 0.225149 -2.369908 3.889864 -12.674294 11.299666 -2.080574 20.550905 -0.277710 0.143380 0.098707 0.092169 0.089359 0.094967 3.141000 -0.008211 4.258471 -3.003833 0.843278 6.515022 -4.620874 1.877322 5.577638 -6.824768 -10.422808 13.283290 14.911944 -16.659822 -17.575895 -14.880026 -12.994343 -7.629478 -59.113651 -19.071966 0.607224 -4.753996 -11.675690 -1.889405 0.294586 -0.296074 0.733408 16.979078 25.233715 -2.003001 58.096233 14.364386 -0.510373 7.698509 1.706884 0.453945 -0.324445 0.283107 -0.142486
+0.053975 1.625870 -0.106797 -0.227933 35.157028 6.861727 3.194799 -4.878402 -20.666231 -2.867561 0.027170 26.923565 -0.537782 0.179553 -0.107601 0.476880 0.162012 0.263674 -0.870204 4.567334 -12.544567 11.073423 -1.961666 21.739981 -0.298687 0.157751 0.097679 0.076028 0.051865 0.112071 2.805073 0.195785 6.161027 -2.921648 1.150901 5.961303 -4.623248 2.137849 4.354261 -5.903542 -9.686723 13.038357 14.175903 -15.188299 -17.623960 -15.228307 -9.128397 -7.554036 -56.767712 -16.037092 -0.813273 -4.627177 -9.664286 -1.740720 0.297891 -0.300012 0.754379 15.820862 21.832270 -2.592506 56.321861 12.903458 -1.278687 6.751014 -0.140766 0.521406 -0.316811 0.291446 -0.127856
+0.045673 1.622727 -0.101774 -1.307575 31.504532 5.101419 4.136148 -4.640971 -22.067869 -2.598397 0.350302 32.738289 -0.563362 0.161129 -0.127968 0.494197 0.179267 0.322679 0.685926 5.363585 -12.062779 10.674849 -1.765763 23.466158 -0.328965 0.191945 0.090683 0.080065 0.005377 0.112212 1.624512 0.736497 8.313964 -2.786476 1.541635 5.643032 -4.202678 2.522297 3.509857 -5.044995 -9.162097 13.436290 13.404222 -13.516983 -18.700151 -15.006967 -5.872342 -7.430754 -54.737816 -13.181705 -1.995807 -4.067081 -8.022627 -1.679808 0.306207 -0.344855 0.806030 14.090717 19.669712 -3.132192 53.779202 11.851755 -1.879015 6.290861 -1.316035 0.559270 -0.321668 0.327179 -0.136427
+0.038062 1.621133 -0.098000 -2.539107 28.322392 2.833482 4.872251 -4.300162 -23.150055 -1.660327 0.401590 38.239227 -0.578022 0.133079 -0.154250 0.524875 0.209181 0.383968 2.411171 5.959274 -10.860471 10.297550 -1.562141 24.708605 -0.363893 0.226103 0.082705 0.082651 -0.050679 0.124605 1.081031 1.220703 11.061692 -2.509348 2.084770 5.352878 -3.891179 3.074405 2.609147 -4.580213 -8.891906 14.238051 12.953568 -12.245547 -20.158567 -15.471665 -3.481658 -7.349738 -52.073566 -10.683299 -2.900753 -3.261326 -6.653798 -1.618655 0.323486 -0.370119 0.855304 12.743415 17.718288 -3.151638 49.721561 10.354803 -2.680617 6.189994 -1.063249 0.490560 -0.322229 0.356002 -0.125303
+0.031166 1.619173 -0.094581 -3.576508 25.685055 0.670709 5.226413 -4.126737 -24.746094 -0.384913 0.198002 44.123356 -0.585848 0.104052 -0.175516 0.532001 0.226030 0.414568 3.902846 6.359382 -9.497768 10.259862 -1.487704 25.945204 -0.382850 0.248775 0.077002 0.080979 -0.092923 0.126200 0.738732 1.671333 13.854104 -2.295930 2.724071 5.140554 -3.725916 3.717514 1.736037 -4.080506 -9.088213 14.627869 12.427448 -11.449990 -21.170031 -15.863491 -1.992991 -7.198258 -49.243698 -8.534172 -3.418180 -2.403185 -4.782040 -1.463233 0.332926 -0.390102 0.882469 11.418810 16.064615 -2.736591 45.485100 8.325389 -3.542760 5.982856 0.200104 0.376738 -0.320224 0.379267 -0.118529
+0.025399 1.616560 -0.089990 -4.476938 22.734089 -1.434413 5.619981 -3.726193 -26.316362 0.458103 0.125947 49.857468 -0.585286 0.097488 -0.174620 0.529123 0.229392 0.428094 5.274849 6.652184 -7.818714 10.122679 -1.367846 27.086338 -0.384313 0.257991 0.081860 0.079427 -0.097722 0.123479 0.380052 2.073292 15.931518 -2.079429 3.274668 5.250958 -3.499412 4.270154 1.402892 -3.867792 -8.653831 14.407247 12.065282 -10.680009 -21.544882 -16.196476 0.124349 -7.140453 -46.873825 -6.247642 -4.067607 -1.032439 -3.984376 -1.395412 0.325300 -0.407583 0.885460 10.699325 14.104102 -3.202756 40.436977 7.522338 -3.815850 5.914464 0.539262 0.303880 -0.319828 0.391584 -0.121211
+0.020655 1.613395 -0.084609 -5.093108 20.353559 -3.235485 5.517555 -3.530102 -28.271029 1.613774 -0.235199 55.886833 -0.548762 0.069867 -0.163076 0.533215 0.242867 0.429141 5.972101 6.726998 -6.121060 10.821815 -1.510506 27.929968 -0.387530 0.254599 0.086945 0.072083 -0.106932 0.128263 0.033118 2.417176 17.530741 -1.996534 3.811437 5.452229 -3.413073 4.751803 1.222151 -3.637442 -8.410713 13.970202 12.022425 -10.333411 -21.116890 -15.794313 2.174526 -6.808105 -45.186874 -4.069597 -4.732700 0.800223 -3.966060 -1.338225 0.334250 -0.376853 0.863421 9.464603 12.674188 -3.069733 35.959827 6.309332 -4.051636 6.294337 2.371308 0.220190 -0.304255 0.369474 -0.099351
+0.014828 1.611675 -0.078620 -5.105045 17.429916 -5.118362 5.301467 -3.021235 -29.252670 2.287838 -0.272677 60.713123 -0.526412 0.040705 -0.153377 0.543770 0.266556 0.440963 6.468807 6.813415 -4.084388 10.750420 -1.387013 28.837938 -0.397870 0.267213 0.090966 0.075976 -0.116623 0.121134 -1.099141 3.081818 19.142580 -2.032782 4.302707 5.847382 -3.151303 5.194668 1.248127 -3.378396 -7.691559 13.719065 12.371578 -9.482788 -21.355881 -15.105375 4.480360 -6.642928 -43.629379 -1.998153 -5.356958 2.524998 -4.507165 -1.314576 0.348870 -0.370547 0.859371 8.503178 11.524672 -3.270375 31.654100 5.848723 -4.026677 5.530474 2.325818 0.206212 -0.291550 0.364538 -0.091793
+0.010387 1.609951 -0.072609 -5.345058 14.688125 -6.975748 5.474342 -2.406427 -30.006945 2.088737 0.141902 64.787849 -0.519593 0.028243 -0.154257 0.555017 0.280568 0.453635 6.893890 7.053107 -2.387663 11.187949 -1.449732 30.159697 -0.403435 0.263138 0.089436 0.079694 -0.127255 0.124990 -1.460409 3.397153 20.199087 -2.119491 4.680070 6.417265 -3.262808 5.568897 1.606546 -3.255279 -7.043422 13.304834 12.098211 -8.700166 -21.440773 -14.071699 7.722288 -6.880201 -42.371433 -0.171041 -5.995424 3.715330 -6.530705 -1.455800 0.353388 -0.351580 0.856379 6.268089 10.051180 -3.797478 28.483416 5.984369 -3.853035 4.664458 0.974154 0.201976 -0.288708 0.349797 -0.084637
+0.007854 1.610060 -0.066421 -5.648067 12.173503 -8.847096 5.375130 -1.763657 -30.022617 1.978590 0.499626 67.122322 -0.545612 0.079110 -0.150612 0.511550 0.204792 0.434366 7.434772 7.277781 -0.486197 11.442039 -1.431772 31.150515 -0.382807 0.266754 0.086399 0.052911 -0.094596 0.117976 -1.047283 3.538762 21.477217 -2.243210 5.087854 6.822426 -3.809104 6.064154 1.529290 -3.932249 -5.776592 13.389167 12.846866 -8.462846 -21.006618 -12.809849 10.142777 -6.662536 -41.667118 2.006035 -6.584204 6.149600 -7.207947 -1.508674 0.333018 -0.381019 0.882698 4.741908 8.771924 -3.687470 24.915491 5.407989 -3.852806 4.101911 0.939659 0.237225 -0.292536 0.379015 -0.127357
+0.004693 1.610511 -0.059908 -5.553627 10.545307 -10.150057 4.915453 -1.486096 -30.243385 1.034615 1.266122 67.861649 -0.543040 0.082356 -0.129364 0.478734 0.184843 0.395283 7.701634 7.322996 1.120506 11.417393 -1.347143 31.755268 -0.360893 0.268556 0.106343 0.046299 -0.057175 0.089449 -0.601671 3.804550 21.464237 -2.410040 5.565807 7.625996 -4.264804 6.574021 2.422313 -4.367423 -5.561579 12.944975 13.121475 -8.732081 -20.762899 -11.872951 10.754381 -6.306997 -40.254539 3.484143 -6.836795 8.056922 -7.418377 -1.473992 0.321282 -0.411070 0.866785 4.001138 7.251029 -3.342404 21.593536 4.211805 -3.882658 2.409232 1.797303 0.239636 -0.295353 0.396028 -0.149704
+0.001695 1.612450 -0.052869 -5.373340 9.269474 -11.470525 4.428051 -1.365638 -30.148535 -0.642694 2.402830 67.441689 -0.534814 0.107326 -0.118022 0.450683 0.145472 0.360703 8.120428 7.188668 2.995039 10.812201 -1.088163 31.921980 -0.344101 0.258554 0.111191 0.026410 -0.025023 0.093232 -0.100794 3.927018 21.314911 -2.640380 5.895441 8.416068 -4.807360 6.954647 3.320374 -4.931509 -5.015524 12.786389 13.782091 -9.102973 -20.026529 -10.843379 10.628262 -5.400447 -38.944599 5.289118 -7.127090 9.904167 -8.429241 -1.579623 0.306926 -0.404736 0.857221 3.611411 6.399340 -2.556140 18.077679 2.872836 -3.705589 1.466547 2.345926 0.274155 -0.293713 0.397912 -0.157386
+-0.002533 1.614630 -0.045279 -5.086693 8.736547 -12.279838 3.726744 -1.454920 -30.136715 -2.490851 3.443774 65.184624 -0.528844 0.141864 -0.113646 0.416009 0.100414 0.310043 8.414451 7.136766 4.190736 10.623656 -0.981190 32.101711 -0.320516 0.236213 0.107548 0.007305 0.018829 0.103387 0.150617 4.007604 20.791025 -2.994122 6.005545 9.158159 -5.350822 7.082654 4.278436 -5.295396 -4.060397 11.986820 15.227148 -9.325465 -19.372549 -9.056774 11.164083 -4.787869 -37.750969 6.504941 -7.302257 11.679968 -9.863174 -1.795802 0.283280 -0.378539 0.840487 3.347882 5.020547 -2.222383 15.141552 2.119232 -3.431368 0.960813 2.482885 0.304130 -0.293330 0.391712 -0.164680
+-0.007072 1.618330 -0.037037 -4.574328 8.190018 -13.558673 2.755128 -1.544344 -28.792286 -4.203548 4.239782 61.150776 -0.568483 0.195638 -0.121904 0.369375 0.036844 0.272950 8.547026 7.038483 6.083698 10.264359 -0.804472 32.223774 -0.292347 0.227951 0.105588 -0.006923 0.060853 0.095513 0.115850 4.215330 20.639395 -3.419868 6.087671 10.035092 -5.856781 7.230531 5.247694 -5.462580 -3.812564 11.649525 16.199734 -9.598606 -19.389700 -8.072838 11.716550 -4.692099 -36.073376 7.265125 -7.217174 14.116966 -11.897864 -2.226597 0.248184 -0.409151 0.855543 2.918489 4.261512 -1.706414 12.424563 1.498610 -3.087065 1.254789 1.707770 0.349793 -0.311587 0.422375 -0.206980
+-0.011313 1.622272 -0.029396 -4.255844 7.941957 -14.780095 1.861434 -1.673558 -27.223433 -6.228176 4.854126 55.953262 -0.587504 0.220829 -0.118198 0.356204 0.019289 0.270622 9.028520 6.898214 7.874267 10.045667 -0.652826 32.229458 -0.284912 0.230328 0.105408 -0.005869 0.083497 0.089263 0.510640 4.188280 20.285748 -3.885718 6.199993 11.005700 -6.553563 7.363367 6.472535 -5.153725 -4.140232 11.177868 16.760815 -9.684392 -19.926695 -7.825684 12.028406 -4.898031 -33.660114 7.600220 -6.873980 16.058943 -14.039983 -2.725705 0.229814 -0.434820 0.862424 2.425594 3.497288 -1.279037 10.274022 0.985408 -2.698193 2.102755 0.730417 0.348464 -0.320857 0.439757 -0.229002
+-0.015207 1.626714 -0.020513 -4.133640 7.775108 -16.066874 1.016259 -1.680784 -24.754183 -7.782279 4.954781 49.632782 -0.602724 0.231635 -0.125577 0.334359 -0.002994 0.252413 9.620517 6.863173 9.653393 10.166613 -0.585444 32.524147 -0.275121 0.229829 0.100303 -0.009738 0.090823 0.078906 0.596255 4.280644 20.244202 -4.089829 6.214974 11.609694 -6.775900 7.392162 7.049859 -5.379565 -4.175507 11.369206 16.904623 -9.879606 -19.786856 -7.276313 12.442415 -4.864797 -32.285316 8.225782 -6.806865 19.245926 -15.601656 -3.279148 0.223029 -0.447532 0.868091 1.792449 3.360036 -0.724649 8.254638 0.454911 -2.409374 2.880080 -1.335449 0.300510 -0.323989 0.452285 -0.246231
+-0.018381 1.630005 -0.011702 -3.991011 7.566072 -16.811357 0.015242 -1.759893 -22.646992 -8.783721 4.611768 42.975014 -0.600023 0.228006 -0.119236 0.335753 -0.004177 0.258429 10.054263 7.056480 10.484654 10.304205 -0.518566 33.243122 -0.275476 0.240011 0.098153 -0.008033 0.091124 0.066278 0.856621 4.318690 19.646355 -4.427507 6.256151 12.018683 -7.213134 7.389434 7.654943 -5.540719 -3.978971 11.650670 17.325384 -9.919218 -19.608664 -5.986817 13.069184 -4.650084 -31.265684 8.768179 -6.832482 21.656338 -17.152130 -3.848125 0.233543 -0.453307 0.870992 0.894782 2.747542 -0.364839 7.325491 -0.062510 -2.233165 3.256404 -1.812000 0.276014 -0.316195 0.453849 -0.253969
+-0.020696 1.630636 -0.002398 -4.126831 7.794203 -16.931412 -0.838905 -1.945436 -20.907887 -9.649115 4.012560 36.095867 -0.586681 0.242247 -0.101813 0.333547 -0.021901 0.247374 10.426807 7.294118 10.473509 10.715249 -0.609220 34.109272 -0.272744 0.220915 0.097301 -0.015245 0.106236 0.071910 1.288474 4.161274 18.749071 -4.554429 6.068383 11.918659 -7.490805 7.137002 7.757003 -5.724540 -3.703621 11.876848 17.202044 -10.260029 -18.103973 -4.190076 14.253014 -4.313207 -30.333218 9.290280 -6.741004 22.727171 -18.430447 -4.210660 0.236752 -0.424085 0.858514 -0.457903 1.925927 -0.257216 6.762671 -0.182746 -2.122958 3.273176 -2.112386 0.259466 -0.312003 0.424635 -0.254839
+-0.022875 1.629747 0.006702 -4.472632 8.186842 -17.068024 -1.681443 -2.192682 -19.145027 -10.050715 3.262365 29.829958 -0.580924 0.220266 -0.092879 0.369760 0.015570 0.270284 10.700032 7.579958 10.174514 11.769273 -0.956435 35.226055 -0.285394 0.215500 0.102202 0.004025 0.089943 0.066559 1.851078 3.906550 17.835476 -4.600837 5.890313 11.957416 -7.671165 6.931386 8.162291 -5.633642 -3.869373 11.850266 16.729771 -10.200115 -17.948910 -3.339663 14.925987 -4.434889 -29.188829 9.280815 -6.522336 25.171671 -19.160498 -4.643772 0.260612 -0.400930 0.853417 -1.802044 0.956153 -0.305770 6.092908 -0.285560 -1.983551 3.251094 -2.641173 0.214050 -0.314547 0.392826 -0.245236
+-0.024068 1.626127 0.016058 -5.273454 8.759889 -16.899858 -2.325442 -2.321586 -17.611217 -9.977678 2.435954 23.767332 -0.583020 0.220507 -0.083728 0.361795 0.016042 0.254268 11.224492 7.864279 9.390880 13.273502 -1.518406 36.308239 -0.274971 0.206743 0.115033 0.010522 0.109031 0.050706 3.165966 3.297576 16.746153 -4.833251 5.644050 11.693574 -8.450964 6.624115 8.286426 -5.066832 -3.607091 12.068057 16.789845 -9.951369 -16.948109 -2.176359 15.778897 -4.120201 -27.414852 9.957491 -6.149684 26.460249 -20.542669 -5.067749 0.252733 -0.407751 0.841299 -3.061572 0.003088 -0.553859 5.996947 -0.045110 -1.955649 3.121947 -3.069754 0.191597 -0.323283 0.387458 -0.258793
+-0.025700 1.620046 0.027458 -5.823000 9.023178 -16.107115 -3.114632 -2.334603 -16.552248 -9.486646 1.767136 18.535543 -0.586465 0.239557 -0.066767 0.340895 0.002554 0.236150 11.608273 8.240806 8.167039 14.639769 -2.008888 37.219173 -0.244436 0.195399 0.129728 0.019045 0.144947 0.024487 3.615959 3.252626 14.353859 -4.823358 5.471860 11.435597 -8.546617 6.525540 8.967821 -4.747459 -3.621076 12.051307 16.356836 -10.078753 -15.634142 -1.407556 16.463936 -3.780350 -25.572245 11.023976 -5.787002 27.796854 -22.104076 -5.580411 0.226584 -0.429262 0.807359 -3.407697 -1.064206 -1.018846 4.634058 0.453520 -1.711582 3.157428 -3.292393 0.142838 -0.330055 0.384666 -0.281421
+-0.027019 1.613307 0.038532 -6.460461 9.240113 -15.371279 -3.561190 -2.234961 -15.754445 -9.184750 1.340235 14.598996 -0.591596 0.238616 -0.074665 0.342567 0.025995 0.220906 11.966275 8.574569 6.935697 16.050371 -2.548697 38.008537 -0.231573 0.179489 0.127971 0.042171 0.156777 0.015269 4.535338 3.111742 11.601721 -4.877549 5.408737 11.400077 -8.911553 6.609269 10.182840 -4.239476 -3.753650 12.304109 16.287533 -10.061085 -15.114967 -1.045628 16.588171 -3.591037 -23.517746 11.893268 -5.349704 29.385859 -22.672020 -5.911297 0.210626 -0.420950 0.777305 -3.712678 -2.101429 -1.395728 3.350409 0.689741 -1.434433 3.358288 -3.473799 0.085072 -0.338465 0.371201 -0.279711
+-0.029074 1.606755 0.048024 -6.810372 9.275526 -15.355342 -3.931231 -2.122959 -14.697793 -9.139399 1.159144 12.435735 -0.570536 0.196972 -0.066574 0.386659 0.095302 0.240252 12.099261 8.897943 6.390271 17.576565 -3.165321 39.007683 -0.251564 0.187064 0.139145 0.070132 0.141384 0.011566 4.882299 3.023941 9.901226 -4.852162 5.337343 11.577704 -8.958626 6.600912 11.189610 -4.053915 -3.954886 12.654314 16.261168 -9.924858 -15.537534 -0.587312 16.302937 -3.170566 -22.000633 12.982309 -5.143117 30.010637 -22.280674 -5.793110 0.234604 -0.409866 0.764058 -4.055399 -2.499152 -1.299668 2.119795 0.429654 -1.166324 3.541401 -3.541464 0.042051 -0.336532 0.353557 -0.254124
+-0.031392 1.600388 0.055617 -6.669817 9.652380 -15.728880 -4.499605 -2.291588 -14.128936 -9.495353 1.221258 12.546248 -0.552937 0.164668 -0.059256 0.414982 0.141496 0.263696 11.617004 9.110893 6.263068 19.087206 -3.937845 40.179920 -0.253824 0.197457 0.158306 0.086927 0.129370 0.001806 4.488379 3.002986 9.375340 -4.834395 5.191481 11.796747 -8.757939 6.424351 11.727263 -3.739225 -4.088414 12.754100 15.967181 -9.654363 -15.645126 -0.089609 15.987109 -3.053134 -20.490063 13.025313 -4.758587 30.259727 -21.178267 -5.408865 0.243799 -0.416562 0.747185 -4.446105 -2.732316 -1.197526 1.270329 0.162522 -1.006136 3.400819 -3.779029 0.008734 -0.334872 0.347403 -0.236856
+-0.034283 1.594756 0.061444 -6.032451 9.876884 -16.616261 -4.996894 -2.444383 -13.455304 -10.543872 1.508445 13.736222 -0.513213 0.117958 -0.057877 0.432978 0.185026 0.268405 10.887471 9.295085 6.745805 20.079943 -4.566698 41.559490 -0.268517 0.199890 0.155451 0.092760 0.102950 0.009131 3.859790 2.859071 10.205362 -5.215463 5.088456 12.065938 -8.967978 6.137178 11.686544 -3.472038 -4.360729 12.366304 15.827411 -9.488283 -15.909581 -0.003556 15.518715 -3.015717 -18.173122 13.000220 -4.203537 30.487890 -19.424179 -4.788542 0.264949 -0.383947 0.724507 -4.277845 -2.476399 -0.903966 0.835400 -0.360045 -0.924176 2.730377 -3.356227 0.044024 -0.314029 0.326410 -0.200417
+-0.036823 1.590169 0.065811 -5.551052 9.878587 -17.501078 -4.845501 -2.537252 -13.493332 -11.813136 1.986752 16.000912 -0.492978 0.098405 -0.046346 0.439015 0.189605 0.260722 10.277125 9.390698 7.223122 21.047129 -5.237915 42.820995 -0.277432 0.201850 0.158928 0.086599 0.099001 0.008465 2.762301 2.987737 11.206544 -5.156317 4.976137 12.254649 -8.437346 5.901616 11.419457 -3.573648 -4.205540 12.035791 16.597221 -9.643493 -15.806314 0.703397 14.689911 -2.570893 -17.622530 12.990817 -4.139852 30.650360 -18.257814 -4.419649 0.289771 -0.362214 0.728043 -3.701504 -1.919399 -0.251441 -0.229506 -1.340169 -0.773066 2.409193 -2.807476 0.081000 -0.303515 0.312764 -0.193625
+-0.038940 1.585690 0.069668 -4.929891 9.488955 -18.203884 -4.374753 -2.442448 -13.616536 -13.454579 2.611083 17.959927 -0.514775 0.121368 -0.062201 0.439389 0.175490 0.287939 9.826928 9.542854 7.654323 21.269226 -5.587439 44.119705 -0.279158 0.200912 0.144325 0.084202 0.082448 0.025800 1.578688 3.293712 11.785263 -5.032387 4.914522 12.684107 -7.779404 5.887495 11.745414 -3.241165 -5.044104 11.124470 15.849629 -9.586782 -16.922413 0.453727 14.212224 -2.916010 -16.196539 12.211713 -3.703997 29.969469 -17.242598 -4.093431 0.271847 -0.369436 0.740453 -3.718600 -1.895893 0.084661 -0.592408 -1.914284 -0.630470 2.649701 -2.121696 0.100070 -0.310996 0.321019 -0.194241
+-0.039790 1.582426 0.072811 -4.576007 8.706415 -18.530401 -3.584489 -2.097750 -13.497498 -14.935224 3.097521 18.574690 -0.521081 0.121746 -0.063135 0.434012 0.176286 0.287586 9.717605 9.692623 7.891283 21.109074 -5.654881 45.152569 -0.268262 0.193425 0.145458 0.091038 0.083881 0.015469 0.982511 3.662735 12.186826 -4.826372 5.090731 12.834388 -7.313937 6.037491 11.749137 -3.035353 -4.881558 10.555465 15.230491 -9.235505 -16.684244 0.394961 13.954680 -3.416221 -15.286575 10.527269 -3.318347 29.636141 -16.606667 -3.922671 0.262765 -0.371829 0.727575 -3.584359 -2.293776 0.217537 -0.775149 -2.474589 -0.462050 2.933989 -1.096669 0.106055 -0.314221 0.315177 -0.201086
+-0.040465 1.580509 0.074951 -4.728564 8.062548 -18.326052 -2.658056 -1.862699 -13.731881 -15.715814 3.277472 18.571857 -0.538020 0.158503 -0.057617 0.431562 0.152943 0.296664 10.045768 9.655723 7.644972 20.876585 -5.667818 45.662395 -0.261336 0.184374 0.145326 0.089048 0.103409 0.023173 1.339209 3.571880 12.295890 -4.946685 5.165821 12.674780 -7.660355 6.102020 11.527073 -2.805838 -4.561454 9.957518 15.306567 -8.992541 -16.592108 0.786733 13.993357 -3.709794 -14.286946 8.952341 -2.837391 28.665321 -16.804798 -3.933703 0.243113 -0.377100 0.733552 -3.508577 -2.782237 -0.131474 0.263298 -2.266652 -0.607973 2.883276 -0.491513 0.123234 -0.325678 0.314343 -0.217065
+-0.041404 1.580895 0.074845 -4.895236 7.432902 -17.854683 -2.113874 -1.748330 -13.805694 -15.552965 3.098426 17.744396 -0.499506 0.114727 -0.035493 0.438645 0.184729 0.282994 10.561412 9.551908 7.204821 20.163866 -5.389934 46.087952 -0.255190 0.182641 0.156341 0.101020 0.106092 -0.004834 1.377042 3.508867 12.480667 -4.967859 5.230163 12.347021 -7.737837 5.998957 11.026372 -2.667446 -3.880090 9.767068 15.675796 -8.730340 -15.417990 1.133555 13.875749 -3.730793 -14.355453 7.654456 -2.759485 28.763899 -17.518848 -4.125731 0.269161 -0.352353 0.697577 -2.973618 -2.897520 -0.396360 1.103943 -2.022044 -0.677411 3.001562 -0.240137 0.089109 -0.304632 0.283507 -0.209004
+-0.041670 1.582720 0.073127 -5.474507 7.057204 -17.512535 -1.687398 -1.742356 -13.658428 -14.894259 2.706068 16.541752 -0.495791 0.114264 -0.023061 0.427961 0.171091 0.262201 11.342493 9.234778 6.946210 19.550903 -5.158121 45.869450 -0.249277 0.164995 0.170132 0.093401 0.118133 -0.009661 1.798280 3.362192 13.147634 -4.674337 5.177801 11.889111 -7.586560 5.886666 10.112708 -2.821289 -3.283498 9.898936 15.097484 -8.465652 -14.126748 1.029614 13.545817 -3.816471 -15.260507 6.508913 -2.838840 29.547970 -18.949345 -4.683426 0.270714 -0.341940 0.692529 -2.872077 -3.019885 -0.337296 2.468552 -2.573386 -0.929480 2.518557 0.383905 0.109882 -0.310458 0.267723 -0.217600
+-0.042555 1.585912 0.070807 -5.525690 6.643189 -16.781773 -1.739013 -1.828545 -13.588310 -14.104346 2.258789 14.864264 -0.498152 0.119066 -0.023439 0.428673 0.170815 0.263698 11.382758 8.901643 6.531032 18.890930 -4.876945 45.151787 -0.253825 0.156564 0.166454 0.094393 0.117203 -0.001975 1.698232 3.400842 13.139298 -4.583563 5.124149 11.549253 -7.427307 5.820834 9.700743 -2.909871 -3.053829 10.202699 14.552790 -8.203836 -13.751229 1.219036 13.474152 -4.119719 -16.445009 4.803295 -2.917284 29.472849 -19.894625 -5.070312 0.267972 -0.338880 0.694202 -2.926183 -3.471682 -0.689204 4.793883 -2.590908 -1.346429 2.217576 0.814022 0.112270 -0.311758 0.261684 -0.217550
+-0.042751 1.589143 0.067831 -5.611749 6.028143 -15.916254 -1.954579 -1.867604 -13.460104 -13.062427 1.765702 12.707577 -0.515330 0.148724 -0.025044 0.411756 0.147614 0.271001 11.490089 8.564092 6.122901 17.992548 -4.464954 44.180592 -0.253084 0.158921 0.169666 0.083305 0.128684 0.010883 1.636103 3.406329 13.129486 -4.443459 4.975444 11.189629 -7.216844 5.715500 9.268760 -2.622431 -3.128877 10.111777 13.734401 -7.724998 -14.168811 0.922523 13.521897 -4.463075 -17.292879 3.709733 -2.923253 28.915710 -21.382702 -5.532259 0.233529 -0.374101 0.704379 -3.052137 -3.872083 -1.161016 7.203297 -2.304205 -1.821709 1.787751 1.143558 0.125811 -0.326457 0.289703 -0.226884
+-0.043336 1.592032 0.064253 -5.793404 5.034198 -14.978838 -1.817959 -1.641853 -13.311058 -12.262595 1.359153 10.131037 -0.495148 0.144533 -0.022228 0.428027 0.171063 0.303682 11.463897 8.376217 5.533312 17.434933 -4.198422 43.530918 -0.261829 0.150629 0.174898 0.082494 0.114929 0.040429 0.630329 3.872684 12.953299 -3.687336 4.864581 10.882153 -5.875412 5.628141 8.981506 -1.851942 -3.682354 9.725750 12.149154 -7.123487 -14.332967 -0.194883 13.913610 -5.201725 -18.561829 2.385224 -2.992951 28.892714 -23.348284 -6.170388 0.210860 -0.367843 0.682539 -3.146991 -4.473629 -1.666033 8.737342 -1.890279 -2.024049 1.897110 1.376961 0.097880 -0.326871 0.279169 -0.195067
+-0.043358 1.595042 0.059627 -6.056501 4.317076 -14.044091 -1.841374 -1.586961 -13.457497 -11.196698 0.991095 8.074436 -0.490393 0.146872 -0.026956 0.444629 0.180284 0.342418 11.092835 8.019511 4.849185 17.630259 -4.340019 42.492218 -0.278549 0.143104 0.174461 0.076181 0.091871 0.073083 -0.359603 4.231621 12.956341 -2.881751 4.618248 10.394810 -4.477184 5.408149 8.407340 -1.154337 -3.624262 9.796670 10.514549 -6.032311 -14.355914 -0.925410 13.901865 -5.417738 -20.188593 1.606490 -3.137655 28.223068 -25.602871 -6.777121 0.196185 -0.360462 0.686601 -3.157259 -5.153779 -2.180488 11.304285 -1.971972 -2.651613 -0.129108 2.851939 0.085543 -0.331694 0.271134 -0.174107
+-0.042656 1.597669 0.053460 -6.426638 3.536702 -13.586271 -1.945859 -1.582665 -13.331447 -9.689974 0.632015 6.213453 -0.470395 0.102348 -0.048291 0.466405 0.200744 0.366441 10.910153 7.551595 4.636722 17.629892 -4.397682 41.544319 -0.299257 0.150129 0.157674 0.070936 0.033515 0.084942 -0.534407 4.211211 14.273615 -2.380306 4.423529 9.663254 -3.860014 5.113439 7.002732 -1.014222 -2.874205 10.240171 10.420996 -5.094820 -14.366950 -1.235526 13.494546 -5.240668 -21.792099 0.956805 -3.356978 27.958836 -27.097466 -7.202539 0.233332 -0.313191 0.699692 -2.577214 -5.349192 -2.378464 14.041695 -2.504968 -3.431460 -2.565401 4.379806 0.022432 -0.311519 0.248779 -0.145534
+-0.041985 1.599761 0.046945 -7.111927 2.733611 -12.768071 -1.623541 -1.522498 -13.890051 -8.352998 0.378807 4.952783 -0.450083 0.091897 -0.062484 0.493507 0.225836 0.378559 11.236578 7.084146 4.047431 17.564560 -4.421905 40.534851 -0.321440 0.137019 0.140104 0.070200 0.011470 0.125927 -0.194313 4.178257 14.585880 -1.791273 4.375157 9.218682 -3.322288 5.068130 6.408412 -0.799754 -2.438090 10.195643 10.786695 -4.700784 -14.650027 -1.472904 12.910835 -5.800559 -23.600740 -1.389718 -3.381789 27.297716 -26.758974 -7.163976 0.240964 -0.255909 0.697913 -2.048752 -5.800371 -2.739186 16.061876 -2.447714 -3.813282 -2.833793 4.235734 0.012486 -0.304081 0.220733 -0.106104
+-0.040630 1.600742 0.039197 -7.842191 1.821958 -11.850981 -1.344640 -1.537237 -14.852860 -6.840158 0.192858 4.260090 -0.470127 0.104994 -0.068153 0.518332 0.244448 0.396797 11.346648 6.684801 3.279359 18.139788 -4.707869 39.552475 -0.333094 0.129464 0.131481 0.089450 0.011423 0.135001 0.763873 4.111154 14.052859 -1.389540 4.523220 9.240656 -3.171785 5.271646 6.775806 -0.507326 -2.363046 9.887308 11.086481 -4.533690 -15.255362 -1.711168 11.937687 -6.742143 -24.926035 -4.446634 -3.197478 25.960289 -25.971628 -6.959079 0.241144 -0.246440 0.709604 -1.741394 -6.143349 -3.013689 17.872826 -2.106651 -3.922175 -1.163330 3.032800 0.037642 -0.317028 0.209550 -0.109558
+-0.040021 1.602713 0.029556 -8.507977 1.138346 -11.368317 -1.176508 -1.626343 -15.616118 -5.140998 0.044430 4.068170 -0.492683 0.103531 -0.081990 0.531865 0.244946 0.427342 11.428002 6.171286 2.768709 19.046562 -5.170203 38.563126 -0.349212 0.143883 0.119972 0.093479 -0.014539 0.133957 1.787275 3.758174 14.483984 -1.229457 4.507627 9.122309 -3.388549 5.265185 6.605910 -0.015911 -2.415135 10.400638 11.310843 -4.113503 -15.783969 -2.181336 9.796334 -6.965028 -25.545555 -6.310042 -3.187025 24.959631 -25.215872 -6.821713 0.256305 -0.257824 0.746413 -1.265792 -5.382290 -2.575724 21.292364 -2.632297 -4.571605 -1.560523 3.144281 0.037535 -0.320099 0.219349 -0.121027
+-0.040496 1.604033 0.020721 -8.633756 -1.573110 -11.131506 -0.203922 -1.224436 -15.803123 -4.197039 0.004062 3.513190 -0.502556 0.082074 -0.103136 0.571505 0.289076 0.465337 11.485034 6.254771 2.735065 18.980968 -4.991551 38.182899 -0.375473 0.153498 0.109329 0.114425 -0.051667 0.143695 1.708814 4.016927 14.783199 -1.004399 4.721136 9.165123 -3.098986 5.446383 6.684872 0.168611 -1.713058 11.103239 11.074471 -3.057301 -16.518053 -2.915517 8.498285 -7.275072 -26.412558 -7.560674 -3.246636 24.463438 -24.882555 -6.837063 0.275801 -0.246606 0.768323 -0.038173 -4.175982 -3.132375 23.756567 -1.008345 -4.766864 -2.484317 2.362930 0.049244 -0.322589 0.214022 -0.107409
+-0.039827 1.603822 0.011106 -8.537161 -5.603940 -10.895358 1.388055 -0.640032 -16.175356 -4.060088 0.036970 3.348687 -0.530282 0.083468 -0.127672 0.593581 0.317036 0.492598 11.600969 6.851070 2.496194 18.122404 -4.475215 38.860382 -0.389137 0.151589 0.102064 0.134564 -0.073257 0.155409 1.672062 4.506456 14.977209 -0.909994 5.174288 9.396465 -2.968445 5.891224 7.051129 0.448807 -0.948838 11.272614 10.081798 -1.760068 -17.441475 -4.506136 7.173597 -7.921355 -26.435722 -8.692410 -3.251347 24.333052 -24.820116 -6.956473 0.265957 -0.252267 0.784387 1.465188 -3.019612 -3.733973 25.382353 0.768599 -4.717405 -2.609383 3.173218 -0.046670 -0.340359 0.218296 -0.104868
+-0.038469 1.603450 0.000656 -8.669955 -8.889622 -11.010361 2.918513 -0.311682 -16.804071 -3.715788 0.060996 4.770159 -0.563680 0.084882 -0.158341 0.642437 0.361210 0.553384 11.842121 7.214280 2.396221 17.341831 -4.117503 39.610577 -0.419174 0.146923 0.080880 0.165016 -0.119036 0.180379 1.583976 4.852439 15.092634 -0.438878 5.399742 10.036619 -2.262841 6.173857 8.026983 0.872611 -0.598690 11.179655 8.533089 -0.450847 -18.925381 -6.853514 5.159647 -8.631979 -26.402456 -9.910235 -3.360875 24.437632 -25.717844 -7.433562 0.267544 -0.238903 0.809897 2.978642 -1.577064 -4.083611 25.788862 2.369560 -4.421221 -1.979339 4.469774 -0.160062 -0.357317 0.204773 -0.093568
+-0.037852 1.602558 -0.009399 -8.528865 -11.782388 -11.195033 4.459744 -0.110428 -17.892426 -3.735615 0.167769 7.501095 -0.599703 0.106453 -0.172358 0.657286 0.377027 0.600818 12.099599 7.397387 2.463532 15.885890 -3.528864 40.273319 -0.426225 0.145770 0.070183 0.189493 -0.133071 0.184561 0.915948 5.305832 14.975981 -0.037992 5.541575 10.677609 -1.368023 6.343130 9.082764 1.788709 -0.880840 11.040250 6.904176 0.548386 -19.768591 -9.620966 2.947673 -9.533632 -25.201527 -11.288460 -3.407972 24.132675 -27.396652 -7.948968 0.239935 -0.269987 0.818005 5.349040 0.007910 -4.450488 25.759266 3.802063 -4.170220 -1.572287 6.403039 -0.322354 -0.375529 0.212634 -0.106757
+-0.035572 1.601129 -0.018701 -8.460671 -14.527918 -11.673638 6.337739 0.072293 -19.120441 -4.539550 0.399319 11.629545 -0.622813 0.106341 -0.195881 0.685742 0.414705 0.629621 12.305518 7.433043 2.855242 14.219005 -2.873035 40.789646 -0.441972 0.146645 0.053224 0.217805 -0.153457 0.192429 0.884196 5.316093 15.401406 0.188066 5.599452 11.225707 -1.031792 6.389999 9.863536 1.962904 -0.619630 11.305351 6.481837 1.201231 -20.698587 -12.037810 0.462215 -10.103388 -24.030695 -12.430778 -3.561134 23.659901 -29.257032 -8.453406 0.235837 -0.268050 0.825987 8.291071 1.970936 -4.981664 25.244617 5.533561 -3.994895 -1.858768 8.133864 -0.502231 -0.386510 0.211124 -0.100760
+-0.031967 1.598767 -0.028115 -8.202033 -17.271656 -12.029581 8.168844 0.142976 -20.848936 -5.765432 0.832474 16.946722 -0.678158 0.145943 -0.222460 0.700551 0.408424 0.675796 12.332624 7.529608 2.954453 12.540421 -2.259396 41.437984 -0.448535 0.144590 0.036579 0.232147 -0.167545 0.204412 0.344542 5.466733 15.686317 0.592577 5.489139 11.656077 -0.191052 6.344524 10.536777 1.996294 -0.162407 11.627958 5.226803 2.072626 -21.464582 -13.769635 -2.252175 -10.151012 -23.997086 -13.259304 -3.765440 22.946787 -30.919790 -8.927555 0.211025 -0.295198 0.858036 10.503650 4.041214 -5.526779 24.693262 7.500402 -3.864114 -1.800703 9.561327 -0.632198 -0.411608 0.225655 -0.119966
+-0.027803 1.597802 -0.038296 -7.493930 -20.085546 -12.756677 9.833111 0.131750 -22.539646 -7.500815 1.534848 22.963163 -0.689699 0.155924 -0.238336 0.724115 0.436334 0.693573 11.932456 7.729371 3.050954 10.584814 -1.494938 42.297615 -0.465228 0.136853 0.027093 0.248603 -0.173967 0.228126 -0.365394 5.540658 16.634020 0.781927 5.382965 11.937026 0.315444 6.206819 10.709776 1.702091 0.962741 12.321740 4.547072 3.029237 -21.655489 -15.226779 -4.632668 -10.294576 -23.944445 -14.416365 -3.948618 22.693195 -31.371840 -9.148130 0.198781 -0.288318 0.862737 12.859879 6.237404 -6.419742 24.072592 10.100929 -3.650813 -1.070169 10.362658 -0.666614 -0.422411 0.222532 -0.106768
+-0.024036 1.598670 -0.048295 -6.744398 -22.626949 -13.503515 11.471275 0.112351 -24.025383 -9.662679 2.541649 28.939156 -0.706735 0.150195 -0.262449 0.763716 0.479853 0.726663 11.914480 7.862225 3.132725 8.254448 -0.520064 42.922150 -0.489629 0.133154 0.010901 0.274273 -0.200378 0.245752 -1.220822 5.615343 17.529762 0.933697 5.239964 12.212817 0.846218 6.006251 10.912934 1.484120 2.219348 13.229385 3.987791 4.196107 -22.047091 -15.953197 -6.503157 -10.496484 -24.116835 -15.854611 -4.032582 22.157085 -32.495907 -9.432555 0.204493 -0.271942 0.877351 14.681398 8.250980 -7.425218 24.198839 12.861330 -3.409259 0.455122 11.024898 -0.605893 -0.431157 0.210858 -0.092617
+-0.019578 1.599564 -0.057778 -5.753385 -24.796505 -14.087120 12.781827 -0.207441 -25.675493 -12.218158 3.856990 34.823349 -0.728402 0.145072 -0.285555 0.798853 0.520402 0.758505 11.549994 7.961546 2.747579 5.990807 0.354238 43.553497 -0.509133 0.132643 0.000493 0.298837 -0.223943 0.257642 -1.953511 5.594425 18.223082 0.937189 5.056224 12.397540 1.186916 5.778185 11.090706 1.037798 3.244866 14.073717 3.185899 5.111345 -22.634178 -16.179165 -8.301425 -10.830832 -24.511190 -17.792847 -3.967719 20.699020 -33.894817 -9.485025 0.208119 -0.270920 0.892861 16.211451 10.084715 -8.288543 25.085737 15.262400 -3.263641 1.651075 12.056154 -0.578516 -0.441781 0.208540 -0.083026
+-0.014428 1.601342 -0.066683 -4.659774 -26.503271 -14.570338 13.707999 -0.876459 -27.343254 -14.741407 5.410605 40.615929 -0.769704 0.150191 -0.314337 0.814781 0.543442 0.772671 10.616905 8.038514 1.844983 4.421527 0.827156 44.246857 -0.514995 0.130340 -0.002675 0.324365 -0.238970 0.254222 -2.824683 5.566606 18.798265 0.901086 4.761019 12.483549 1.575875 5.467233 11.194688 0.661860 4.355558 15.046920 2.263628 6.139658 -22.975840 -16.242790 -10.588554 -11.123248 -24.970383 -19.963137 -3.880551 19.440142 -35.328617 -9.593328 0.199534 -0.289451 0.911532 17.808470 12.115895 -9.035743 26.005264 17.621380 -3.116271 2.568244 12.555613 -0.539392 -0.466386 0.218758 -0.094191
+-0.008829 1.603109 -0.074684 -3.951068 -28.314140 -14.658726 14.656464 -1.484501 -28.988861 -16.692184 6.948024 46.013744 -0.781411 0.157537 -0.326287 0.834949 0.561806 0.796363 10.009518 8.156072 0.609379 2.790552 1.355837 44.942593 -0.529109 0.132999 -0.007122 0.334129 -0.246105 0.268468 -3.047845 5.335081 19.334686 0.839016 4.587658 12.353227 1.608082 5.275980 11.017730 0.437865 5.567584 16.024952 1.901066 7.147861 -23.041361 -16.170395 -13.187204 -11.091045 -25.422512 -21.855394 -3.810431 18.075987 -36.958931 -9.666641 0.192161 -0.295266 0.924107 19.069092 14.252347 -9.332437 27.213049 19.503361 -2.955547 3.485200 13.497530 -0.491509 -0.474513 0.224502 -0.088273
+-0.003852 1.607093 -0.080989 -2.896662 -30.115959 -14.805517 15.251166 -2.069932 -29.847027 -18.544859 8.535769 50.239414 -0.805040 0.159552 -0.347084 0.865764 0.586449 0.845685 8.913358 8.079727 -0.280793 1.316384 1.804896 44.753677 -0.552468 0.146162 -0.028084 0.351881 -0.276800 0.277291 -3.832794 5.394170 19.295912 0.814932 4.357676 12.312677 1.997712 5.024978 11.154979 0.011191 6.492095 17.167461 1.177251 8.008206 -23.738403 -15.853295 -15.522545 -11.102896 -26.583313 -23.804476 -3.760355 17.679979 -38.716789 -10.173847 0.199799 -0.308034 0.952064 20.382586 16.483505 -9.621178 28.525106 21.361944 -2.873426 4.053050 14.467405 -0.493729 -0.474997 0.232469 -0.086949
+0.001097 1.612081 -0.085637 -2.009492 -32.103107 -14.571639 15.690452 -2.468781 -30.211660 -20.086716 9.942435 53.228905 -0.824168 0.149686 -0.371978 0.900415 0.627798 0.870592 7.707985 7.885155 -1.140233 0.317813 2.014092 43.834743 -0.568441 0.149165 -0.037252 0.377586 -0.301117 0.284288 -4.087099 5.370061 18.836349 0.673531 4.316521 12.288920 2.009706 4.951563 11.451797 -0.449880 7.678872 17.719826 0.946899 8.769865 -24.558426 -15.501579 -17.728943 -11.281701 -27.603498 -26.205488 -3.452594 16.468843 -40.785332 -10.343193 0.208900 -0.300627 0.965986 22.039856 18.005072 -9.962749 29.935440 23.090492 -2.860291 4.654496 16.845171 -0.536531 -0.484247 0.229993 -0.077167
+0.006153 1.618039 -0.089065 -1.159633 -34.417976 -14.113240 16.254591 -2.486581 -30.078491 -21.829233 11.530076 55.452095 -0.817439 0.111422 -0.398393 0.929744 0.686760 0.888795 6.591913 7.667726 -1.917775 -0.506562 2.177115 42.379234 -0.581796 0.150947 -0.049624 0.403784 -0.337581 0.287185 -4.317830 5.527941 17.547800 0.622589 4.396069 12.401053 2.226631 4.937293 12.249357 -0.603485 8.691172 18.291443 0.333090 9.715027 -25.155951 -14.696858 -19.727465 -11.243314 -29.037321 -28.495146 -3.001236 15.277623 -42.961945 -10.489894 0.218893 -0.277447 0.951106 23.210218 19.423939 -10.020134 31.335407 24.357399 -2.894075 5.340564 20.328924 -0.598119 -0.478576 0.217230 -0.047901
+0.011989 1.624733 -0.092506 -0.508101 -36.275551 -13.372909 16.369020 -2.927111 -29.939592 -22.814600 12.535553 57.173092 -0.836719 0.107558 -0.423427 0.972779 0.732218 0.948996 5.427729 7.206614 -2.720895 -1.176937 2.110198 40.667812 -0.605508 0.140913 -0.063456 0.430563 -0.378063 0.311365 -4.656405 5.472090 15.542945 0.534732 4.162086 12.803163 2.584735 4.643502 13.712276 -0.035264 9.062766 18.888077 -1.375103 10.961511 -26.018171 -12.964817 -21.662720 -11.440739 -30.999987 -31.429777 -2.242731 14.988541 -45.140751 -11.083923 0.209694 -0.266970 0.957691 22.610880 21.099209 -10.295825 33.775581 26.205519 -2.374150 6.621922 22.771980 -0.497026 -0.492275 0.199208 -0.030320
+0.018954 1.632839 -0.095398 -0.188872 -37.987804 -12.384252 16.186266 -3.313287 -29.581469 -23.117594 13.074473 58.509781 -0.859864 0.137657 -0.422318 1.000346 0.754921 0.980029 4.516550 6.785149 -3.590943 -1.777411 2.037611 38.593773 -0.622438 0.119869 -0.074240 0.456210 -0.368956 0.331829 -4.081478 5.046100 13.537821 0.307615 3.955226 13.266047 2.319573 4.426194 15.248762 0.099114 9.324507 18.971975 -2.113749 11.425934 -26.141409 -11.261165 -23.439707 -11.521269 -32.529953 -34.112473 -1.371864 15.120495 -48.673763 -12.116186 0.189029 -0.266114 0.959605 21.793381 22.915958 -10.753973 35.712666 28.473804 -1.489384 8.507584 24.322695 -0.140397 -0.511834 0.180841 -0.034278
+0.025306 1.641383 -0.097301 -0.542251 -39.944088 -10.915195 16.314032 -3.403374 -28.652822 -22.771137 13.174883 59.425407 -0.911298 0.178894 -0.421773 1.002673 0.749986 0.990762 4.396669 6.370944 -4.169369 -2.806166 2.146480 35.777962 -0.615354 0.099170 -0.070744 0.482067 -0.346302 0.320824 -2.882785 4.556510 11.570958 0.197635 3.843090 13.670925 1.922955 4.362372 16.704454 -0.018685 10.005386 18.846231 -3.027206 11.904634 -26.099365 -9.734567 -25.398897 -11.464329 -34.038246 -36.989613 -0.178231 15.993881 -51.362659 -13.309598 0.160318 -0.297221 0.967722 21.165436 24.301682 -11.337437 37.767395 30.888477 -0.584838 9.875473 26.708069 0.148753 -0.547113 0.178486 -0.073544
+0.031304 1.650131 -0.098817 -0.856332 -41.929783 -9.695102 15.919070 -3.492672 -27.085224 -21.717609 12.839348 60.061893 -0.937801 0.192432 -0.437172 1.015883 0.768596 1.021454 4.173833 5.876807 -4.288719 -3.558881 2.115716 32.378529 -0.618884 0.076039 -0.078767 0.503126 -0.359664 0.332117 -2.260154 4.276648 9.761883 0.186860 3.655869 14.210108 1.881805 4.161911 18.277431 0.333169 10.605669 18.321684 -4.968009 12.809434 -26.825466 -8.415435 -26.805695 -11.385502 -35.180901 -39.826572 1.051894 17.880074 -54.470871 -15.113780 0.132578 -0.296201 0.958876 19.697815 25.482771 -12.363465 39.688690 33.755463 0.871723 12.100214 28.769585 0.842052 -0.566970 0.162527 -0.074986
+0.036861 1.658108 -0.100139 -0.708711 -43.809464 -8.467267 14.905660 -3.534812 -25.559381 -20.248421 12.217989 60.160931 -0.946055 0.210920 -0.418664 1.024623 0.787402 1.030497 3.471545 5.498128 -4.822309 -3.885707 1.971624 29.379862 -0.611777 0.046737 -0.062921 0.526348 -0.332026 0.331516 -1.974897 4.220587 7.711865 0.019630 3.570854 14.578968 1.722256 3.962033 19.697908 0.817285 11.011915 17.349674 -5.980451 13.452775 -26.642031 -6.325960 -27.790190 -11.353952 -36.349861 -42.721581 2.795760 19.648014 -57.580349 -16.854179 0.100534 -0.300538 0.929589 18.356791 26.276810 -13.279320 42.114651 36.407654 2.660153 14.139043 30.977058 1.550706 -0.589365 0.137617 -0.085893
+0.042599 1.664144 -0.102071 -0.526642 -45.121262 -7.063622 13.826838 -3.506287 -24.599703 -19.174902 11.631252 59.457645 -0.946995 0.258391 -0.387693 0.999439 0.771575 1.008299 2.826969 5.272092 -5.705747 -3.972290 1.806051 27.176693 -0.582507 -0.008145 -0.044892 0.536935 -0.267804 0.336139 -2.219940 4.336460 5.366789 0.003672 3.388917 14.782374 2.017438 3.591717 21.089649 1.700519 10.786987 16.190712 -6.775830 13.974439 -25.134264 -3.153059 -28.147654 -11.463265 -38.719383 -46.343384 5.620354 23.407269 -59.769814 -19.725792 0.033027 -0.296529 0.870817 16.166775 26.730240 -14.252510 44.815201 38.909500 4.892429 15.825143 33.364933 2.250826 -0.615879 0.101931 -0.105385
+0.048080 1.669042 -0.104226 -0.733068 -46.235039 -5.375851 12.913041 -3.198283 -23.421019 -17.914255 10.767119 57.741364 -0.954308 0.307424 -0.364783 0.986264 0.777217 0.987194 2.533220 5.195895 -6.705918 -4.037186 1.696595 25.221849 -0.553377 -0.077391 -0.025005 0.561223 -0.200391 0.349465 -2.017075 4.387517 3.086557 -0.028125 3.278562 14.960279 2.086468 3.206985 22.626192 2.779102 10.826136 14.578620 -7.635259 14.627603 -23.868572 0.433951 -27.764511 -11.965924 -40.785454 -49.879936 8.719790 27.362999 -60.750969 -22.435328 -0.046996 -0.280404 0.800177 13.817894 26.494278 -15.624992 48.139809 41.790955 7.802432 16.585855 35.660488 2.705543 -0.655214 0.055326 -0.116324
+0.053377 1.672585 -0.106142 -0.671565 -46.814785 -3.893197 11.459826 -2.942939 -22.181154 -16.140398 9.583920 55.547531 -0.950636 0.365005 -0.340331 0.966309 0.764097 0.954548 1.957998 5.182302 -7.797228 -3.645499 1.523312 23.671066 -0.517947 -0.164296 -0.022018 0.578267 -0.131754 0.372793 -1.919564 4.425741 1.148464 -0.076473 3.175823 14.957006 2.065717 2.795013 23.794067 3.826082 10.731641 12.605187 -7.889929 15.008503 -21.867220 3.222129 -27.083439 -12.216269 -42.217484 -53.365868 12.120479 31.694693 -61.845379 -25.287073 -0.122936 -0.224026 0.718904 12.114221 25.818710 -16.546345 51.171307 44.459446 10.872104 16.401535 38.809841 2.942775 -0.682854 -0.019257 -0.122532
+0.059708 1.674683 -0.107227 -0.859234 -46.958382 -2.335909 9.919062 -2.736645 -20.640936 -14.101479 8.071872 52.302254 -0.958169 0.440343 -0.315949 0.939822 0.745111 0.919628 1.410876 5.200613 -8.952253 -2.924253 1.288273 22.457314 -0.481776 -0.251803 -0.021149 0.597846 -0.051501 0.399063 -1.350319 4.238487 -0.561026 -0.121929 2.950678 14.955166 1.860435 2.281338 24.973686 4.827607 10.758275 10.633663 -8.282496 15.194546 -20.152388 6.449837 -25.609381 -12.709257 -43.667767 -56.592579 15.710822 35.943020 -62.011654 -27.848598 -0.213995 -0.185012 0.638861 9.052210 24.649481 -17.605297 55.137161 47.822521 15.320253 15.135632 43.891220 2.928677 -0.717636 -0.082079 -0.135897
+0.065416 1.676155 -0.108555 -0.878984 -46.990540 -1.003827 8.527240 -2.343069 -18.514132 -12.292443 6.673387 47.958683 -0.971574 0.502153 -0.290632 0.947485 0.767150 0.897013 1.071578 5.108507 -9.644040 -2.864466 1.226002 20.680563 -0.453429 -0.340292 -0.010996 0.641907 0.025014 0.420717 -0.767321 4.114294 -2.158368 -0.179680 2.845925 15.011827 1.526419 1.896911 26.267313 5.323076 10.922235 8.268052 -8.490258 14.956399 -18.852190 9.191633 -24.203531 -13.362367 -45.204578 -60.212364 19.946867 39.044483 -61.700741 -29.297483 -0.289116 -0.141418 0.558560 7.379398 23.140976 -18.209124 58.328152 51.342308 20.247238 12.153774 49.311752 2.164521 -0.762205 -0.156868 -0.142680
+0.070576 1.675576 -0.109205 -1.230472 -46.656609 0.442605 7.331985 -1.740466 -16.060001 -10.061866 5.214743 42.836052 -0.997944 0.571828 -0.276640 0.947832 0.780475 0.880163 1.053766 5.037213 -10.068597 -2.993827 1.212883 18.801537 -0.425038 -0.432788 -0.008094 0.684772 0.094772 0.446590 -0.284973 3.882831 -3.749554 -0.072697 2.528199 14.991328 1.398276 1.312439 27.576986 6.027594 11.206347 5.910971 -9.104285 15.137292 -17.829308 11.725971 -22.904642 -13.194918 -47.234917 -64.533775 25.224836 48.677532 -60.326427 -34.716457 -0.376537 -0.100843 0.483832 4.899434 21.511467 -18.576088 61.936188 55.069584 26.199390 4.828767 54.079399 -1.240528 -0.812577 -0.227911 -0.154991
+0.075876 1.673657 -0.109018 -2.077862 -46.110245 2.012757 6.535984 -1.331937 -13.081786 -8.285513 3.906640 36.841415 -1.018823 0.641023 -0.253573 0.927581 0.766131 0.849975 1.363298 4.890635 -10.263627 -2.874372 1.114060 16.737457 -0.388357 -0.516681 -0.005158 0.712771 0.169920 0.458273 0.481760 3.436158 -5.048006 0.158610 2.045128 14.902683 1.410088 0.645872 28.431152 6.507666 11.548370 4.081892 -9.396035 15.291439 -16.265709 13.629256 -22.269430 -12.785307 -47.420818 -67.600021 28.423721 55.280792 -57.893425 -37.501396 -0.455382 -0.070563 0.415153 2.309518 20.545267 -18.556328 63.445854 58.406113 31.174095 -3.587263 57.647339 -5.777683 -0.851452 -0.290484 -0.180625
+0.081399 1.670869 -0.107950 -3.024992 -45.163448 3.657308 5.893311 -1.174371 -10.053085 -6.714139 2.707225 30.537392 -1.019406 0.691615 -0.225973 0.901554 0.746145 0.812211 1.922684 4.651367 -10.529010 -3.311572 1.057028 14.482162 -0.352628 -0.579892 0.002972 0.725711 0.238784 0.462736 1.321715 2.750009 -6.127728 0.409789 1.401359 14.669721 1.591582 -0.009055 28.826303 6.777174 12.019965 2.717205 -9.378774 15.401419 -14.719897 14.439263 -21.786655 -12.179305 -48.106052 -69.398895 30.808195 59.139744 -55.577740 -38.558247 -0.514520 -0.042489 0.351448 -0.302565 19.854856 -17.972563 63.413548 61.707382 35.246841 -15.484043 60.341480 -12.905975 -0.872714 -0.338976 -0.199186
+0.087997 1.667311 -0.107076 -4.209492 -43.682922 5.327074 5.640352 -1.121407 -7.192679 -4.969370 1.564939 24.122175 -1.042845 0.742357 -0.223079 0.920845 0.791623 0.796968 2.511583 4.493289 -10.739907 -3.291160 0.951021 12.801895 -0.332223 -0.665120 0.001257 0.783237 0.295874 0.487380 2.675274 1.955778 -7.170510 0.667585 0.729253 14.539393 1.773978 -0.718704 29.603876 6.918083 12.356170 0.999013 -9.626181 15.236059 -13.834995 15.685409 -19.757973 -12.304187 -52.083424 -71.228249 35.669212 61.458885 -53.491234 -38.906113 -0.587467 0.003552 0.274759 -2.650172 18.035553 -18.101049 64.836891 65.297920 40.881710 -27.158100 60.834400 -19.952339 -0.919769 -0.409900 -0.196231
+0.094787 1.664079 -0.106596 -4.985158 -41.739777 6.478364 5.355981 -1.161506 -4.619622 -3.154108 0.644335 18.145716 -1.090246 0.817315 -0.219817 0.915304 0.789075 0.788350 2.564704 4.277537 -10.861807 -2.881729 0.762308 11.261994 -0.306446 -0.734677 -0.003111 0.822015 0.355988 0.500772 3.502032 1.115947 -7.960092 0.944044 -0.097512 14.434904 2.296673 -1.536874 30.153122 7.272769 12.537025 -0.196136 -10.017186 15.306556 -13.035751 15.669153 -17.467937 -12.309466 -56.735508 -72.494247 40.849648 63.261333 -51.987835 -39.211372 -0.667121 0.012065 0.229978 -4.700796 16.199377 -18.488214 66.628220 68.156883 46.066250 -34.702087 59.956367 -24.123089 -0.970360 -0.451779 -0.225195
+0.101391 1.662085 -0.106556 -5.300417 -40.164059 6.764904 4.916523 -1.123915 -2.158214 -1.728130 0.088607 13.530686 -1.099236 0.839905 -0.209688 0.915599 0.801475 0.780011 2.097042 4.026699 -10.743176 -2.141443 0.577856 10.268116 -0.295503 -0.763969 0.000655 0.844227 0.386985 0.501329 3.746252 0.343584 -8.364570 1.232044 -0.869282 14.649433 2.940700 -2.295182 30.753368 7.235092 12.683440 -0.707292 -10.284906 15.279030 -12.616693 15.196456 -16.014782 -11.866718 -56.073547 -72.118721 40.071522 67.018219 -51.379295 -41.398281 -0.697536 0.014138 0.198975 -6.720199 15.631665 -18.756304 65.503212 70.584396 47.880749 -40.419041 58.486000 -26.962854 -0.987462 -0.472984 -0.233663
+0.106544 1.661798 -0.106456 -4.944256 -39.087788 6.348263 4.325727 -0.970683 0.016181 -1.205743 -0.157807 9.864465 -1.096951 0.822241 -0.219537 0.954418 0.851100 0.799497 1.295098 3.731236 -10.465878 -1.462644 0.427104 9.707247 -0.313712 -0.764381 -0.004805 0.867795 0.368795 0.511673 3.171412 -0.430666 -8.544799 1.389963 -1.645985 15.086342 3.622384 -2.982769 31.504795 6.846983 12.960088 -0.861428 -10.437006 15.113918 -13.143548 13.846340 -14.872466 -11.076325 -54.482483 -70.344421 37.039261 72.295982 -51.172344 -45.048656 -0.682150 0.032925 0.196125 -8.196864 15.559580 -19.170992 64.083588 72.440781 48.616299 -43.497639 57.674503 -28.336992 -0.988700 -0.487447 -0.210443
+0.111254 1.662997 -0.106018 -4.740160 -38.537167 6.115050 4.048481 -0.737400 1.379201 -1.179225 -0.227580 7.158032 -1.084738 0.788376 -0.228655 1.000917 0.920972 0.829529 0.713187 3.411147 -10.135060 -0.925823 0.299939 8.839221 -0.336795 -0.755659 -0.007592 0.898849 0.341237 0.516950 2.366146 -0.958242 -8.728352 1.630340 -2.214990 15.438787 4.476635 -3.578359 32.226089 6.641571 12.948731 -0.745057 -10.782589 14.985612 -13.848970 13.948818 -13.862144 -10.626502 -56.628014 -69.249527 36.820278 75.675552 -49.002544 -46.430412 -0.661248 0.045069 0.186051 -9.989197 15.184614 -19.792603 63.833912 73.167816 49.030106 -44.953426 57.150688 -29.091829 -0.983364 -0.499070 -0.180107
+0.117050 1.664436 -0.105003 -4.902152 -38.577633 6.606191 3.967666 -0.571117 1.688066 -1.402363 -0.226259 5.278137 -1.077761 0.775152 -0.227254 1.014740 0.938797 0.830495 0.492277 3.368220 -10.587141 -0.772997 0.246548 8.689735 -0.344673 -0.747596 -0.001659 0.902613 0.336509 0.516506 2.692729 -1.349458 -8.828351 1.617638 -2.523815 15.354789 4.594627 -3.812340 32.288555 6.288514 13.026314 -0.367314 -10.775361 14.813252 -14.011901 13.776206 -13.612578 -9.788488 -60.582260 -68.036064 37.971722 78.955338 -46.889603 -47.705170 -0.646007 0.045985 0.189765 -11.118945 14.942119 -19.831707 66.460342 73.011261 51.017929 -46.437981 57.026867 -30.156076 -0.980619 -0.496784 -0.170941
+0.122907 1.666118 -0.104573 -4.451474 -38.422558 6.790403 3.186703 -0.593420 1.158560 -1.276390 -0.268725 4.707998 -1.069638 0.768653 -0.232556 1.016225 0.945699 0.824963 0.018032 3.191138 -10.856431 -1.310403 0.235380 8.007919 -0.350006 -0.756330 -0.000957 0.898630 0.330614 0.531174 2.337476 -1.658933 -8.863449 1.543133 -2.792575 15.227049 4.852370 -4.019577 32.291412 6.229304 13.150345 -0.183849 -11.170837 15.021295 -14.089559 13.014682 -13.408588 -8.975149 -65.255104 -67.021538 40.152306 82.305130 -45.638062 -49.411636 -0.647906 0.061677 0.185085 -11.717545 14.692482 -19.848322 69.128975 72.343956 52.539219 -47.315952 57.403542 -31.085566 -0.980848 -0.502920 -0.156300
+0.128755 1.667961 -0.103188 -4.070812 -38.260422 7.089659 2.559883 -0.654498 0.366627 -1.238704 -0.282167 4.543143 -1.077106 0.788649 -0.222730 0.994107 0.917558 0.828116 -0.513203 2.922876 -10.851745 -1.647080 0.162917 6.766772 -0.346808 -0.757777 0.008350 0.884187 0.340838 0.534871 2.385808 -1.728528 -8.986812 1.525151 -2.863063 14.998963 5.042413 -4.071307 32.190971 6.303298 12.619086 0.119050 -12.283116 15.076365 -14.216791 12.455155 -13.078830 -8.884089 -72.097710 -67.240944 45.277969 81.637329 -44.454758 -48.337662 -0.669855 0.028617 0.190516 -11.799401 14.050757 -19.717897 72.974464 71.297256 54.834290 -47.838268 58.205597 -31.992229 -0.988223 -0.485575 -0.170921
+0.133951 1.667378 -0.100825 -4.089847 -38.572506 7.906460 2.023226 -0.771835 -0.614322 -0.956871 -0.310606 4.438101 -1.090999 0.837962 -0.221204 0.939800 0.833757 0.820332 -0.772714 2.743091 -11.101755 -2.010183 0.080789 5.364624 -0.320281 -0.772708 -0.000133 0.844304 0.358260 0.544182 3.062252 -1.634425 -9.226872 1.376643 -2.750168 14.442250 4.875720 -3.944598 31.619038 6.492706 12.150744 0.513427 -13.014243 15.226171 -13.560247 12.360047 -12.960727 -9.066564 -79.192009 -67.515518 50.885387 78.395531 -42.794807 -45.265221 -0.717387 0.013727 0.188676 -11.302478 13.244636 -19.318937 77.865608 69.759842 57.727581 -47.193928 59.089581 -32.161739 -0.993525 -0.474057 -0.192754
+0.138287 1.666525 -0.098410 -4.151379 -39.715862 8.555477 1.746907 -0.754878 -1.088156 -1.389479 -0.252810 4.218377 -1.094460 0.847454 -0.218103 0.918178 0.790864 0.826976 -1.008653 2.547835 -11.201224 -2.324178 0.017737 3.860257 -0.313390 -0.762404 -0.003633 0.820353 0.350867 0.538424 3.126805 -1.284690 -9.438453 1.382890 -2.418868 14.068754 5.008206 -3.604424 31.115501 6.412742 11.882789 1.204330 -13.347988 15.287351 -13.348889 12.705297 -13.583503 -9.407660 -85.446564 -67.152603 54.847454 74.411972 -41.302387 -42.276527 -0.715568 -0.002619 0.206030 -10.225543 13.082952 -19.100153 79.090797 68.281090 57.511650 -43.573631 60.552917 -30.385550 -0.984893 -0.460988 -0.207544
+0.142154 1.664005 -0.096399 -4.677720 -41.686428 9.656706 1.885013 -0.656468 -1.603452 -2.277337 -0.131871 4.024805 -1.096539 0.847049 -0.216312 0.899181 0.765406 0.823466 -0.900262 2.684221 -12.250626 -2.741712 0.018088 3.545446 -0.316231 -0.743360 -0.003258 0.803856 0.347300 0.530707 3.160746 -0.712731 -9.501808 1.436634 -1.890032 13.627561 5.169096 -3.120769 30.388159 6.273380 12.225251 1.860964 -13.435210 15.693666 -13.532401 13.751966 -14.217770 -9.579228 -91.074524 -66.179016 58.107872 71.605705 -41.023403 -41.015305 -0.707246 -0.029610 0.230715 -8.760969 13.039057 -19.083811 80.860359 66.582199 57.432156 -37.243942 61.676510 -26.572687 -0.976292 -0.434797 -0.222670
+0.146416 1.661711 -0.094626 -4.921983 -42.801075 10.401458 1.961649 -0.653288 -2.308728 -2.962060 -0.032566 4.267697 -1.101563 0.853457 -0.224961 0.870326 0.719591 0.826937 -0.979882 2.826349 -13.204652 -3.001142 0.008811 3.600504 -0.311085 -0.731952 -0.012616 0.774296 0.332458 0.530921 3.247879 -0.434707 -9.442404 1.396472 -1.644224 13.281281 5.101701 -2.848711 29.631275 6.132382 12.535857 2.332519 -13.839775 16.173334 -13.591652 14.036519 -14.964469 -10.235558 -94.001587 -65.193275 59.397999 65.991959 -42.356003 -38.854191 -0.711980 -0.044189 0.250843 -6.929202 13.165133 -19.168177 81.738197 65.022469 56.448383 -29.359505 61.857716 -21.390314 -0.967768 -0.414291 -0.232128
+0.149290 1.659856 -0.091518 -5.146772 -44.025570 10.659870 1.861766 -0.618712 -2.457432 -3.627368 0.076044 4.691832 -1.113603 0.862037 -0.234416 0.836180 0.655577 0.837443 -1.104248 2.909253 -13.575015 -3.150526 -0.015004 3.813988 -0.314156 -0.699742 -0.017814 0.729508 0.310522 0.530876 3.055251 -0.057957 -9.364016 1.450817 -1.412310 13.194138 5.110569 -2.577329 29.038452 6.297140 12.702289 3.478209 -14.333034 16.750994 -14.108746 14.413742 -15.568020 -11.278418 -95.429695 -63.821934 59.185909 57.418194 -45.314835 -35.808811 -0.706590 -0.085103 0.302984 -5.280315 13.301097 -19.151182 81.850861 62.609364 53.425987 -20.594717 61.990658 -15.891312 -0.957578 -0.366274 -0.250480
+0.152399 1.658607 -0.088739 -5.101358 -44.078457 10.554264 1.762973 -0.619790 -2.705960 -4.132512 0.163494 5.248610 -1.065822 0.808932 -0.239849 0.811836 0.623993 0.841892 -1.365934 2.949719 -13.787544 -3.244636 -0.017868 4.303505 -0.331706 -0.644221 -0.022773 0.671724 0.259055 0.532400 2.976861 -0.084707 -9.119883 1.366517 -1.515588 13.196385 4.765889 -2.713930 28.262587 6.814708 12.806744 5.025874 -14.482751 17.505720 -14.744325 14.495887 -16.764977 -12.363049 -92.717079 -62.055065 55.235191 46.282558 -50.457123 -31.692688 -0.660865 -0.094262 0.338789 -3.421954 14.127910 -18.576777 82.206139 59.136444 48.684807 -12.521753 61.617619 -11.249223 -0.906939 -0.322045 -0.224770
+0.155542 1.657279 -0.085214 -4.992289 -43.029907 10.302081 1.799044 -0.734454 -3.166370 -4.538305 0.242601 6.367111 -1.036913 0.752425 -0.246099 0.799819 0.595353 0.851504 -1.727636 3.030383 -13.933911 -3.180070 0.005409 5.350820 -0.342926 -0.582150 -0.018190 0.625031 0.202747 0.512445 3.246763 -0.343732 -8.779749 1.318521 -1.792602 13.138346 4.421697 -2.928024 27.262768 7.133666 12.467698 6.503696 -14.343180 17.727160 -15.214037 13.763721 -18.234430 -13.430535 -90.439125 -59.598083 50.590897 32.098812 -54.040592 -24.599171 -0.596401 -0.113991 0.388799 -1.226582 14.862134 -17.865034 81.529343 55.168659 42.481625 -3.667370 60.634468 -6.241711 -0.865408 -0.278168 -0.215349
+0.158491 1.655743 -0.081319 -5.068333 -41.067970 10.106946 2.219613 -0.983507 -3.892625 -4.928264 0.300052 8.002980 -0.974695 0.673846 -0.249245 0.785369 0.561364 0.864256 -1.804403 3.097839 -13.968277 -3.114265 0.019697 6.572827 -0.362699 -0.512554 -0.022638 0.559440 0.124588 0.503094 3.246873 -0.894110 -8.172311 1.569622 -2.382916 12.990288 4.773133 -3.400424 25.807117 7.534362 11.780448 8.253345 -14.297837 18.063457 -15.435966 12.291859 -20.430418 -13.915789 -87.921021 -56.758984 44.783585 17.719345 -55.451141 -16.588863 -0.510555 -0.109447 0.436906 0.317219 15.617240 -17.052387 78.412018 50.447380 34.290943 8.714778 60.411060 0.767698 -0.795650 -0.242457 -0.184958
+0.162926 1.654540 -0.078211 -4.871679 -38.688713 9.761529 2.260157 -1.424712 -5.083307 -4.831028 0.272306 10.155741 -0.929159 0.591818 -0.264899 0.778132 0.545931 0.891141 -2.257285 3.204778 -14.475119 -2.807207 0.011261 8.639344 -0.386443 -0.438901 -0.028916 0.507698 0.036384 0.489523 3.615349 -1.483473 -7.302910 1.715158 -2.932990 12.817417 4.830313 -3.806264 24.267712 7.908114 10.728236 9.849509 -14.754625 18.273989 -16.239548 10.317590 -21.980553 -14.548903 -85.792686 -53.839848 39.431683 2.632618 -54.322548 -7.791092 -0.432590 -0.123592 0.486953 1.359591 15.725340 -16.802837 77.041733 45.500538 26.988073 19.085180 56.334438 5.642725 -0.736002 -0.196466 -0.155901
+0.167670 1.652201 -0.075964 -4.816630 -36.790577 9.367983 2.466438 -1.855611 -6.022723 -5.049363 0.254085 12.265924 -0.890086 0.510714 -0.288790 0.798678 0.555843 0.921003 -2.412832 3.453909 -15.473419 -2.841933 0.052842 11.852003 -0.429361 -0.365020 -0.042164 0.468560 -0.055111 0.493362 4.239603 -1.800911 -6.213076 1.862685 -3.158482 12.595392 4.732828 -3.848646 22.623755 8.044323 9.594744 11.559546 -14.349407 17.979103 -17.310083 8.532695 -23.883814 -15.057103 -83.152710 -51.063713 33.961685 -8.430391 -50.342369 -1.799217 -0.341301 -0.123655 0.553789 2.455341 15.799919 -16.267269 75.115257 40.511330 19.463898 24.019423 50.752930 6.489604 -0.683317 -0.154140 -0.114255
+0.172909 1.649592 -0.074148 -4.478417 -35.145138 8.876101 2.365196 -2.374192 -7.190221 -5.518082 0.285005 14.595009 -0.847710 0.429252 -0.295581 0.817548 0.578810 0.953382 -2.935126 3.624351 -16.941275 -2.514184 0.023516 15.458811 -0.462106 -0.291627 -0.037040 0.440824 -0.127184 0.480081 4.448170 -2.098420 -4.941921 2.011973 -3.327550 12.311473 4.844123 -3.878735 21.023130 7.943216 8.780449 12.722813 -14.475996 17.711874 -18.331877 5.413836 -24.815405 -15.323556 -80.279602 -48.015671 28.767843 -16.461260 -44.307777 1.851089 -0.264389 -0.148040 0.597518 3.838594 15.699075 -15.997826 72.945160 36.886215 14.157047 24.673544 44.276363 5.275273 -0.636407 -0.109438 -0.081147
+0.177853 1.645390 -0.071415 -3.791245 -33.846031 8.387157 1.852908 -2.899937 -8.296381 -6.096842 0.341151 16.631353 -0.808238 0.355307 -0.302025 0.831616 0.598727 0.951845 -3.781037 3.740919 -19.018318 -2.164133 -0.041196 19.654463 -0.487705 -0.232848 -0.030307 0.416189 -0.179527 0.467214 4.306993 -2.352704 -3.638881 2.095264 -3.466448 11.781212 5.023437 -3.875977 19.177557 7.386358 8.591800 13.662288 -13.834954 17.137136 -18.778818 1.960691 -25.163218 -14.632752 -78.016800 -44.202263 23.552284 -19.917215 -38.329239 2.590349 -0.187717 -0.154263 0.635079 5.163298 15.574767 -15.607550 70.591850 33.865841 10.379823 24.017225 37.946579 3.954708 -0.597360 -0.074694 -0.049744
+0.183308 1.641796 -0.068703 -3.681135 -33.151340 8.070025 1.865900 -3.263278 -9.093833 -7.076929 0.525211 18.374027 -0.798733 0.300127 -0.318664 0.838479 0.605428 0.959621 -4.173430 4.119389 -21.660055 -1.905512 -0.082959 24.898504 -0.506839 -0.166358 -0.028408 0.397086 -0.230968 0.442493 4.744067 -2.604010 -2.125001 2.256796 -3.581299 11.288576 5.008955 -3.833755 17.503284 6.419683 8.837600 14.846249 -13.476909 16.512730 -19.515322 -1.287033 -25.412186 -13.747530 -75.364235 -40.273064 18.525545 -19.840181 -32.175537 1.762491 -0.122956 -0.192694 0.686309 6.177608 15.792447 -15.426707 68.357788 31.555937 7.664391 21.241856 31.155571 2.268438 -0.569114 -0.019661 -0.039187
+0.189393 1.637760 -0.065810 -3.720657 -32.206123 7.651282 2.004519 -3.678839 -9.836908 -7.989707 0.724398 20.425817 -0.760992 0.249768 -0.309020 0.846747 0.610231 0.966991 -4.569657 4.494790 -24.502705 -1.122313 -0.321967 30.765654 -0.523824 -0.115091 -0.017938 0.373039 -0.266962 0.427568 5.576309 -2.850151 -0.464693 2.555452 -3.584078 10.752144 4.959300 -3.723801 15.846239 5.325629 8.634088 15.645189 -13.433267 15.707110 -19.426193 -5.470442 -25.574333 -12.463014 -71.813065 -36.774284 14.242193 -18.183001 -26.963381 0.834180 -0.061498 -0.211856 0.711779 7.203215 16.091066 -14.941464 65.143066 29.111261 5.211731 18.671806 25.223808 1.173900 -0.532027 0.009685 -0.019613
+0.194395 1.632803 -0.063588 -3.231553 -30.929041 6.858565 1.773720 -4.101543 -10.373734 -8.927192 0.938995 22.065350 -0.725303 0.186942 -0.318703 0.872240 0.637902 0.986968 -5.462763 4.586460 -27.163103 0.127730 -0.821714 36.262287 -0.552885 -0.064471 -0.024821 0.358027 -0.325464 0.425053 5.291738 -2.864788 1.258097 2.988086 -3.640156 10.240232 5.567379 -3.770025 14.406233 4.510455 8.365150 16.270124 -13.276519 15.029097 -20.173136 -7.593249 -24.577877 -11.412386 -69.818794 -33.859203 11.203640 -15.123612 -23.856007 -0.217358 0.006055 -0.206937 0.740991 7.802942 15.485609 -14.418867 62.464172 26.800749 3.287712 15.403626 20.315866 0.300987 -0.492762 0.030450 0.016900
+0.199468 1.629317 -0.061418 -2.898714 -29.681501 5.870984 1.895730 -4.475026 -10.590205 -10.181825 1.255313 23.522692 -0.724974 0.146599 -0.336209 0.882914 0.638385 1.002475 -6.115812 4.700952 -29.537872 1.648692 -1.540842 41.458977 -0.568589 -0.009576 -0.027956 0.343671 -0.376250 0.405295 4.895731 -2.932024 3.379297 3.563492 -3.887345 9.761519 6.236234 -3.949844 12.988148 3.558750 8.314308 17.141518 -13.135340 14.367659 -21.049139 -9.910426 -23.669518 -10.299650 -66.558167 -30.758142 8.031378 -11.624775 -21.327078 -1.136563 0.063747 -0.232437 0.790183 9.075508 14.934098 -13.808750 59.144989 24.671946 1.479747 11.770635 15.992798 -0.301133 -0.470865 0.071178 0.022373
+0.203855 1.624201 -0.058090 -2.629579 -28.410467 5.047889 1.947702 -4.909387 -10.967044 -11.035223 1.555276 25.477037 -0.688370 0.129967 -0.322121 0.851673 0.598775 0.973703 -6.486128 4.818720 -32.389385 2.907674 -2.365039 47.160591 -0.562033 0.015903 -0.023939 0.302312 -0.378122 0.398145 4.998044 -3.110595 5.404242 4.020192 -4.073726 9.107855 6.576442 -4.041526 11.299379 2.619753 8.141638 17.236959 -12.970862 13.684276 -20.442793 -12.173937 -22.142656 -9.391544 -63.350090 -27.746367 5.657024 -9.421108 -18.544302 -1.481310 0.088213 -0.236741 0.793615 10.041064 13.447751 -13.078409 56.055981 22.263443 0.006051 9.110870 12.424438 -0.542901 -0.438307 0.093594 0.031726
+0.206558 1.620261 -0.054102 -2.579285 -27.030783 3.905214 2.193041 -5.118251 -10.440008 -11.731739 1.839855 26.942944 -0.670667 0.106306 -0.319521 0.839352 0.575707 0.980028 -5.922709 5.223995 -34.627769 3.335677 -2.860260 52.538612 -0.569161 0.054167 -0.021103 0.271084 -0.405383 0.389587 5.081206 -3.273753 7.688556 4.604631 -4.311306 8.630200 6.929250 -4.148957 9.902285 2.230366 7.774840 17.572731 -13.491461 13.308335 -20.964165 -13.982994 -20.404556 -8.745137 -59.872799 -24.946609 3.649870 -7.365471 -16.181147 -1.686979 0.119134 -0.259946 0.819565 9.670031 11.711251 -12.443888 53.719810 20.020018 -1.216445 6.452978 9.831444 -0.684007 -0.413292 0.126729 0.037462
+0.209238 1.617720 -0.049618 -2.448963 -26.234571 2.501436 2.375989 -5.115589 -9.258163 -12.836029 2.252694 27.794682 -0.665110 0.086009 -0.329235 0.833262 0.564884 0.964623 -5.266737 5.865745 -36.718525 4.138410 -3.463048 57.418667 -0.572619 0.075839 -0.026541 0.255885 -0.426751 0.383084 5.098778 -3.299753 10.047618 5.168306 -4.453836 8.310069 7.203218 -4.160669 8.788762 1.265124 7.959083 17.824543 -13.343112 12.685974 -21.318361 -15.072963 -18.624985 -8.199430 -56.492081 -22.251076 1.979178 -5.183663 -14.359780 -1.866831 0.152452 -0.261217 0.841903 9.763039 9.814312 -12.009745 50.379032 18.102114 -2.084780 4.678450 7.296798 -0.614830 -0.396773 0.144943 0.043737
+0.213050 1.616395 -0.044062 -2.477626 -25.583950 1.134860 2.446629 -5.093029 -7.781987 -13.718141 2.549747 28.231613 -0.650031 0.086525 -0.313719 0.812903 0.526092 0.965160 -4.345796 6.413343 -37.727325 5.292819 -4.207455 59.874550 -0.569063 0.094820 -0.020372 0.225577 -0.431553 0.377287 5.368691 -3.518675 12.142909 5.688255 -4.636598 8.160872 7.295374 -4.185848 7.942498 0.932564 7.465970 17.837507 -14.010962 12.280703 -21.185457 -16.195415 -16.694933 -7.628699 -52.625534 -19.637558 0.561332 -3.642333 -13.151987 -1.899352 0.165656 -0.279686 0.853868 8.520665 8.301280 -11.396812 47.538345 16.361395 -2.569279 3.455353 4.880548 -0.454788 -0.378742 0.162765 0.038497
+0.217336 1.616453 -0.038420 -2.286617 -25.117910 -0.636689 1.986293 -5.084488 -5.939081 -14.112706 2.645925 28.494408 -0.632304 0.063293 -0.300490 0.807424 0.519311 0.950874 -3.194491 6.859639 -37.570408 6.066957 -4.599330 60.515621 -0.570016 0.119315 -0.009515 0.213131 -0.435593 0.357969 5.798743 -3.771970 14.191962 6.053557 -4.701538 8.294361 7.031574 -4.094211 7.448591 0.239990 7.740993 17.806854 -13.703785 11.927844 -21.271889 -16.054817 -15.618456 -6.624852 -48.945755 -16.865530 -0.683796 -2.067552 -12.982361 -1.973437 0.199944 -0.290488 0.866414 6.860387 7.078993 -10.348022 44.608337 14.283694 -3.020995 2.963342 3.447149 -0.298268 -0.360637 0.177405 0.035423
+0.221250 1.615319 -0.030837 -2.166203 -24.630690 -1.663722 1.515905 -5.174159 -4.827649 -14.471898 2.769121 29.009676 -0.600593 0.070499 -0.270768 0.743624 0.453749 0.892089 -1.901205 7.162938 -37.692253 6.769125 -4.928093 60.020603 -0.535954 0.111024 0.003509 0.173496 -0.396985 0.339500 6.378611 -4.183243 15.112103 6.172395 -4.737058 8.396427 6.765175 -3.990396 7.125211 0.108338 7.708813 16.786697 -13.546597 11.916632 -19.829775 -15.221964 -13.651916 -5.751749 -46.389057 -14.438077 -1.558282 -0.554936 -13.152649 -2.043138 0.188790 -0.289363 0.838840 4.676977 4.906705 -9.400670 42.898899 12.146390 -3.640697 1.656223 3.159911 -0.287754 -0.340275 0.179447 0.018132
+0.224661 1.615004 -0.023049 -2.055101 -23.829338 -2.975442 1.081498 -5.366776 -3.480710 -14.614173 2.810500 29.752996 -0.580074 0.087083 -0.245907 0.686938 0.390968 0.825781 -0.878860 7.192424 -37.356110 8.201337 -5.672806 58.829304 -0.500118 0.103878 0.024154 0.136142 -0.348393 0.324482 7.110904 -4.645409 16.056213 6.283606 -4.748927 8.607339 6.359359 -3.813424 6.912333 -0.444602 7.587723 15.901487 -12.809057 11.334287 -18.524189 -14.213674 -11.942996 -5.137749 -43.866344 -12.573420 -2.079563 0.714412 -13.109380 -2.073658 0.173702 -0.291662 0.817658 3.064054 2.571803 -8.369623 40.710045 9.655045 -4.404863 0.360695 3.894627 -0.319801 -0.334030 0.190125 0.002431
+0.228723 1.614228 -0.013135 -2.041801 -22.954294 -4.169893 0.394290 -5.555633 -1.919752 -14.591467 2.741154 30.261702 -0.562184 0.104488 -0.218997 0.637668 0.336687 0.781187 0.177427 7.040009 -36.515480 9.750964 -6.347628 56.410931 -0.475205 0.096511 0.041173 0.103359 -0.310694 0.316994 8.046453 -5.338715 16.680611 6.365494 -4.895295 8.906464 5.858542 -3.778972 6.917534 -0.668868 7.227249 14.600461 -13.153727 11.007820 -18.080950 -13.998933 -9.715944 -4.894775 -40.921242 -10.897231 -2.568496 1.856445 -13.603149 -2.119638 0.155882 -0.300594 0.800210 1.558456 0.042937 -7.874634 38.117565 7.941613 -4.851634 -0.943324 4.074091 -0.304717 -0.327695 0.199637 -0.012387
+0.233018 1.613229 -0.002619 -2.056665 -22.119368 -5.023495 -0.362816 -5.720055 -0.578047 -14.546800 2.626470 30.498734 -0.509479 0.104380 -0.184608 0.601993 0.300938 0.747661 1.292220 6.826552 -35.948139 11.114471 -6.784885 53.397564 -0.454093 0.078111 0.056263 0.068971 -0.284203 0.324373 9.215619 -6.142268 16.680567 6.343857 -4.990275 9.155828 5.281582 -3.772311 7.048426 -0.810808 6.742489 13.154643 -13.888503 10.898558 -17.038511 -13.540312 -7.637950 -4.623315 -38.357166 -9.490891 -2.898944 3.393082 -13.749544 -2.143231 0.142634 -0.272378 0.754306 -0.374009 -2.491237 -7.236812 35.854542 6.106411 -5.189278 -1.819005 4.761631 -0.318013 -0.305341 0.178193 0.001749
+0.236862 1.612537 0.007657 -1.725216 -21.339085 -5.937430 -1.456206 -5.890038 0.603888 -14.389922 2.487462 30.867016 -0.467344 0.106356 -0.154289 0.573984 0.274580 0.705853 2.280473 6.587149 -35.320629 11.818334 -6.785094 50.434319 -0.430463 0.055359 0.069255 0.047685 -0.249134 0.325109 10.032748 -6.845631 16.477690 6.122768 -5.138239 9.398839 4.615995 -3.864534 7.240083 -1.097282 6.626784 11.815160 -13.572453 10.636536 -15.706458 -12.353410 -5.602449 -4.248758 -36.042843 -8.030957 -3.102039 4.601740 -14.035872 -2.149399 0.133448 -0.237907 0.710573 -1.906721 -4.765110 -6.783354 33.498581 4.657531 -5.353775 -2.893635 5.280101 -0.335961 -0.289823 0.150717 0.009177
+0.241572 1.611866 0.017851 -1.249826 -20.869225 -6.807131 -2.470140 -6.057405 1.476139 -14.745549 2.538543 31.418257 -0.432540 0.122809 -0.118299 0.539019 0.236929 0.654842 3.155160 6.387020 -34.742477 12.157935 -6.587288 47.521358 -0.401949 0.028409 0.084073 0.027185 -0.198550 0.322055 11.136605 -7.642877 16.154589 5.693991 -5.246580 9.628061 3.579639 -3.931761 7.420284 -1.653527 6.734112 10.493245 -13.025815 10.277324 -13.970187 -10.855429 -3.764762 -3.729257 -33.783527 -6.491786 -3.186473 5.447280 -14.330245 -2.110219 0.118431 -0.211203 0.668036 -3.683405 -6.718032 -6.234053 31.197969 3.397299 -5.334574 -3.333689 6.100046 -0.351692 -0.279308 0.125034 0.004580
+0.245438 1.611745 0.027108 -0.406381 -20.720381 -8.002530 -3.568417 -6.142345 2.381830 -15.562885 2.771184 31.928183 -0.431420 0.139155 -0.105472 0.504654 0.206354 0.612895 3.927871 6.285587 -33.950470 12.257437 -6.179771 44.537949 -0.377832 0.010202 0.097563 0.016162 -0.162029 0.312303 11.388369 -8.015214 16.041689 5.233425 -5.344669 10.024038 2.808575 -3.967666 7.848491 -1.716463 6.841720 9.684943 -12.925175 10.299583 -13.257487 -9.800729 -2.117863 -3.490895 -31.199598 -5.060237 -3.232592 6.552756 -14.953437 -2.155915 0.095794 -0.212339 0.647986 -4.967220 -8.380969 -6.015828 28.897964 2.465482 -5.281107 -4.415234 5.208174 -0.258431 -0.287061 0.123772 -0.011843
+0.249244 1.612171 0.036555 0.191367 -20.605526 -9.026384 -4.248478 -6.148026 3.274610 -16.468519 3.030528 32.124470 -0.422023 0.168055 -0.076619 0.478701 0.179473 0.574375 4.985765 6.271129 -32.759853 12.047461 -5.575088 40.923805 -0.353344 -0.003018 0.115113 0.009624 -0.103811 0.301709 11.800886 -8.365379 15.511666 4.840786 -5.417903 10.482122 2.078977 -3.982810 8.514678 -2.136933 7.185528 9.123150 -11.892690 9.930886 -12.057791 -8.794961 -0.788652 -3.314827 -29.166594 -3.931620 -3.237716 8.134041 -15.434363 -2.293288 0.070375 -0.218305 0.620836 -5.318571 -9.627439 -5.699814 25.206091 1.572420 -4.848063 -4.352842 4.992142 -0.188344 -0.293107 0.122209 -0.029410
+0.251936 1.611677 0.046022 1.085115 -20.448780 -9.963815 -4.886878 -6.181475 3.799244 -17.912523 3.479262 32.480518 -0.424365 0.174109 -0.074736 0.492259 0.198889 0.570425 5.998796 6.188677 -31.345177 11.295822 -4.744587 36.859245 -0.355300 -0.017430 0.108482 0.028617 -0.095045 0.306364 12.166010 -8.641418 14.318472 4.200000 -5.463840 11.083456 1.172160 -4.028099 9.788781 -2.614137 7.395840 8.664772 -11.645167 9.604754 -12.155647 -7.988835 0.250729 -3.292256 -26.588480 -3.090108 -3.088936 8.976839 -15.737493 -2.332803 0.069957 -0.200423 0.609161 -4.957414 -10.655613 -5.491759 21.727760 0.616460 -4.410783 -4.809480 5.624505 -0.204448 -0.296788 0.102599 -0.026947
+0.254568 1.612441 0.054535 1.736750 -20.427681 -11.156069 -5.374030 -6.222365 4.504257 -19.052168 3.874412 33.023182 -0.437924 0.150381 -0.100211 0.518343 0.239356 0.593834 7.190833 6.185464 -29.300119 10.783119 -3.999894 32.469421 -0.371075 -0.006022 0.088833 0.051988 -0.131293 0.303353 12.465596 -8.790054 13.584994 3.781213 -5.458520 11.813186 0.470457 -3.974958 11.109085 -2.747384 7.548503 8.673517 -11.898371 9.585697 -13.587842 -7.373384 0.819262 -3.283963 -24.075962 -2.472735 -2.910372 9.845958 -15.636508 -2.342551 0.087705 -0.194055 0.618596 -5.216070 -11.429153 -5.208989 19.450302 -0.398579 -4.194067 -5.936078 6.376239 -0.240710 -0.294362 0.102938 -0.015351
+0.256984 1.611383 0.064363 2.892162 -20.001850 -12.208860 -6.475965 -6.325407 4.848981 -20.120022 4.218717 33.639622 -0.471859 0.164892 -0.121375 0.539506 0.249544 0.620807 7.586610 5.788868 -27.347414 10.269388 -3.381520 28.162188 -0.379934 -0.012640 0.076778 0.068466 -0.149705 0.314046 11.988592 -8.701845 12.435961 3.351420 -5.639734 12.286113 0.189429 -4.091787 12.314336 -2.659556 7.639043 8.754080 -12.352654 9.730159 -14.466087 -7.064513 1.410851 -3.125251 -21.823694 -1.374560 -2.774240 10.792620 -16.393957 -2.506936 0.083639 -0.192459 0.639503 -5.042308 -11.842555 -5.062421 16.680347 -0.995635 -3.812165 -6.916070 6.431099 -0.238458 -0.312520 0.098612 -0.020152
+0.259105 1.607461 0.075289 3.924113 -19.865732 -12.489672 -7.217910 -6.430526 4.354159 -21.375229 4.735176 34.472313 -0.499915 0.194250 -0.133975 0.542332 0.238445 0.632616 7.996422 5.566041 -26.023098 9.874848 -2.810990 23.790653 -0.369057 -0.045052 0.063140 0.079297 -0.146567 0.323266 12.182547 -8.621762 10.518632 2.661422 -5.556366 12.418596 -0.555461 -4.011299 13.401420 -2.376703 7.685660 8.586832 -12.654561 10.033906 -13.944119 -6.880316 2.327541 -2.986557 -19.112417 -0.204298 -2.457000 11.087448 -18.449564 -2.716679 0.058582 -0.170983 0.632414 -4.668498 -12.376065 -4.947219 13.996045 -1.585193 -3.327476 -7.717884 7.298539 -0.326011 -0.331249 0.070305 -0.030487
+0.260520 1.602736 0.085844 4.806239 -19.632235 -13.064582 -7.715621 -6.342493 4.432799 -22.586929 5.274814 34.970837 -0.489861 0.185404 -0.143962 0.552735 0.251568 0.656764 8.671461 5.407711 -24.186220 8.888281 -2.175031 19.701267 -0.375103 -0.054682 0.048656 0.082436 -0.172786 0.338558 11.768655 -8.262827 9.238684 2.377448 -5.469508 12.582779 -0.662310 -3.947859 14.229674 -1.736867 7.117267 8.668033 -13.515453 10.301500 -14.036817 -6.721479 2.992761 -2.866513 -16.485685 0.725539 -2.119512 11.011719 -19.122166 -2.659690 0.055014 -0.146449 0.618094 -5.208820 -12.966419 -4.296618 11.950583 -2.782593 -2.860738 -7.771271 10.034022 -0.503808 -0.323195 0.049335 -0.010854
+0.261532 1.596785 0.096621 5.672128 -18.970856 -13.546414 -8.245645 -6.402678 4.487336 -23.962164 5.919540 35.867405 -0.500612 0.185703 -0.158949 0.570092 0.266128 0.686847 9.002768 5.130283 -22.726898 7.715869 -1.720452 16.748243 -0.381572 -0.063968 0.036125 0.094156 -0.196960 0.349873 10.852424 -7.770256 7.820620 2.277093 -5.488703 12.662539 -0.247948 -3.966291 15.092892 -1.069332 6.490489 9.018487 -14.107321 10.396463 -14.210186 -6.334041 3.310056 -2.894783 -14.495990 0.994944 -1.739919 10.128114 -18.132761 -2.339853 0.050780 -0.135380 0.618027 -5.528442 -13.431081 -3.641950 9.321138 -4.092422 -2.240047 -7.630692 11.321389 -0.535636 -0.327795 0.033850 -0.002989
+0.262422 1.590564 0.107247 6.239224 -18.439138 -13.832105 -8.276051 -6.393949 4.521906 -25.458183 6.643927 36.547966 -0.496688 0.175647 -0.160750 0.577563 0.277503 0.699962 9.444031 4.985506 -21.522278 6.333249 -1.344602 14.636082 -0.385986 -0.062631 0.034807 0.097818 -0.211049 0.349949 10.432845 -7.430657 6.505866 2.204266 -5.445946 12.615464 -0.008785 -3.937363 15.670188 -0.808022 5.748035 9.652847 -14.600969 10.175768 -14.012423 -6.143517 2.936904 -2.591632 -12.561704 1.405478 -1.361714 8.655087 -15.916533 -1.840423 0.055462 -0.137581 0.613813 -5.586308 -13.156336 -2.825740 7.037210 -5.722049 -1.792325 -8.625985 11.727399 -0.570697 -0.324443 0.029863 0.004498
+0.263990 1.583835 0.115625 6.533475 -17.922400 -14.316073 -7.979004 -6.343099 4.786395 -27.093172 7.461286 37.119217 -0.493312 0.173595 -0.156623 0.559692 0.264990 0.673086 9.796853 4.936187 -20.476849 5.442249 -1.156112 13.837215 -0.376387 -0.056508 0.047114 0.086998 -0.195152 0.339814 10.242302 -7.191998 6.184825 2.204404 -5.354572 12.535324 0.027349 -3.832601 15.604261 -0.881193 5.293744 10.168983 -14.078119 9.615062 -13.474258 -5.599453 2.358453 -2.155710 -10.843760 1.645387 -0.994144 7.265853 -13.519618 -1.419459 0.052831 -0.154183 0.611387 -5.829693 -12.584954 -2.257865 5.677421 -6.869461 -1.663387 -10.191896 10.472950 -0.491181 -0.326507 0.047627 0.001029
+0.265562 1.577186 0.122715 6.380319 -17.821911 -14.912741 -7.214255 -6.308482 5.186727 -28.627035 8.357115 37.895264 -0.502947 0.189029 -0.148456 0.539859 0.231104 0.662457 10.433414 5.125310 -19.600311 4.987060 -1.078429 14.101810 -0.372256 -0.046240 0.052173 0.071082 -0.183588 0.332093 10.780457 -7.219910 6.421147 2.165573 -5.227078 12.534270 -0.395986 -3.628470 15.337234 -0.903387 4.694060 10.529661 -13.867648 9.058832 -13.140133 -5.473867 1.789398 -1.842234 -9.069353 1.955936 -0.692501 6.765570 -11.384302 -1.172269 0.053850 -0.183758 0.631207 -6.667338 -12.042867 -1.616639 5.184549 -7.902985 -1.719086 -11.263196 10.000395 -0.429110 -0.327843 0.070151 -0.018191
+0.267315 1.569778 0.129112 5.749510 -17.947865 -14.876196 -5.851326 -6.331138 5.040051 -29.888397 9.278985 38.921448 -0.474540 0.157612 -0.148240 0.569026 0.268236 0.676936 11.234821 5.722392 -20.142626 4.913271 -1.063747 15.794083 -0.385339 -0.048800 0.049852 0.078833 -0.207793 0.343647 11.758659 -7.348148 6.340791 2.178893 -4.991047 12.479827 -0.749495 -3.448191 15.302140 -0.682128 4.096339 10.429544 -13.748868 8.698037 -13.057429 -5.074018 1.774790 -1.874582 -7.806669 1.625470 -0.471274 5.780463 -9.237125 -0.904145 0.077873 -0.146096 0.616830 -7.607245 -12.092249 -1.168332 4.679462 -8.638221 -1.543763 -11.696060 10.721169 -0.482377 -0.313834 0.042196 0.013536
+0.268910 1.563772 0.133277 5.102214 -18.261744 -14.989128 -4.493482 -6.281982 4.900490 -31.179941 10.266704 39.922405 -0.422486 0.141373 -0.125782 0.568139 0.268646 0.660581 11.452759 6.226135 -20.913805 5.716265 -1.264047 17.816898 -0.393678 -0.046054 0.063594 0.051667 -0.198186 0.366875 12.710560 -7.537663 7.008316 2.244766 -4.738725 12.402573 -1.175083 -3.204752 14.764139 -0.712356 3.531544 10.237663 -13.413303 8.135630 -12.556401 -4.845258 1.259388 -1.474052 -7.046921 1.925379 -0.417065 5.304293 -7.158357 -0.725759 0.087746 -0.122387 0.600189 -8.791560 -11.651553 -0.099968 4.421490 -9.981215 -1.359460 -10.710456 12.106461 -0.460870 -0.293659 0.037225 0.048437
+0.271011 1.560430 0.136949 4.697536 -18.423611 -15.267931 -3.937472 -6.205709 5.060474 -31.456608 10.751298 40.701042 -0.399266 0.143924 -0.117422 0.520904 0.218609 0.623662 10.952353 6.396293 -21.324078 7.208697 -1.647410 19.398800 -0.376667 -0.046153 0.068833 0.013533 -0.184599 0.366184 12.932963 -7.529281 8.156934 2.585635 -4.603326 12.251548 -1.017434 -3.043784 13.895927 -0.493754 3.309174 10.327525 -13.491726 8.260924 -11.463746 -4.908482 0.669472 -1.020941 -7.123051 2.385113 -0.504608 5.168424 -5.807739 -0.632258 0.076307 -0.125171 0.589326 -10.074076 -10.977517 0.428025 4.954909 -10.342515 -1.620351 -11.143819 11.153753 -0.333773 -0.279048 0.050680 0.047705
+0.271943 1.558464 0.139369 4.701903 -18.551880 -15.282547 -4.043174 -6.009355 4.924394 -30.971451 10.876100 41.320034 -0.432705 0.161970 -0.126431 0.499012 0.195372 0.622888 10.194672 6.491040 -21.727839 8.407451 -1.928726 20.240858 -0.370883 -0.039833 0.072352 0.009404 -0.178451 0.355870 12.588210 -7.230810 8.310842 2.648266 -4.500310 12.434989 -0.794833 -2.930981 14.160366 0.025211 3.324046 10.314309 -14.083448 8.724505 -12.161400 -5.362034 0.395737 -0.855348 -6.332723 2.787757 -0.322037 4.268990 -5.250574 -0.593896 0.054698 -0.168896 0.609935 -9.795193 -10.363143 0.388712 4.674984 -9.632312 -1.531737 -10.542274 10.957416 -0.288951 -0.296860 0.082814 0.021042
+0.271350 1.557435 0.141191 4.866178 -18.754177 -14.911173 -4.413141 -5.829868 4.291426 -30.403328 10.966003 42.058308 -0.443076 0.162847 -0.135465 0.496240 0.209208 0.629194 9.746473 6.590886 -21.979713 8.958549 -1.952113 20.073042 -0.368603 -0.040893 0.070331 0.021396 -0.177149 0.351628 11.625760 -6.701251 7.977545 2.728663 -4.390416 12.595148 -0.174122 -2.894235 14.726892 0.475400 3.593171 10.128131 -14.531621 9.306484 -12.766029 -5.640609 0.840139 -0.923499 -6.266956 3.086096 -0.221611 3.600195 -5.750442 -0.585954 0.034334 -0.180985 0.599332 -8.850672 -10.132401 -0.220471 3.726614 -7.886056 -1.196005 -9.602070 9.824903 -0.204288 -0.304721 0.090413 0.018053
+0.270624 1.558976 0.141855 4.702141 -19.053236 -14.384278 -4.415975 -5.643900 3.719175 -29.743181 10.891949 42.371990 -0.467203 0.202572 -0.131737 0.477178 0.180415 0.614331 9.676705 6.627028 -21.723570 9.503357 -1.894399 18.747835 -0.350951 -0.057369 0.070556 0.023243 -0.141812 0.347057 11.220742 -6.430196 7.645423 2.674302 -4.319846 12.615208 -0.026985 -2.858220 14.937925 0.489133 3.992332 10.205354 -13.973082 9.419083 -11.967360 -5.423677 1.658094 -0.831925 -6.988938 3.735090 -0.181672 3.191122 -7.736469 -0.655280 0.002146 -0.193190 0.595066 -8.299221 -9.855960 -1.085185 3.824841 -5.498709 -1.199955 -9.165343 8.670361 -0.180918 -0.323850 0.091876 -0.007959
+0.269922 1.561616 0.140997 4.555770 -19.342144 -14.047582 -4.414412 -5.385990 3.318237 -29.494419 10.859699 42.231865 -0.492666 0.209197 -0.137513 0.494581 0.188470 0.623404 10.090039 6.664544 -21.057207 9.166448 -1.611408 16.985708 -0.349878 -0.065192 0.065160 0.044501 -0.145483 0.336497 10.774750 -6.179006 7.997629 2.765304 -4.189679 12.617057 0.178246 -2.758378 14.784556 0.270554 4.443264 10.026545 -13.477418 9.427879 -11.957512 -5.108586 2.557919 -1.056708 -8.722729 3.730608 -0.403459 3.220789 -9.435929 -0.753071 0.013643 -0.185955 0.608641 -8.267813 -9.953661 -2.072025 5.138704 -3.423807 -1.551119 -10.128530 8.562395 -0.314663 -0.335373 0.075550 -0.025827
+0.269873 1.564601 0.139700 4.490609 -19.488827 -13.573097 -4.599210 -5.061740 2.984394 -28.941542 10.625731 41.845757 -0.471325 0.195291 -0.129447 0.502002 0.202721 0.628204 10.613971 6.722864 -20.567158 8.240331 -1.278735 15.357640 -0.356053 -0.074055 0.072337 0.041762 -0.152517 0.348630 9.903635 -5.862104 8.455859 3.012755 -4.150947 12.518068 0.777431 -2.790006 14.417215 0.442027 4.229431 9.528186 -14.437084 9.750953 -12.091187 -5.485703 3.754303 -1.016181 -10.247355 4.713041 -0.688243 3.366843 -13.604311 -0.925722 0.015632 -0.167266 0.593708 -8.639348 -10.035387 -2.757028 6.858379 -1.634200 -1.842050 -10.581150 9.948848 -0.556240 -0.329964 0.059227 -0.008103
+0.270422 1.567832 0.138066 4.659094 -19.197525 -13.044544 -5.068776 -4.902409 2.437808 -28.315224 10.283175 41.516159 -0.474125 0.171340 -0.140275 0.529055 0.236669 0.654004 10.537061 6.465377 -20.141174 7.708049 -1.064868 13.489205 -0.368797 -0.052746 0.065490 0.060202 -0.180087 0.338810 9.260909 -5.600124 8.508336 2.984706 -4.083634 12.421692 0.997052 -2.794501 14.303719 0.456483 4.345447 9.565057 -14.154104 9.709458 -13.109565 -5.049250 4.453298 -1.191234 -12.520348 4.535635 -1.130031 3.057467 -15.342595 -1.053553 0.040708 -0.168739 0.605905 -8.760953 -10.089581 -3.432847 8.951596 -0.166791 -2.195595 -10.796643 11.474017 -0.817903 -0.323014 0.062987 -0.002441
+0.270709 1.572350 0.135282 4.903712 -18.720329 -12.927723 -5.512418 -4.715675 2.360307 -27.731236 9.908867 41.028164 -0.477246 0.156903 -0.135797 0.543174 0.249506 0.661473 10.562078 6.176329 -19.512178 6.723522 -0.852359 11.850883 -0.373618 -0.028442 0.074022 0.066938 -0.187156 0.320934 8.727835 -5.533699 9.303082 3.017570 -4.114739 12.357384 1.063477 -2.808567 13.785796 -0.230280 4.581351 9.294343 -13.841100 9.295181 -13.909553 -5.128854 4.818499 -1.252134 -15.042760 4.622199 -1.686208 3.063397 -16.986532 -1.240066 0.067187 -0.186711 0.623804 -8.651815 -9.830698 -3.828869 10.705467 0.940320 -2.467958 -10.391334 13.223785 -1.037322 -0.319277 0.078133 -0.009016
+0.269866 1.575906 0.131864 5.012701 -18.067570 -12.930072 -5.372014 -4.466617 2.459729 -27.557915 9.784141 40.590881 -0.471680 0.123901 -0.138377 0.574212 0.291438 0.664764 10.969322 6.010783 -18.855867 5.319505 -0.622480 10.490996 -0.391638 0.001657 0.076048 0.083402 -0.204681 0.308211 8.584237 -5.565907 9.963150 2.858659 -4.056869 12.347676 0.719612 -2.744308 13.410662 -1.246601 4.708414 9.410886 -13.012686 8.383268 -15.060739 -4.918186 5.557430 -1.442591 -17.879261 4.507411 -2.341301 2.711143 -20.059032 -1.497263 0.110704 -0.189878 0.641546 -8.360275 -9.815798 -4.342082 13.306748 1.874758 -2.877626 -9.748920 15.809143 -1.339157 -0.310267 0.090705 0.002475
+0.269067 1.577608 0.128291 4.854756 -17.224089 -12.678609 -4.929375 -4.249716 2.338118 -27.427681 9.810705 40.501656 -0.510225 0.125282 -0.146793 0.588786 0.301252 0.661127 11.230856 5.995492 -18.778353 4.613470 -0.515085 9.511367 -0.387786 0.020918 0.085521 0.104535 -0.200386 0.278312 8.805017 -5.612277 10.296252 2.588215 -3.922820 12.294346 0.189282 -2.574376 13.151801 -2.070658 5.127629 9.181087 -11.833127 7.709471 -16.023748 -4.859659 6.526140 -1.717043 -20.353580 4.569479 -2.956875 1.867328 -24.672789 -1.792726 0.130983 -0.216984 0.673472 -7.566781 -9.982410 -4.962242 15.302258 2.886967 -3.070437 -7.576477 17.814629 -1.349365 -0.329445 0.111982 -0.025851
+0.268151 1.578643 0.124979 4.924721 -16.216825 -12.316346 -4.654912 -4.099193 2.081384 -27.293919 9.813270 40.508087 -0.518692 0.121333 -0.146329 0.612912 0.322181 0.662344 11.254688 5.856118 -18.849113 3.853991 -0.424935 8.387758 -0.391993 0.027134 0.079190 0.125100 -0.199861 0.266143 9.296464 -5.855909 10.270830 2.076872 -3.821786 12.133689 -0.715761 -2.497265 12.911652 -3.107941 5.499163 9.035397 -10.670680 6.946041 -16.242304 -5.356088 7.391653 -2.020617 -22.447056 4.581450 -3.540382 0.937092 -29.087660 -2.009561 0.155863 -0.205404 0.681187 -5.987111 -9.926026 -5.926064 17.180820 4.220630 -3.234891 -5.696939 19.242548 -1.326080 -0.329774 0.102066 -0.029986
+0.266591 1.579432 0.121700 4.859987 -15.116076 -11.892836 -4.337543 -3.943635 1.862045 -26.815838 9.700011 40.556553 -0.550309 0.137075 -0.154518 0.616718 0.314161 0.663701 11.290402 5.702821 -18.866014 3.467953 -0.388343 6.996898 -0.385153 0.036794 0.063159 0.140074 -0.196789 0.244390 9.748339 -5.940992 10.234177 1.713615 -3.667295 11.879894 -1.411407 -2.315864 12.557143 -4.324069 5.610637 8.939877 -9.744225 5.958096 -16.518559 -6.014820 8.367314 -2.558960 -24.833706 4.231818 -4.135959 -1.290569 -33.533619 -1.890175 0.168390 -0.217421 0.698695 -4.295988 -9.792051 -7.065080 19.297012 5.752541 -3.388582 -3.293059 19.013685 -1.064755 -0.333000 0.109641 -0.054212
+0.265153 1.579010 0.117597 4.807269 -13.484087 -11.489164 -4.137255 -3.910171 1.484195 -26.640656 9.700407 40.882957 -0.524699 0.123896 -0.152201 0.611788 0.313108 0.634553 11.033256 5.473466 -19.081562 3.073832 -0.392885 5.774340 -0.383263 0.045491 0.065881 0.128239 -0.191084 0.247199 10.058475 -6.178772 10.699552 1.380789 -3.634420 11.328674 -2.047322 -2.317542 11.489108 -5.245039 5.890705 9.065252 -8.738092 5.379755 -16.304274 -6.554654 9.050294 -2.446669 -27.858294 4.502713 -5.078484 -2.840371 -38.116318 -1.847121 0.183287 -0.197429 0.691635 -3.358305 -9.287728 -7.815396 22.462214 6.949452 -3.673169 -0.902472 17.718649 -0.758431 -0.319374 0.112783 -0.037015
+0.263067 1.577762 0.112671 4.839050 -11.727406 -11.001966 -3.834506 -3.868490 1.047179 -26.601889 9.774189 41.098186 -0.555251 0.145967 -0.167107 0.601194 0.280988 0.630159 10.576476 5.318708 -19.630301 2.764632 -0.406107 4.771560 -0.373656 0.059760 0.056095 0.120614 -0.189217 0.236221 9.857733 -6.068625 10.935959 1.167104 -3.554060 10.888759 -2.255041 -2.191351 10.775484 -6.065399 5.740546 9.245204 -7.850909 4.512421 -16.660528 -7.384904 9.359608 -2.757970 -30.861374 3.993416 -5.845351 -4.789071 -41.530552 -1.607389 0.185243 -0.212717 0.718226 -1.855538 -8.743054 -8.532251 25.217468 7.756401 -3.927855 1.596913 16.263815 -0.455132 -0.326537 0.136692 -0.056528
+0.261143 1.575976 0.107234 4.716276 -9.624189 -10.479853 -3.739584 -4.021657 0.548557 -26.112980 9.656566 41.748707 -0.577937 0.177641 -0.168691 0.592469 0.254534 0.604110 10.067262 5.205142 -20.363268 2.529005 -0.425975 4.069306 -0.367860 0.063679 0.055492 0.114634 -0.160620 0.236597 9.802147 -5.967939 10.979726 1.028962 -3.471475 10.523513 -2.402449 -2.058527 10.217140 -7.130763 5.573710 9.386131 -6.328254 3.203214 -16.783506 -8.484742 8.957127 -3.029775 -33.953762 3.292509 -6.626560 -7.017308 -44.012741 -1.226701 0.182797 -0.223873 0.739750 0.458223 -7.724097 -9.000288 27.013821 8.032151 -4.087436 4.054659 14.477692 -0.181294 -0.339967 0.156815 -0.072456
+0.259165 1.574558 0.101996 4.670084 -7.338297 -10.300797 -3.895435 -4.159964 0.582911 -25.178894 9.282801 42.194668 -0.574634 0.164542 -0.163019 0.595336 0.262054 0.593679 9.369881 4.891112 -20.577894 2.434323 -0.441372 3.148265 -0.371523 0.090557 0.064148 0.115273 -0.154506 0.219829 9.431767 -5.738033 11.215042 0.952251 -3.324126 10.186142 -2.411686 -1.925531 9.619166 -7.584638 5.099226 10.090036 -4.995748 2.242509 -17.106539 -10.570612 7.410359 -3.246912 -36.271412 2.644565 -7.413864 -8.593998 -45.261997 -1.018589 0.203851 -0.247843 0.754265 3.029017 -5.952456 -8.946297 28.792797 7.620810 -4.380876 5.840284 12.691720 -0.065811 -0.335193 0.182003 -0.076656
+0.257453 1.572975 0.096937 4.423495 -4.274629 -10.228219 -3.893450 -4.529612 0.806820 -24.042398 8.784903 42.971752 -0.602301 0.173217 -0.169910 0.604564 0.269073 0.592192 8.490770 4.424596 -20.520472 2.333200 -0.479128 1.894250 -0.373120 0.099132 0.068494 0.129599 -0.148509 0.208769 9.601429 -5.766817 11.069847 0.767838 -3.276084 9.994817 -2.749448 -1.874221 9.415981 -7.590339 4.250040 10.665347 -4.116496 1.322327 -17.491209 -13.358111 5.516834 -4.044376 -37.003029 1.573470 -7.682173 -11.342407 -45.520077 -0.242328 0.208400 -0.270839 0.774051 6.133065 -4.313951 -9.096095 30.607971 7.255584 -4.688371 7.064330 11.090743 -0.062798 -0.352996 0.198008 -0.092206
+0.255317 1.571661 0.091013 4.161376 -0.834290 -10.446733 -3.975892 -4.945456 1.404327 -22.585575 8.050953 43.591694 -0.598067 0.133688 -0.180868 0.637798 0.322711 0.592698 7.473336 3.811609 -20.074999 2.251366 -0.496543 0.502736 -0.388241 0.113412 0.065960 0.156185 -0.169070 0.196699 9.818007 -5.846576 11.486664 0.534102 -3.122881 9.775263 -3.278131 -1.817143 8.961064 -7.373227 3.353601 11.186131 -2.572386 0.401389 -18.192921 -16.107353 3.484877 -5.033530 -36.699684 0.031289 -7.538526 -15.536052 -45.114285 1.264453 0.244420 -0.255367 0.777872 9.469285 -2.864840 -9.128163 32.647564 6.604574 -5.104352 7.752701 10.238572 -0.132748 -0.350924 0.191467 -0.076953
+0.252092 1.568182 0.083869 3.828655 2.023537 -10.117173 -3.468967 -5.236921 1.043330 -21.544348 7.663456 44.343750 -0.570909 0.120236 -0.179599 0.641667 0.328595 0.586454 6.861521 3.596713 -20.530397 1.824625 -0.504063 -0.356226 -0.391018 0.111424 0.060805 0.149690 -0.173360 0.206386 9.599277 -5.563447 11.689716 0.498821 -2.836181 9.123884 -3.280163 -1.643335 7.986537 -6.808116 2.327319 12.055702 -1.516734 -0.287329 -17.221106 -18.193110 1.999612 -5.655128 -37.793228 -1.652143 -7.366753 -18.318998 -44.206226 2.192696 0.253549 -0.227260 0.763649 11.832187 -1.481771 -8.924092 35.450375 6.280396 -5.441105 8.288719 9.165815 -0.190472 -0.337215 0.176245 -0.055525
+0.248471 1.563836 0.075336 3.721751 4.879978 -9.477643 -3.042947 -5.589835 -0.035472 -20.616989 7.408252 45.445644 -0.569450 0.122345 -0.178182 0.636411 0.314559 0.583278 5.886562 3.440506 -21.692240 1.394545 -0.511669 -0.788263 -0.385715 0.113102 0.061480 0.142489 -0.169409 0.200891 8.678166 -5.064479 11.722814 0.517921 -2.636893 8.438732 -2.811278 -1.523808 7.031809 -6.231205 1.407000 12.914324 -0.570672 -0.875652 -16.285509 -19.611526 0.930178 -6.256313 -40.387711 -3.769873 -7.148487 -19.535673 -43.007294 2.421836 0.257133 -0.225797 0.766129 13.758798 -0.240966 -8.900966 38.669701 6.552589 -5.696430 8.528685 8.375411 -0.248222 -0.335611 0.175233 -0.060468
+0.245359 1.559493 0.064334 3.802368 7.748441 -8.602230 -3.077964 -6.018642 -1.701371 -19.535862 7.034848 46.534950 -0.585153 0.133042 -0.183780 0.639225 0.302339 0.601442 4.462458 3.274096 -23.445269 1.319420 -0.507568 -0.766699 -0.391103 0.122348 0.046915 0.143838 -0.178774 0.197510 7.590504 -4.562126 11.586148 0.471536 -2.526878 7.937625 -2.249391 -1.468629 6.394088 -5.641346 0.345929 13.352772 0.160228 -1.450039 -16.353872 -20.509108 0.026955 -6.960819 -43.833282 -6.510883 -6.700148 -19.920439 -41.955315 2.320637 0.264619 -0.233541 0.786740 15.006690 1.179326 -9.170542 42.392532 7.808506 -5.653571 8.531593 7.388583 -0.286677 -0.334315 0.180338 -0.073642
+0.241244 1.555701 0.051790 3.836435 10.442585 -7.864359 -2.965987 -6.365535 -3.638305 -18.362511 6.733033 47.964172 -0.580414 0.108383 -0.186810 0.656527 0.329477 0.615084 3.173679 3.271018 -25.314598 0.993819 -0.473843 -0.018452 -0.403016 0.140582 0.047083 0.152491 -0.197651 0.190691 6.377074 -4.030612 11.631017 0.527748 -2.412762 7.654690 -1.498821 -1.430330 5.981479 -5.577111 -1.031725 13.792198 0.455371 -2.338925 -17.048454 -21.250620 -0.795422 -7.357775 -47.492542 -9.091974 -6.239094 -20.852167 -42.617462 2.610243 0.285258 -0.242645 0.793194 15.980021 3.321923 -9.372711 45.732521 9.482300 -5.338425 8.587959 7.091434 -0.304551 -0.328837 0.188460 -0.063272
+0.237530 1.553459 0.039456 3.863834 14.059731 -7.228943 -3.319113 -6.905756 -5.304638 -16.388081 5.875019 49.268200 -0.583609 0.089593 -0.195664 0.671628 0.358817 0.611225 0.932183 2.946592 -26.931299 1.248913 -0.446963 1.034098 -0.412388 0.143520 0.052484 0.164705 -0.208289 0.192006 5.306148 -3.734197 11.501960 0.565875 -2.536134 7.531897 -0.809094 -1.623996 5.838099 -5.223068 -2.808840 14.069006 0.850660 -3.432649 -17.701313 -22.089006 -2.057857 -7.494957 -50.515770 -11.524740 -5.521890 -23.292805 -43.900520 3.624616 0.296318 -0.244097 0.797204 16.767611 5.999707 -9.231911 48.348701 11.014623 -5.011138 8.688776 8.261131 -0.349238 -0.337626 0.191589 -0.051924
+0.233094 1.552643 0.028268 4.111592 17.674257 -6.881403 -3.913498 -7.288972 -6.164492 -14.497955 4.975121 49.818653 -0.587333 0.066806 -0.206933 0.707021 0.402999 0.615155 -1.893774 2.377265 -27.814182 2.409767 -0.408580 2.047779 -0.431174 0.151502 0.051649 0.186766 -0.222262 0.192969 4.145580 -3.496328 11.304860 0.424542 -2.723857 7.577475 -0.401002 -1.913743 5.976470 -4.913081 -4.037910 14.807783 2.343868 -4.454819 -18.385695 -22.553858 -4.045407 -7.175439 -52.633076 -13.663358 -4.702799 -26.666391 -45.610611 5.192018 0.324264 -0.229451 0.810790 17.999743 9.289962 -8.921168 50.278049 12.624461 -4.646735 8.624006 9.929495 -0.432258 -0.344826 0.185796 -0.038409
+0.227930 1.552100 0.016986 4.493822 20.482740 -6.421607 -4.431934 -7.307833 -7.189582 -12.660108 4.311404 50.303913 -0.582762 0.060059 -0.201322 0.736502 0.447602 0.617016 -4.645497 2.134581 -29.104486 3.654890 -0.372033 4.280870 -0.440022 0.144040 0.054767 0.213628 -0.210173 0.195853 3.239133 -3.146387 10.831362 0.068052 -2.666142 7.790592 -0.441883 -2.004601 6.464919 -4.315325 -5.160226 14.898944 3.344346 -5.289037 -18.472836 -22.831137 -6.664237 -6.995344 -53.339500 -16.099321 -3.346295 -31.606388 -46.503654 7.625729 0.327833 -0.218572 0.795719 18.901545 13.133191 -8.883245 51.624283 15.097320 -3.595460 9.410044 10.908044 -0.404377 -0.352693 0.169015 -0.026174
+0.221537 1.555342 0.004458 4.496091 22.709753 -6.216164 -4.626124 -7.051406 -8.234066 -10.608727 3.632791 50.479397 -0.592794 0.066681 -0.199819 0.755584 0.478782 0.607219 -6.835126 2.310300 -30.303844 4.845688 -0.384654 7.111731 -0.445872 0.146122 0.056126 0.238134 -0.189865 0.193352 2.958538 -2.705926 10.555647 -0.013030 -2.428483 8.196683 -0.412132 -1.842441 7.171907 -4.772450 -5.995138 15.109875 4.325140 -6.467134 -19.196730 -22.196098 -9.665896 -6.501179 -54.681339 -18.796181 -1.929911 -35.664619 -49.075684 10.145767 0.329286 -0.227890 0.792700 18.804504 17.298859 -8.714624 51.821636 17.645992 -2.570530 10.939686 13.409426 -0.257283 -0.364106 0.174324 -0.024961
+0.214375 1.560333 -0.006610 4.388953 25.229528 -6.303065 -4.968287 -6.776238 -8.790914 -8.046519 2.649043 50.264370 -0.620825 0.089464 -0.200700 0.761881 0.493157 0.587970 -9.254323 2.494391 -30.850775 6.880153 -0.524728 10.084287 -0.442769 0.144983 0.056740 0.264186 -0.159252 0.181764 2.615285 -2.370515 10.146715 0.022019 -2.400139 8.804703 -0.219228 -1.864779 8.246807 -5.459122 -6.702700 15.540776 5.175652 -7.626729 -19.747723 -21.068577 -12.517859 -5.891361 -55.731277 -21.532248 -0.432078 -40.251881 -53.597481 13.876031 0.321620 -0.250991 0.794432 18.277132 21.315578 -8.726027 51.008251 20.431128 -1.553502 12.897674 16.670612 0.064321 -0.383831 0.186821 -0.042208
+0.207214 1.568072 -0.015812 3.795110 27.435413 -7.085177 -4.961713 -6.300267 -8.407109 -5.199611 1.480661 49.303040 -0.648547 0.088877 -0.212747 0.788091 0.538566 0.576575 -11.169778 2.999451 -30.760841 9.694053 -0.864509 13.432578 -0.454299 0.155687 0.055076 0.301472 -0.144436 0.170218 3.110669 -2.302642 9.941418 -0.014270 -2.320063 9.602319 -0.633501 -1.807837 9.560841 -5.843490 -7.381454 16.392851 6.797629 -8.557486 -21.156933 -20.214958 -15.906149 -5.384365 -55.917622 -24.649147 1.190591 -43.778782 -58.914532 18.013430 0.332103 -0.269568 0.808841 16.941525 25.085981 -8.888502 50.174759 23.270790 -0.771669 14.531515 21.109221 0.447366 -0.402182 0.203533 -0.049644
+0.200319 1.576621 -0.024001 2.777732 29.538780 -7.823514 -4.448115 -5.747032 -8.073668 -2.505160 0.433191 47.928043 -0.641914 0.066350 -0.202172 0.841373 0.616117 0.589978 -13.172125 3.668555 -30.902479 13.909971 -1.518764 16.762117 -0.471343 0.164712 0.058421 0.349494 -0.137658 0.156724 3.932424 -2.384698 9.243716 0.012733 -2.247405 10.462512 -1.067577 -1.825832 11.188011 -6.011738 -8.375024 16.675428 8.037700 -9.531872 -22.222546 -18.911068 -18.861050 -5.272528 -56.358997 -28.444658 3.424997 -44.977745 -63.592274 21.113293 0.357964 -0.261906 0.793259 14.562156 28.035074 -9.719762 49.200481 26.549614 0.265991 15.455927 25.518578 0.823556 -0.404551 0.186554 -0.036497
+0.194221 1.587089 -0.032717 1.710253 31.497774 -8.516628 -3.840318 -5.346277 -8.012822 -0.299954 -0.397873 46.392822 -0.672334 0.075173 -0.212277 0.864550 0.650575 0.582955 -15.094209 4.347300 -31.262259 18.669193 -2.664842 20.526146 -0.469444 0.159128 0.057306 0.387004 -0.122239 0.144876 4.911663 -2.389993 8.773745 0.135144 -2.136640 11.232418 -1.453451 -1.708559 12.642705 -5.961019 -9.412144 16.473419 9.266899 -10.405655 -23.407852 -17.493361 -21.887951 -5.568738 -56.963165 -32.855019 6.266396 -41.238132 -67.341003 20.685965 0.358680 -0.265110 0.793117 12.068085 29.912214 -10.582129 47.820347 29.429298 0.875161 16.201103 31.620316 1.321605 -0.426427 0.183564 -0.047305
+0.187583 1.598394 -0.039677 0.733870 33.511097 -9.153356 -3.084331 -4.985604 -7.702051 1.610186 -1.105956 44.294090 -0.701760 0.107750 -0.213779 0.861877 0.654081 0.553341 -16.591969 4.855028 -31.064398 23.107437 -4.054433 23.645189 -0.459530 0.139094 0.059155 0.408347 -0.082537 0.142226 5.501267 -2.342492 8.116296 0.326053 -2.138457 11.951130 -1.592406 -1.691216 14.084813 -5.680015 -10.315038 16.221285 10.206091 -11.183959 -23.858860 -15.543792 -24.753969 -6.028838 -57.068516 -37.336067 9.196218 -32.151024 -70.046745 15.756139 0.335588 -0.270035 0.785632 9.700342 31.387445 -11.328193 45.932888 32.372513 1.471487 15.805153 37.733971 1.637959 -0.453894 0.182822 -0.065254
+0.181052 1.610198 -0.046585 -0.169937 35.400925 -9.663845 -2.538609 -4.759207 -7.453774 3.514984 -1.833609 41.955551 -0.707142 0.135180 -0.201232 0.870556 0.666802 0.529003 -17.669367 5.209222 -30.869720 26.962191 -5.698649 26.863974 -0.447113 0.107116 0.069708 0.428832 -0.041499 0.149003 6.245407 -2.487264 7.390812 0.411670 -2.204336 12.628109 -1.923052 -1.790040 15.518140 -5.473561 -10.979053 15.464891 10.703759 -11.930090 -23.739332 -13.374066 -27.076847 -6.589390 -55.996731 -41.723072 11.788804 -19.079777 -72.476227 7.411460 0.314177 -0.249905 0.755919 7.427842 32.449253 -12.272974 44.017368 35.669479 2.383014 13.749253 42.179935 1.301836 -0.475039 0.156267 -0.066811
+0.174225 1.621174 -0.052153 -0.429994 37.429478 -9.535018 -2.518772 -4.729338 -7.216983 4.934760 -2.388943 39.231010 -0.708301 0.151048 -0.192370 0.875117 0.686744 0.502157 -18.544069 5.097215 -30.500792 29.617065 -7.388950 30.038145 -0.436299 0.077574 0.071532 0.452704 -0.007588 0.150338 6.289950 -2.462613 6.344170 0.370640 -2.269462 13.183566 -2.007634 -1.936915 16.980207 -4.944070 -11.884566 14.463154 11.157345 -12.697670 -23.735731 -10.034667 -28.902767 -7.422763 -54.564869 -45.669411 13.694847 -1.036588 -72.294579 -5.575310 0.296647 -0.228568 0.720374 4.418246 33.405659 -12.823284 42.196316 38.273712 2.832731 9.709265 47.540882 -0.230787 -0.487892 0.129683 -0.065812
+0.167535 1.631915 -0.057342 -0.766524 38.922153 -9.221552 -2.264905 -4.517166 -6.918632 5.999410 -2.678671 36.169243 -0.690242 0.170276 -0.167414 0.852778 0.689416 0.432916 -18.749798 5.160038 -30.086773 31.478643 -8.934193 32.906456 -0.400055 0.030926 0.086133 0.467867 0.056473 0.140165 6.812069 -2.283485 4.961699 0.378932 -2.029304 13.650519 -2.150700 -1.810958 18.474911 -4.829890 -12.518760 13.218391 11.477771 -13.902327 -22.622032 -6.377359 -30.391581 -8.104938 -53.222935 -49.543530 15.323508 18.399584 -69.751839 -19.170794 0.265840 -0.195103 0.646876 1.596743 33.932720 -13.299437 39.514057 40.713444 3.202540 4.352972 51.515404 -2.666320 -0.497040 0.091027 -0.065668
+0.162219 1.642211 -0.061930 -0.817226 40.484974 -8.702502 -2.302989 -4.279409 -6.310658 6.788893 -2.818560 32.679237 -0.687663 0.198758 -0.143415 0.851882 0.703400 0.390262 -19.082367 5.061860 -29.382994 33.000816 -10.373069 35.331257 -0.371540 -0.014722 0.101521 0.494755 0.114010 0.134616 6.924529 -2.022293 3.569913 0.515867 -1.854895 14.060697 -1.921576 -1.729836 19.964748 -4.591812 -13.348774 11.752779 11.447014 -15.099760 -21.954708 -2.613687 -31.019751 -9.261097 -52.360462 -53.560795 17.272785 29.927357 -64.910141 -25.544796 0.237261 -0.169460 0.586437 -1.420432 33.781910 -13.922628 36.037041 43.099483 3.385478 -2.334826 54.551388 -6.039674 -0.515655 0.050238 -0.069348
+0.156551 1.651607 -0.066568 -0.932292 41.850872 -8.284892 -2.005469 -4.007881 -5.551103 6.978714 -2.733078 29.034914 -0.707976 0.237623 -0.125828 0.866429 0.720326 0.379021 -18.890686 4.939996 -28.491638 33.571877 -11.709288 38.031689 -0.355075 -0.052512 0.105369 0.531491 0.158752 0.130410 7.370888 -1.884177 2.460661 0.499105 -1.656441 14.480565 -2.089760 -1.582556 21.360121 -3.895012 -14.453313 9.984084 11.453084 -16.089018 -21.944504 0.618517 -31.101831 -10.762492 -50.359234 -58.023094 19.186573 35.760273 -59.815830 -26.961369 0.213829 -0.157674 0.551682 -4.421941 33.097923 -14.526329 32.930218 45.515430 3.559974 -10.676677 57.759983 -10.877616 -0.539267 0.014678 -0.085215
+0.151721 1.659219 -0.071202 -1.228807 42.945683 -7.674042 -1.384421 -3.596232 -5.008263 6.997127 -2.488699 25.135151 -0.744766 0.303388 -0.099993 0.816954 0.676069 0.304685 -18.586819 4.938560 -27.659491 34.164070 -12.909202 40.184898 -0.304439 -0.099671 0.124308 0.547151 0.247971 0.099840 8.399351 -1.856482 1.354432 0.279511 -1.409547 14.653395 -2.761358 -1.334362 22.294418 -3.288990 -14.837470 8.181435 11.494079 -16.975590 -20.952135 3.693878 -31.148304 -11.745128 -47.346420 -61.643314 20.054596 40.707436 -55.649750 -27.901323 0.159934 -0.177911 0.510017 -6.610831 32.223427 -14.741937 30.305374 47.920795 3.772357 -20.391186 58.728012 -16.582783 -0.575876 0.004675 -0.141257
+0.147460 1.665654 -0.075602 -1.498593 43.988770 -6.815135 -0.711396 -3.187897 -4.504516 6.695819 -2.180803 20.696096 -0.768782 0.349091 -0.092746 0.817768 0.699488 0.266654 -17.801920 4.570080 -26.598909 33.292236 -13.723327 42.428619 -0.268520 -0.154498 0.127791 0.593068 0.310591 0.092052 9.363267 -2.038183 -0.176428 -0.023613 -1.320607 14.700050 -3.336374 -1.228303 23.442545 -2.681811 -15.313403 6.131666 10.967842 -17.828402 -20.459042 6.901023 -30.088480 -13.177217 -45.270607 -64.958664 20.804037 42.543510 -49.781395 -26.288889 0.109323 -0.160439 0.441874 -9.692622 30.772814 -15.409515 28.486740 50.483730 4.426569 -29.514660 57.910091 -21.757524 -0.606906 -0.033656 -0.152327
+0.143311 1.671371 -0.078338 -1.018964 44.913437 -5.734782 -0.656269 -2.683207 -3.549790 6.586194 -1.896998 16.325548 -0.788344 0.404743 -0.069504 0.807718 0.690519 0.211853 -17.089457 4.368497 -24.683519 31.823704 -13.856279 44.013763 -0.244250 -0.203064 0.137892 0.617792 0.387344 0.089147 8.927692 -1.869438 -1.513067 -0.241486 -1.261811 14.758851 -3.354580 -1.167326 24.305511 -2.080103 -15.138094 5.291570 11.544012 -18.311682 -19.590296 10.742352 -29.177095 -14.289844 -43.815407 -67.432449 21.324484 43.927773 -44.544197 -24.902868 0.074827 -0.142320 0.407322 -11.811888 29.618423 -15.626767 26.345934 52.538223 4.644286 -35.202942 55.660599 -24.161993 -0.636790 -0.065185 -0.180114
+0.138854 1.675294 -0.080486 -0.482630 45.431965 -4.537291 -0.339754 -2.180312 -2.827226 5.794690 -1.531284 12.804880 -0.764533 0.415231 -0.048522 0.802000 0.703182 0.173800 -15.933917 4.276096 -22.689014 29.678133 -13.277908 44.719940 -0.221824 -0.236136 0.146749 0.630602 0.429216 0.089359 8.744745 -1.738192 -2.640304 -0.559519 -1.083892 14.675805 -3.702135 -0.980965 24.784090 -1.789838 -15.569306 4.680195 11.493908 -19.090755 -18.789513 13.560601 -28.396606 -15.121990 -41.001778 -69.709290 20.738363 43.747368 -39.183022 -22.528307 0.054596 -0.112516 0.347903 -13.853784 29.051785 -15.733978 24.564468 54.460114 4.761767 -39.383476 52.361546 -25.161339 -0.636036 -0.098886 -0.168575
+0.134485 1.676631 -0.082640 0.195717 45.231274 -3.128685 -0.011186 -1.658668 -2.221748 4.826827 -1.168970 9.436467 -0.749783 0.439417 -0.015549 0.787245 0.703784 0.113216 -14.568318 4.369922 -20.656429 26.746553 -11.856483 44.400692 -0.191816 -0.279148 0.165609 0.645942 0.497640 0.078831 8.297199 -1.259358 -3.759178 -0.798297 -0.624896 14.550812 -3.848387 -0.549422 25.172953 -1.183136 -15.715086 3.919689 11.901684 -19.744865 -17.656733 16.391243 -27.028820 -16.111454 -38.907597 -72.513435 21.067381 42.426201 -33.731606 -19.780941 0.029960 -0.082909 0.288493 -14.964015 27.849743 -15.640100 22.269495 56.370136 4.798512 -42.100193 49.376343 -25.172220 -0.647315 -0.137282 -0.177014
+0.130073 1.676374 -0.084541 0.767569 44.928761 -1.782283 0.509134 -1.221781 -1.911390 3.412644 -0.829386 6.636091 -0.758993 0.492438 -0.001979 0.754094 0.659401 0.071364 -12.815981 4.407954 -18.125818 23.272379 -9.826630 42.483952 -0.159064 -0.321423 0.170573 0.637418 0.551604 0.087760 7.943984 -0.852346 -4.734510 -1.020349 -0.285872 14.316947 -4.005085 -0.130775 25.251595 -0.868558 -15.892940 3.365562 11.685101 -20.308231 -16.669403 18.799007 -25.586620 -16.688164 -34.908241 -74.762756 19.751120 41.601349 -29.191996 -17.742386 -0.014654 -0.070588 0.256102 -16.054989 26.912159 -15.420857 19.690828 58.074780 4.447591 -44.031979 46.105930 -24.506008 -0.663059 -0.155037 -0.193317
+0.124205 1.673986 -0.086260 1.967225 43.764427 0.202303 0.504705 -0.859863 -1.929529 1.945452 -0.545212 4.169034 -0.762333 0.543554 0.022784 0.690453 0.590349 0.009558 -11.169040 4.519945 -15.637813 18.981491 -7.193574 39.306675 -0.118138 -0.358126 0.178990 0.616272 0.617879 0.078567 6.847950 -0.120638 -5.636936 -1.336518 0.329786 13.978885 -4.052551 0.560723 25.026461 -0.386074 -15.576569 2.864381 11.446191 -20.448399 -15.114246 20.869890 -24.428535 -17.067520 -29.271109 -76.415794 16.808975 39.941898 -25.100555 -15.637975 -0.064683 -0.073615 0.219950 -16.502871 26.487867 -15.007523 16.682652 59.630512 3.696869 -44.426018 42.656334 -22.918911 -0.672870 -0.161228 -0.226947
+0.117809 1.670723 -0.088805 3.448924 42.885639 2.210522 0.141660 -0.648863 -2.357196 0.520956 -0.344025 2.251959 -0.768953 0.594289 0.045223 0.632013 0.526932 -0.037802 -10.092422 4.117255 -12.452794 14.830821 -4.812202 34.507946 -0.077818 -0.391207 0.184329 0.599858 0.675685 0.068405 5.933909 0.405359 -6.374796 -1.785075 0.850545 13.808910 -4.429502 1.257895 24.924658 -0.013854 -15.575856 1.977893 10.785868 -20.744312 -13.798529 21.957529 -23.667435 -17.448750 -20.105944 -77.514778 10.777072 37.615070 -22.265532 -13.733365 -0.115279 -0.084654 0.182735 -16.886011 26.492393 -14.660309 12.204076 60.558693 1.668747 -44.748600 39.188293 -21.343992 -0.681110 -0.165429 -0.259252
+0.112277 1.666804 -0.090861 4.620787 41.402538 3.698118 -0.286626 -0.442885 -2.379221 -0.296352 -0.241916 0.429926 -0.769058 0.634095 0.057668 0.622495 0.518155 -0.069037 -9.352085 3.693133 -9.311338 11.043532 -2.895259 29.523508 -0.051834 -0.439227 0.185082 0.610616 0.721879 0.081057 4.758600 0.927456 -7.249749 -2.077712 1.348227 13.840073 -4.450324 1.909000 25.318718 0.310471 -15.499961 0.829487 10.410777 -21.069214 -13.001333 23.017033 -22.512407 -17.712187 -14.018231 -77.859108 6.454906 37.030121 -20.466269 -12.947874 -0.153964 -0.050286 0.134281 -17.590157 26.656893 -14.675323 8.037049 61.179928 -0.561792 -45.052948 35.573811 -19.879066 -0.694358 -0.203448 -0.259499
+0.106211 1.664448 -0.093128 5.261193 39.040073 4.449441 -0.352671 -0.188311 -2.051232 -1.078750 -0.167498 -1.218452 -0.777754 0.663959 0.070799 0.616743 0.514688 -0.113247 -8.420516 3.445328 -6.752825 7.082187 -1.279330 25.117249 -0.038604 -0.478872 0.192347 0.624364 0.767513 0.085820 4.282636 1.596659 -7.755801 -2.379991 2.097527 14.099246 -4.830224 2.851779 25.788324 0.202419 -14.896953 0.053566 10.577357 -21.147591 -12.533170 23.910519 -21.962946 -18.070442 -7.380886 -77.556740 1.343654 36.276272 -18.760559 -12.161076 -0.172370 -0.022229 0.111240 -17.678221 26.862728 -14.862659 3.101145 61.723366 -3.145608 -43.651379 33.226028 -18.178875 -0.714337 -0.232760 -0.270911
+0.099505 1.663823 -0.095801 5.455435 37.154781 4.644238 -0.402416 -0.025748 -1.772301 -1.016685 -0.138610 -2.438679 -0.757992 0.662718 0.089419 0.595243 0.508698 -0.146290 -7.426170 3.136102 -4.473663 3.952729 -0.209896 20.902784 -0.025871 -0.481140 0.199171 0.621075 0.794388 0.073606 4.312849 2.315561 -7.894930 -2.497273 2.906760 14.517030 -5.136310 3.777774 26.250202 -0.159372 -14.889859 -0.343930 10.712523 -21.506483 -12.412816 24.332123 -21.721045 -18.506142 -0.129292 -77.292854 -4.122736 34.700958 -17.894260 -11.333456 -0.178325 -0.025789 0.084454 -16.980810 27.381304 -14.754991 -2.094314 61.330296 -6.117772 -42.635696 31.602150 -16.905416 -0.704379 -0.231069 -0.273044
+0.092807 1.663602 -0.098573 5.211547 35.087025 4.684586 -0.184278 -0.044609 -2.079165 -0.858331 -0.142753 -2.841350 -0.777921 0.670625 0.084950 0.605498 0.523687 -0.148342 -6.566237 2.882733 -3.341674 1.942742 0.332822 17.679333 -0.027756 -0.485999 0.198132 0.639198 0.803720 0.068719 5.011559 2.857304 -7.863353 -2.785936 3.625932 14.726908 -5.907342 4.651711 26.532146 -0.373554 -14.466948 -0.621476 10.872719 -21.329311 -12.795491 24.202517 -21.236774 -18.827250 2.790069 -76.905296 -6.039688 33.688625 -18.252241 -11.020083 -0.180736 -0.031376 0.089304 -16.987125 27.242277 -15.192152 -3.880207 61.844578 -7.118716 -41.363770 30.655727 -16.077665 -0.717463 -0.231448 -0.282872
+0.086937 1.663421 -0.100376 4.831928 33.538353 4.941697 0.158729 -0.239598 -3.075771 -0.683784 -0.171888 -2.380670 -0.813354 0.730170 0.081609 0.608570 0.528031 -0.181476 -6.025341 2.779716 -3.324180 1.261428 0.492542 15.758355 -0.013733 -0.534744 0.191867 0.670189 0.856857 0.086009 6.017321 3.364200 -7.929292 -3.029213 4.315345 14.687223 -6.735345 5.502752 26.782696 -0.327290 -14.347259 -1.368294 10.789804 -21.599205 -12.693804 23.901497 -19.977432 -19.416935 2.272611 -78.419380 -5.367332 32.757080 -18.064423 -10.824881 -0.224632 -0.010287 0.064272 -17.001711 26.078747 -15.855872 -3.526985 63.092155 -6.654686 -40.548397 30.509621 -15.823312 -0.753414 -0.257017 -0.296162
+0.081477 1.662569 -0.101236 4.090908 32.946072 5.377330 0.823818 -0.483727 -4.586555 -0.229213 -0.221832 -1.648501 -0.863706 0.782214 0.053037 0.620970 0.541519 -0.194590 -5.338080 2.811177 -4.091404 1.497100 0.430727 14.954982 0.000841 -0.583773 0.183775 0.703402 0.884149 0.111408 7.154171 3.659247 -8.068837 -3.092623 4.718558 14.222916 -7.268971 6.067945 26.617887 -0.193863 -14.446340 -1.762977 10.273693 -21.747290 -12.772013 23.019650 -18.810026 -19.752174 -4.497456 -81.214943 0.289883 32.559399 -17.086882 -10.854053 -0.272812 0.006697 0.048296 -17.606268 24.344473 -16.548855 0.018092 64.941002 -4.002574 -40.092724 30.982365 -16.004272 -0.797053 -0.277354 -0.300430
+0.075631 1.662606 -0.100745 3.460313 32.976471 5.710641 1.651751 -0.598342 -5.862648 -0.220353 -0.229545 -1.193220 -0.924313 0.852111 0.031840 0.608909 0.507222 -0.193184 -4.589757 2.812429 -4.654297 1.586486 0.375017 14.338484 0.012426 -0.597335 0.169291 0.712591 0.912611 0.123434 7.424440 3.845426 -8.311149 -3.011508 4.804329 13.762800 -7.142565 6.292909 26.404932 -0.122025 -14.670962 -1.414737 10.276059 -21.916969 -13.140939 22.433922 -17.528334 -19.910950 -27.151760 -83.391960 20.414181 32.921360 -16.879583 -11.344308 -0.315939 -0.025322 0.070809 -18.030359 22.724833 -16.860800 6.800633 66.340378 0.729718 -40.609013 33.137920 -17.157066 -0.828607 -0.254875 -0.334881
+0.067744 1.663019 -0.100160 2.750137 32.451008 5.964579 2.709828 -0.654018 -7.029812 -0.114215 -0.240247 -0.610304 -0.930584 0.864305 0.032429 0.609857 0.508663 -0.197719 -3.674926 2.945854 -5.614472 1.624561 0.393651 14.123142 0.018196 -0.609623 0.169756 0.719909 0.924489 0.125479 6.925022 4.113745 -8.470967 -2.708726 4.964619 13.365863 -6.311509 6.434574 26.121767 -0.087647 -14.617156 -1.313665 10.179727 -21.897840 -12.920235 21.621241 -16.789473 -19.702494 -55.289963 -83.062332 45.417103 33.694054 -18.238564 -12.221183 -0.328209 -0.018812 0.060631 -17.603447 22.193762 -16.885450 12.234296 67.057144 4.719404 -40.514904 35.660309 -18.112703 -0.837186 -0.264026 -0.337863
+0.060451 1.663239 -0.099180 1.937882 32.343819 5.958369 3.803444 -0.623412 -7.813339 0.243347 -0.258939 -0.337957 -0.931584 0.849311 0.020650 0.625676 0.531819 -0.167987 -2.776719 2.871157 -5.914401 1.981815 0.313143 13.251905 0.004562 -0.600031 0.164373 0.727190 0.900327 0.131984 6.693370 4.130381 -8.602763 -2.492925 4.878021 13.085575 -5.623110 6.248312 25.914974 0.026765 -14.322717 -0.993933 9.866907 -21.264786 -13.101703 20.605280 -16.762232 -19.441797 -69.444542 -81.344215 56.811363 33.558720 -20.169079 -12.845671 -0.327240 -0.026446 0.068682 -16.992315 22.335329 -16.871490 19.327330 67.236977 9.520151 -39.864265 38.640488 -19.115461 -0.836243 -0.259119 -0.327297
+0.052895 1.663245 -0.098062 1.322211 31.782982 6.073307 4.770546 -0.606652 -8.541510 0.440738 -0.270776 0.067088 -0.946148 0.846498 0.018886 0.636753 0.539766 -0.140044 -2.060540 2.844466 -6.400616 2.237840 0.249050 12.528689 -0.009189 -0.584895 0.170410 0.730516 0.888239 0.129532 6.422508 4.134879 -8.697432 -2.410754 4.796368 12.828496 -5.160326 6.120498 25.663195 -0.058329 -14.074247 -0.515942 9.547147 -20.743080 -13.313732 19.289627 -16.371893 -19.119247 -77.490204 -78.407585 61.343708 32.973049 -23.363062 -13.643740 -0.326028 -0.056824 0.093424 -16.234922 22.454899 -16.763935 28.269604 66.825409 15.260168 -39.315926 42.380127 -20.557898 -0.846430 -0.241830 -0.335911
+0.046037 1.662703 -0.096283 0.787367 30.777323 6.156832 5.514717 -0.599568 -8.969502 0.851362 -0.302157 0.421786 -0.949322 0.835268 0.015171 0.670398 0.577169 -0.101702 -1.576798 2.885718 -6.904355 2.616249 0.196066 12.201994 -0.030733 -0.580131 0.166903 0.748952 0.868787 0.138336 6.046391 4.173681 -8.953986 -2.359094 4.779506 12.608792 -4.672663 6.045753 25.626432 -0.169140 -13.511759 -0.112721 9.216455 -20.021311 -13.482525 17.449570 -15.208226 -18.445559 -84.397644 -74.431297 63.724461 32.583523 -28.703791 -15.143194 -0.319589 -0.056320 0.103005 -15.929209 22.354614 -17.222151 39.593220 66.615494 22.832735 -36.562370 45.757362 -20.921675 -0.851164 -0.249906 -0.326012
+0.039986 1.661240 -0.094250 0.268377 29.780293 6.220406 6.298190 -0.564981 -9.349019 0.998647 -0.311890 0.877572 -0.933065 0.800760 0.008394 0.679123 0.579550 -0.065802 -1.058189 2.943848 -7.337451 3.144549 0.100472 12.102241 -0.051450 -0.548698 0.166443 0.728923 0.824585 0.143160 5.764920 4.117283 -9.040600 -2.385677 4.656163 12.352559 -4.369051 5.882736 25.184273 -0.646732 -13.006015 0.784969 9.144421 -19.396803 -13.731958 15.495880 -14.966761 -17.312281 -85.709503 -69.846359 59.936234 31.575283 -34.764702 -16.622219 -0.293988 -0.068191 0.133468 -14.899734 23.063726 -17.113855 49.787735 64.896858 28.465288 -33.056538 49.319580 -20.803890 -0.833715 -0.231214 -0.311077
+0.033978 1.659814 -0.091534 -0.302558 29.064325 6.142828 7.322985 -0.437458 -9.538744 0.848280 -0.305337 1.118544 -0.866625 0.702229 0.007516 0.707805 0.610742 -0.013836 -0.160860 3.001503 -7.586288 3.062507 0.123911 11.990170 -0.100697 -0.482750 0.163399 0.695277 0.734926 0.146518 5.599644 4.083576 -8.875501 -2.442043 4.600804 12.146664 -4.164323 5.635550 24.392145 -1.014126 -12.510187 2.059135 9.851705 -18.615873 -14.412713 13.283307 -15.468011 -16.367182 -83.872742 -65.445190 53.785103 26.602276 -40.988811 -16.044506 -0.213428 -0.055911 0.174528 -12.405194 24.297611 -16.526840 57.423985 61.840282 31.015785 -26.612154 53.179672 -18.892153 -0.779497 -0.214809 -0.261756
+0.028820 1.658024 -0.088926 -0.746657 28.167524 6.127325 8.064070 -0.379529 -9.955431 0.907637 -0.290271 1.757425 -0.863072 0.682274 -0.021868 0.666808 0.526805 0.029060 0.478978 3.230084 -8.036625 3.128987 0.096436 12.437164 -0.114635 -0.420108 0.138320 0.623208 0.658848 0.151542 5.547206 4.232161 -8.374828 -2.461287 4.608712 11.943456 -4.066922 5.601864 23.144876 -1.775282 -12.153822 3.146666 9.957205 -18.016468 -14.850808 11.300803 -17.004930 -15.459740 -80.482262 -60.903999 46.393951 19.054178 -46.859386 -13.795204 -0.182508 -0.096380 0.253326 -9.225326 26.157406 -15.612331 60.147099 57.151772 28.553387 -15.392452 56.765541 -13.648410 -0.738761 -0.149773 -0.266975
+0.024259 1.656469 -0.085762 -1.114040 27.719856 6.093285 8.523989 -0.430282 -10.678864 1.398656 -0.310160 3.087777 -0.846434 0.638121 -0.033779 0.648257 0.451581 0.105528 1.106315 3.339919 -8.165560 3.134204 0.068032 12.561898 -0.143586 -0.330029 0.129613 0.543585 0.565688 0.144133 5.384788 4.208803 -7.622181 -2.479476 4.468927 11.626424 -3.963840 5.386047 21.362310 -2.538534 -11.799301 4.994083 10.342610 -17.223997 -15.281015 9.602264 -18.411757 -14.489587 -77.448097 -55.665230 39.080826 6.912807 -52.168674 -8.421310 -0.118701 -0.149964 0.355887 -6.191836 27.530190 -14.616426 62.100391 51.022358 24.285908 1.487765 58.231964 -4.515537 -0.689516 -0.079265 -0.272603
+0.018929 1.655272 -0.083074 -1.320157 27.438904 6.024343 8.804043 -0.520952 -11.724448 2.009363 -0.351595 5.107023 -0.821493 0.577180 -0.043184 0.633540 0.417549 0.156606 1.545581 3.443554 -8.345448 3.594228 -0.016706 12.732988 -0.175229 -0.243758 0.126685 0.486679 0.488302 0.130215 5.240254 3.885373 -6.604835 -2.608207 4.173019 11.420531 -4.110647 5.116705 19.652153 -3.248586 -11.309921 6.543055 10.628420 -16.363821 -15.987360 6.680974 -19.585842 -13.844151 -74.320900 -50.182953 31.355860 -7.711515 -52.438782 -0.885073 -0.059364 -0.209896 0.435250 -3.225844 29.060011 -13.800301 62.489117 45.105511 18.976837 16.208967 54.689651 3.029758 -0.642904 -0.006721 -0.268939
+0.015033 1.652419 -0.080629 -1.872544 27.256689 5.607562 9.173531 -0.578054 -12.846951 2.860530 -0.454417 7.441465 -0.788694 0.480980 -0.074902 0.689558 0.468411 0.255373 2.273404 3.650125 -8.432840 3.960526 -0.066124 13.463724 -0.241096 -0.160799 0.110128 0.466335 0.363913 0.143251 5.612366 3.288752 -5.623464 -2.656493 3.701338 11.200472 -4.344469 4.696045 18.251329 -3.845389 -10.786163 8.410403 10.468436 -15.161457 -17.444098 3.094943 -19.395794 -13.516047 -73.244728 -45.120861 25.429760 -18.212690 -46.996372 3.674936 0.025590 -0.224607 0.512006 -1.161697 29.294413 -13.281642 64.009697 39.762363 14.683785 22.268076 46.992287 4.549775 -0.596414 0.031837 -0.218076
+0.011640 1.648982 -0.077192 -2.245581 27.119728 5.125892 9.064021 -0.807862 -14.144335 4.062254 -0.661653 10.636581 -0.745959 0.377733 -0.093884 0.720589 0.512561 0.308761 2.603768 3.693428 -8.156476 4.766854 -0.200310 13.924015 -0.292988 -0.075202 0.109002 0.443478 0.266891 0.134219 6.102139 2.769947 -4.489749 -2.817702 3.419485 10.893922 -4.828446 4.471055 16.777538 -4.311166 -10.366948 10.302101 10.827532 -14.326761 -18.647331 -1.315633 -19.761639 -12.828084 -70.823479 -40.584328 19.598974 -21.849625 -39.580322 4.089746 0.109032 -0.251681 0.572904 1.364328 30.279877 -12.183983 64.271088 34.851540 10.480817 21.889658 37.390999 2.871182 -0.549648 0.082061 -0.177757
+0.006436 1.646482 -0.074548 -2.396243 26.319700 4.583327 8.914662 -1.189471 -15.442275 4.765430 -0.898953 14.346115 -0.723408 0.294975 -0.135524 0.743085 0.528034 0.373324 2.980075 3.828263 -8.064270 5.169292 -0.293313 14.740459 -0.342242 0.005466 0.091262 0.408499 0.155941 0.140283 5.703667 2.319776 -2.885660 -2.926263 3.118362 10.440119 -4.921028 4.242048 15.125410 -4.530672 -9.600414 12.492696 11.073767 -13.146041 -19.750673 -6.323945 -20.328955 -11.684490 -67.008247 -35.957207 13.765593 -21.655010 -32.839359 2.890163 0.180359 -0.271922 0.651909 5.002633 31.745455 -10.233080 63.596897 30.567308 6.877375 19.962444 29.748713 1.476035 -0.507224 0.136706 -0.141464
+0.000344 1.642982 -0.073020 -2.904719 24.550039 4.002471 9.285649 -1.613476 -17.397533 4.939266 -1.143864 19.367868 -0.697447 0.217400 -0.168870 0.756723 0.526457 0.423855 3.587287 4.304657 -8.709493 5.652985 -0.400704 16.713232 -0.386285 0.079799 0.077989 0.364376 0.053933 0.145328 5.431520 1.962162 -0.648394 -2.911253 2.992637 9.621492 -4.957923 4.159826 12.917857 -5.287396 -8.375392 14.502936 11.358890 -12.071952 -20.585999 -11.452865 -19.708029 -10.074731 -63.529682 -30.909336 8.358694 -18.492363 -28.223272 1.091566 0.255661 -0.283423 0.731517 10.075599 31.886204 -7.699796 62.630482 26.192200 3.791089 17.663208 23.004074 0.625034 -0.463677 0.185246 -0.110898
+-0.007274 1.638968 -0.072235 -3.008276 22.035337 3.677706 9.522751 -1.967760 -19.711714 4.694295 -1.246534 24.977421 -0.670678 0.151376 -0.195416 0.757548 0.525458 0.467222 3.970089 5.080105 -10.031467 5.631836 -0.377111 19.647587 -0.415510 0.142913 0.068845 0.326898 -0.026727 0.145717 3.924162 2.163312 1.951574 -2.670274 3.175872 8.709508 -4.227693 4.268992 10.655452 -5.574524 -7.478019 15.723668 11.241080 -10.879519 -21.340027 -15.470458 -17.810436 -9.378189 -60.964703 -27.026674 4.770772 -14.935219 -24.731766 -0.247103 0.302369 -0.302749 0.782621 14.839340 30.607428 -5.876314 60.586037 22.582407 1.804074 15.459748 16.683353 0.302390 -0.425095 0.231847 -0.085000
+-0.012767 1.632059 -0.071147 -3.188107 20.125826 3.490277 9.567676 -2.516288 -23.157537 4.592924 -1.440678 32.002728 -0.626222 0.103103 -0.206375 0.751699 0.518213 0.477906 4.004121 5.862217 -11.714152 6.379379 -0.572347 23.018656 -0.430698 0.163487 0.059324 0.290569 -0.077932 0.162258 2.812906 2.184469 4.341192 -2.370742 3.204790 7.776482 -3.547487 4.181605 8.470813 -5.922029 -6.688453 15.734831 10.983440 -10.183174 -21.245098 -17.941589 -14.558348 -9.286791 -59.890591 -23.472286 2.041696 -11.116385 -21.778189 -1.341169 0.333187 -0.271548 0.793085 17.773335 27.986938 -5.341005 58.811947 19.628033 0.867582 13.436264 9.585812 0.273600 -0.388544 0.233265 -0.048803
+-0.017405 1.623264 -0.069625 -3.763556 18.597235 3.088673 9.740908 -3.066433 -27.092962 4.828552 -1.805309 39.742638 -0.596579 0.085221 -0.193604 0.736575 0.486607 0.477354 4.233627 6.701496 -13.441511 7.622811 -0.982310 26.802177 -0.432961 0.173024 0.066673 0.254320 -0.093286 0.166765 2.684459 1.835391 6.730634 -2.192938 3.169391 6.868375 -3.495774 4.099107 6.328510 -6.301057 -5.814495 15.146177 10.791109 -9.730202 -20.768696 -19.510109 -11.365467 -9.245909 -58.665051 -19.894918 -0.162634 -8.531816 -19.381807 -1.890725 0.352819 -0.256297 0.803771 18.986029 24.900455 -5.439965 57.112122 17.176193 0.052519 11.351021 3.933233 0.299241 -0.367915 0.231857 -0.041567
+-0.022472 1.616148 -0.066093 -4.606283 16.783684 2.038433 10.257225 -3.237386 -30.051424 4.860679 -2.070026 46.780174 -0.610522 0.061044 -0.204255 0.718773 0.467486 0.504439 5.313603 7.236397 -13.443831 7.945229 -1.112726 29.058994 -0.441672 0.214755 0.068919 0.236123 -0.130152 0.144288 2.724490 1.566288 9.486620 -2.050978 3.328049 6.083529 -3.622650 4.284473 4.461007 -6.048547 -5.272292 15.347760 10.143270 -8.627272 -21.611727 -21.036156 -8.525801 -9.344939 -56.316929 -16.534935 -1.850828 -6.523263 -16.867512 -2.104004 0.366587 -0.310249 0.846832 18.836288 21.985016 -5.754991 55.359642 15.102925 -0.912700 8.728246 -0.011556 0.353473 -0.360199 0.279839 -0.061794
+-0.028604 1.612718 -0.061543 -5.205863 14.780851 0.184086 10.481403 -3.321495 -31.716125 4.762765 -2.255331 53.005367 -0.608191 0.027894 -0.229788 0.735862 0.478802 0.550138 6.409328 7.461229 -11.889744 8.249804 -1.161624 30.333080 -0.477710 0.252686 0.055904 0.219036 -0.188509 0.163519 2.189550 1.555688 13.131711 -1.949141 3.727525 5.295633 -3.683510 4.680171 2.536283 -5.645040 -5.248861 16.697853 10.199049 -7.850960 -22.905785 -22.588839 -6.642550 -9.222620 -52.489914 -13.294887 -3.059737 -4.999961 -14.308742 -2.081709 0.393287 -0.323604 0.898454 19.141649 19.729973 -5.567057 51.953823 12.876890 -2.060239 6.453767 -2.555665 0.451266 -0.346359 0.311769 -0.041931
+-0.033465 1.611543 -0.057313 -5.288341 12.923439 -2.078186 9.747585 -3.666156 -32.410072 4.921432 -2.548815 58.253490 -0.615517 -0.012988 -0.252891 0.765817 0.502750 0.614105 6.882721 7.336810 -9.424691 8.648570 -1.214429 30.933720 -0.517838 0.305340 0.039539 0.217254 -0.255142 0.161152 1.377738 1.673654 16.938850 -1.885749 4.143285 4.763104 -3.648863 5.081563 0.997109 -5.403621 -5.038651 18.570427 10.438336 -6.968575 -24.290100 -23.327129 -5.456102 -8.691787 -49.202919 -10.225882 -3.913328 -3.029912 -12.153958 -2.069226 0.436552 -0.352176 0.959725 18.800640 18.027386 -5.097826 47.701511 10.585001 -3.161278 4.930471 -3.219490 0.474945 -0.329705 0.346126 -0.035995
+-0.037001 1.610900 -0.053046 -5.459035 11.417397 -4.370905 8.919687 -3.990988 -32.892670 4.719621 -2.631299 62.414093 -0.621527 -0.032382 -0.253748 0.772318 0.510506 0.637159 7.178439 7.141113 -6.887559 9.413719 -1.396781 31.385492 -0.533739 0.338407 0.046544 0.215893 -0.274104 0.146453 1.183635 1.560423 20.112841 -1.946585 4.516106 4.633256 -3.969219 5.446738 0.062529 -5.270811 -4.611331 19.771185 10.590975 -6.358570 -24.764013 -23.337696 -4.727475 -7.933431 -46.059875 -7.455133 -4.352599 -1.121212 -10.099092 -1.953547 0.454304 -0.390862 0.992206 17.932812 16.644169 -4.852449 43.475632 8.879509 -3.809905 3.719316 -3.919387 0.493247 -0.327533 0.376892 -0.046392
+-0.042302 1.610100 -0.049081 -5.391903 9.911004 -6.324331 8.141214 -4.015886 -33.465736 3.902835 -2.138607 65.653336 -0.618434 -0.059633 -0.262143 0.784273 0.531671 0.657152 7.362815 7.137530 -4.857063 10.020396 -1.511466 32.175289 -0.546387 0.353239 0.049146 0.217707 -0.301873 0.146027 0.480422 1.964811 22.227631 -1.941046 4.897775 5.094965 -3.796236 5.802814 0.099601 -5.052799 -4.603489 19.660629 10.209729 -5.799301 -25.733595 -22.133482 -3.793023 -7.513168 -44.155209 -5.861660 -4.444392 1.045169 -7.803169 -1.774016 0.467210 -0.396980 1.004365 15.947800 15.561639 -4.604399 39.730682 7.417494 -4.274111 2.618038 -3.673816 0.461445 -0.324058 0.385768 -0.036964
+-0.046499 1.609824 -0.044563 -4.897097 8.044132 -7.759527 7.129580 -3.701488 -33.950520 2.434736 -0.905148 68.046700 -0.567278 -0.109690 -0.251736 0.791232 0.558504 0.656296 6.894688 7.341344 -3.339985 10.693041 -1.602174 33.169521 -0.550341 0.356923 0.053911 0.209904 -0.321924 0.146254 -0.180039 2.533565 23.303581 -2.283835 5.312343 5.754400 -4.028460 6.098253 0.544943 -4.827488 -4.434423 18.788912 10.298202 -5.464774 -25.856817 -20.136738 -2.228923 -6.826283 -42.542194 -4.035356 -4.797617 2.826261 -7.419703 -1.665038 0.488975 -0.357993 0.975026 13.555342 14.611179 -4.277354 36.701172 6.347998 -4.459073 1.805836 -3.291048 0.420920 -0.296834 0.362327 -0.003108
+-0.051368 1.609805 -0.039089 -4.729520 5.262616 -9.072851 7.009119 -2.416961 -33.923206 0.479808 0.948071 69.028908 -0.538666 -0.111515 -0.231386 0.758328 0.530239 0.627724 7.340661 7.830291 -1.892002 10.257276 -1.192133 34.147629 -0.540927 0.352997 0.060729 0.184976 -0.303629 0.147970 -0.553872 3.476938 23.967199 -2.540746 6.006273 6.481787 -4.276760 6.742264 1.088838 -4.740468 -4.220420 17.433125 10.389961 -5.287320 -25.893085 -17.643950 -0.260914 -6.279697 -41.360966 -2.508306 -5.087936 4.177069 -7.586514 -1.621331 0.480496 -0.350431 0.957908 10.696718 13.640912 -3.638309 33.917938 5.195716 -4.513232 1.852453 -2.401143 0.371252 -0.282587 0.362839 -0.002393
+-0.056731 1.609689 -0.031798 -4.488407 2.199222 -9.961704 6.761600 -0.874082 -33.753017 -1.260345 2.780887 68.746666 -0.499820 -0.121450 -0.192676 0.722658 0.497435 0.586983 7.735133 8.368250 -0.669134 9.878084 -0.718180 34.887722 -0.511474 0.341385 0.082580 0.163110 -0.270551 0.124350 -1.171180 4.802898 23.820547 -2.737865 6.803915 7.112964 -4.354832 7.428541 1.673593 -4.726437 -3.751820 15.659914 10.995532 -5.321371 -24.884024 -14.488888 2.454476 -5.832412 -40.615459 -1.178024 -5.458930 5.070867 -8.539602 -1.633265 0.481976 -0.333029 0.920877 8.172437 12.075585 -3.089619 31.262337 4.172236 -4.510634 1.568522 -1.391018 0.315117 -0.265113 0.341937 -0.013063
+-0.060454 1.611549 -0.024798 -4.345602 0.264955 -11.284180 6.274473 -0.036605 -33.198147 -3.752834 4.673784 67.294670 -0.480361 -0.101782 -0.162420 0.681199 0.447092 0.548282 7.943894 8.597098 1.079643 9.849933 -0.493284 35.296005 -0.489628 0.329359 0.096662 0.134069 -0.230963 0.121538 -1.291891 5.575139 24.090136 -2.811716 7.291533 7.981347 -4.524038 7.883126 2.367414 -4.924322 -3.425659 14.103881 11.398785 -5.455873 -24.535128 -12.019752 4.652412 -5.502891 -39.678032 0.003667 -5.805753 7.218094 -9.860481 -1.791672 0.465212 -0.330656 0.903789 5.731482 10.316743 -2.458726 28.315857 3.008001 -4.513628 1.214985 0.744363 0.264369 -0.259341 0.340508 -0.027417
+-0.063755 1.614694 -0.017752 -4.304479 -0.941565 -12.486661 5.513461 0.377790 -32.600277 -5.867639 5.965476 64.767662 -0.458755 -0.070563 -0.131322 0.624120 0.374667 0.509615 8.318394 8.705842 2.775874 9.894506 -0.329877 35.559410 -0.452123 0.309094 0.104436 0.097279 -0.189909 0.114958 -1.222909 6.178157 24.121780 -2.744253 7.680165 8.791437 -4.580501 8.260159 3.067840 -5.085841 -3.527663 12.588505 11.146073 -5.948100 -23.310976 -10.716431 5.865695 -5.068224 -37.476646 1.250844 -5.898730 9.290425 -11.227266 -1.957080 0.436431 -0.325781 0.868926 4.466258 8.685677 -1.626946 24.942867 1.430896 -4.528524 -0.582997 2.888362 0.218945 -0.247001 0.331940 -0.044248
+-0.066834 1.618305 -0.009935 -4.271409 -1.728187 -13.761124 4.440903 0.464509 -31.423830 -7.689936 6.672837 60.742199 -0.495195 -0.005116 -0.120670 0.554363 0.285538 0.458506 8.833310 8.657389 4.785453 10.033473 -0.234974 35.574581 -0.406920 0.301080 0.104227 0.077810 -0.130853 0.086522 -0.575349 6.261177 23.886868 -2.979573 7.890209 9.879624 -5.202965 8.540730 4.265458 -5.753566 -3.037740 11.241445 11.695488 -6.384079 -23.090385 -9.103849 6.938199 -4.883404 -35.290504 2.090719 -5.796532 11.265144 -12.689768 -2.240234 0.395483 -0.366637 0.867585 3.262946 7.174008 -1.315178 21.187616 1.068536 -4.075763 -0.351786 2.925920 0.261723 -0.258810 0.362569 -0.104326
+-0.070439 1.620988 -0.000493 -4.160469 -1.791052 -14.417738 2.994115 0.122842 -30.840187 -8.887682 6.811105 56.824108 -0.496656 0.027183 -0.106951 0.541792 0.265790 0.420645 8.846130 8.662286 5.966333 10.838997 -0.455921 35.720875 -0.384959 0.265421 0.106791 0.080409 -0.088521 0.089626 -0.084268 6.365775 22.389635 -3.164983 8.041585 10.889608 -5.576904 8.716266 5.974546 -6.069462 -3.125971 10.091981 12.230101 -7.198275 -22.276144 -7.419556 7.690780 -4.718075 -32.664898 2.460795 -5.464011 12.799684 -13.810371 -2.472816 0.376884 -0.336484 0.838519 2.351725 5.616473 -1.170618 17.296295 0.982234 -3.428511 0.276717 1.454743 0.286641 -0.269410 0.332852 -0.112497
+-0.074229 1.623649 0.009182 -4.123700 -2.242906 -15.092424 1.826603 0.074590 -29.423367 -9.619883 6.583418 51.775143 -0.483441 0.033626 -0.083505 0.533490 0.261007 0.391314 8.879706 8.889065 6.860559 11.753366 -0.647050 36.130367 -0.370328 0.257235 0.120622 0.081716 -0.052200 0.076185 0.452950 6.533315 21.246351 -3.406180 8.319160 11.633908 -6.080700 8.961723 7.215721 -6.468230 -2.835513 9.475590 13.120923 -7.689601 -21.768579 -5.713641 8.120588 -4.185177 -30.186108 3.302296 -5.242072 14.473454 -14.910348 -2.715931 0.374842 -0.330612 0.816061 1.718016 4.551305 -0.803679 13.974302 0.513172 -2.942636 0.756237 -0.179769 0.285791 -0.269165 0.322657 -0.119974
+-0.078956 1.624931 0.020909 -4.333530 -2.742626 -15.129280 1.447024 0.330546 -28.100103 -11.089450 6.488171 45.802528 -0.479104 0.038896 -0.068683 0.524312 0.257081 0.363153 9.413212 9.269198 6.943058 12.501180 -0.769285 36.864906 -0.352879 0.242712 0.130685 0.088373 -0.023924 0.060189 1.294305 6.604326 19.510118 -3.770504 8.642481 11.895184 -6.832510 9.248810 8.184788 -6.554145 -2.706801 9.125379 13.703918 -8.081475 -20.992449 -3.931792 8.749782 -3.796303 -27.135714 3.872879 -4.786327 15.746517 -15.616330 -2.856759 0.371702 -0.322755 0.793702 1.016898 3.078273 -0.572713 12.038421 -0.203411 -2.654481 0.782950 -0.493135 0.264350 -0.272291 0.307191 -0.131190
+-0.083256 1.626013 0.032690 -4.537520 -3.553150 -15.281181 1.292840 0.744865 -25.927687 -12.554935 6.178078 38.921799 -0.487318 0.079555 -0.055947 0.468658 0.195079 0.311466 9.913964 9.700968 7.122727 12.962446 -0.762768 37.477596 -0.318319 0.231444 0.139498 0.066270 0.029360 0.043972 2.342352 6.794458 17.749067 -4.053502 9.034330 12.074540 -7.597500 9.693402 8.992167 -6.849308 -2.476460 9.744621 14.074791 -8.685578 -19.323400 -2.267720 8.541321 -3.049881 -24.066637 4.820086 -4.326739 16.908501 -15.207360 -2.838797 0.335593 -0.351225 0.777400 0.295125 2.417596 0.292638 9.725731 -1.509158 -2.288901 1.440996 -0.498258 0.256831 -0.278899 0.327252 -0.161716
+-0.087099 1.625439 0.044543 -4.879022 -3.550818 -15.363842 0.729406 0.667539 -23.566408 -13.148077 5.263333 31.820438 -0.498152 0.114442 -0.056705 0.451587 0.158480 0.297821 10.746673 10.023183 7.140649 13.338786 -0.776102 38.205318 -0.304517 0.210080 0.134912 0.055933 0.049590 0.052829 3.071229 6.932812 15.987280 -4.073936 9.171741 12.167547 -7.862047 9.902498 9.749548 -6.619665 -2.501984 10.385706 14.162013 -8.986056 -17.884083 -1.087291 8.534575 -2.592966 -21.284298 5.593383 -3.912184 18.667006 -15.473011 -3.024328 0.314754 -0.341191 0.773489 -0.518731 1.754865 0.949679 7.635855 -2.551775 -1.919943 2.011223 -0.354104 0.242023 -0.287486 0.316954 -0.173439
+-0.090904 1.622851 0.056495 -5.405794 -3.362160 -14.824477 0.163126 0.396351 -21.957710 -12.847582 4.088204 25.156433 -0.512493 0.122933 -0.067894 0.459526 0.174108 0.284005 11.073026 10.466381 6.261765 14.638362 -1.185547 39.084148 -0.298691 0.192396 0.125199 0.076768 0.058601 0.050769 4.082524 7.049643 13.160181 -4.111020 9.359155 12.337749 -8.149163 10.249475 11.264407 -6.492524 -3.143072 10.836895 14.594754 -9.670050 -17.719236 -0.660843 8.277614 -2.550275 -17.510607 5.862931 -3.222911 20.243835 -16.140551 -3.287871 0.308926 -0.322903 0.758851 -0.527988 0.741014 1.023506 4.499062 -2.922536 -1.327293 2.958824 -1.229639 0.152621 -0.298473 0.299991 -0.173350
+-0.094819 1.619612 0.067493 -5.928102 -2.501269 -14.513174 -0.667793 -0.155260 -20.689739 -11.678638 2.950583 19.980234 -0.546611 0.152325 -0.074074 0.464723 0.172147 0.289092 11.398046 10.681211 5.581599 16.150942 -1.806721 39.871658 -0.294526 0.177528 0.119519 0.095148 0.072382 0.047761 4.497272 6.969127 11.071962 -4.101716 9.174507 12.408237 -8.161904 10.204678 12.322958 -5.981243 -3.629343 11.007959 14.470870 -9.804289 -17.583473 -0.087978 8.411112 -2.557572 -14.237834 6.203336 -2.560209 21.779766 -17.071503 -3.602466 0.293362 -0.329949 0.763684 -1.037800 -0.035908 0.837356 2.260914 -2.695381 -0.929959 3.706935 -2.154623 0.054548 -0.319326 0.294437 -0.194493
+-0.098648 1.615449 0.078939 -6.429725 -0.689891 -14.590741 -1.791793 -0.927324 -19.238655 -10.153143 1.988053 15.987058 -0.560850 0.163427 -0.081149 0.467508 0.173826 0.280844 11.678406 10.444448 5.446476 17.918608 -2.690297 40.274136 -0.285932 0.177088 0.120247 0.106621 0.082785 0.039348 4.902253 6.458735 9.532441 -4.223984 8.674844 12.528913 -8.378658 9.819111 13.155441 -6.139990 -3.543532 11.555869 15.155403 -10.102446 -17.464794 1.106026 8.140964 -2.268770 -11.319903 6.410719 -1.963722 22.542982 -16.883654 -3.589069 0.289758 -0.333608 0.763419 -1.278386 -0.559549 0.782265 0.024249 -2.711612 -0.594961 3.936903 -2.636563 0.006567 -0.328585 0.297146 -0.203621
+-0.102360 1.609267 0.091844 -7.071791 1.453924 -14.736541 -2.764009 -1.457778 -17.713989 -9.014901 1.390483 13.116459 -0.590805 0.172143 -0.094154 0.493037 0.193191 0.307161 12.320220 9.984034 5.581549 19.335611 -3.506281 40.569923 -0.296159 0.176414 0.114903 0.129018 0.071098 0.039683 4.689802 6.005881 7.902266 -4.081151 7.967450 12.642797 -7.943502 9.226802 14.069006 -5.914043 -3.457068 11.850121 14.906630 -9.697120 -17.907877 2.018377 7.953105 -1.862757 -8.093374 7.126615 -1.215654 21.884457 -16.812366 -3.389329 0.293359 -0.338993 0.783288 -1.602516 -1.213488 0.670260 -1.894455 -2.772046 -0.266233 4.040524 -2.370249 -0.003042 -0.344508 0.294356 -0.213830
+-0.105765 1.601894 0.102984 -7.475506 2.554207 -15.058746 -3.038265 -1.506967 -16.541637 -8.988110 1.246997 11.744662 -0.566054 0.077389 -0.095852 0.569936 0.315127 0.363072 12.580375 9.777960 5.806503 20.950594 -4.317551 41.111622 -0.330561 0.204935 0.124383 0.181698 0.011658 0.012631 4.339998 5.832718 6.643101 -3.928652 7.675804 12.793781 -7.478076 8.866470 14.945797 -5.388284 -3.582959 12.486918 14.711348 -8.928375 -18.849380 2.608743 7.828300 -1.661123 -5.340085 7.505740 -0.701340 22.242306 -16.825874 -3.263389 0.355096 -0.331090 0.777423 -2.128025 -1.689717 0.631834 -3.311277 -2.893536 0.072751 4.037404 -1.962477 -0.025643 -0.330064 0.270560 -0.181401
+-0.110325 1.594462 0.111935 -7.607469 3.634754 -15.747669 -3.134311 -1.553056 -15.765891 -9.566685 1.375394 12.152218 -0.535405 0.030291 -0.098619 0.592533 0.347728 0.405280 12.620081 9.516385 6.353779 22.621572 -5.248260 41.567814 -0.351778 0.220795 0.125732 0.177200 -0.034986 0.021091 3.374327 5.782463 6.562540 -3.768897 7.341855 12.736885 -6.838039 8.423208 14.859060 -4.586175 -3.785986 13.274812 13.829673 -8.101556 -18.517960 3.129670 6.874203 -0.997113 -2.948442 8.548265 -0.354932 23.053068 -16.098471 -3.058595 0.376533 -0.325137 0.779378 -2.915638 -1.166665 1.384980 -3.977428 -3.900332 0.220550 4.057785 -1.815060 -0.014403 -0.309928 0.263900 -0.151795
+-0.114779 1.586340 0.120219 -7.294706 3.866702 -16.411154 -2.865041 -1.395903 -15.400959 -10.996572 1.788512 13.340425 -0.535774 0.012436 -0.110394 0.592584 0.359519 0.411562 12.396415 9.513542 6.994771 23.720787 -5.925977 42.378113 -0.360968 0.227914 0.122886 0.177864 -0.053487 0.022422 2.369140 6.021291 6.628178 -3.811535 7.327988 12.753875 -6.479008 8.357909 14.825266 -3.926337 -3.957463 13.469325 13.676326 -7.555861 -18.777166 3.649189 6.354259 -0.838647 -0.453328 8.693585 0.091548 23.335814 -15.458507 -2.870138 0.377976 -0.330938 0.787290 -3.221347 -0.906817 1.711321 -4.653479 -4.566107 0.260133 3.746727 -2.333239 -0.028880 -0.309737 0.272668 -0.146323
+-0.117546 1.578749 0.125662 -6.659654 3.815828 -17.352358 -2.966582 -1.490204 -15.250084 -12.057277 2.244631 15.386659 -0.532942 0.010417 -0.119503 0.575033 0.339235 0.401948 11.586409 9.632736 7.758195 24.762545 -6.661480 43.461388 -0.357823 0.244944 0.119760 0.160645 -0.057218 0.021373 1.668211 6.086178 7.625755 -4.124602 7.338911 12.900241 -6.647751 8.325468 14.473283 -4.114501 -3.687254 13.286473 14.529540 -7.468236 -19.317369 4.519283 5.972566 -0.655293 0.756444 8.910223 0.194656 24.363049 -15.196894 -2.902202 0.377059 -0.338005 0.798529 -3.229116 -0.433697 2.063303 -5.193028 -5.077242 0.235147 3.725788 -2.920979 -0.041102 -0.303371 0.296200 -0.146385
+-0.120041 1.572380 0.129362 -6.305942 3.615783 -18.167765 -2.459479 -1.337810 -15.212354 -13.498231 2.791792 17.171534 -0.489782 -0.050843 -0.094904 0.603037 0.385974 0.406871 11.293916 9.692673 8.308476 25.431528 -7.210978 44.615311 -0.369310 0.265380 0.138930 0.170041 -0.069312 -0.002897 1.127866 5.955515 8.764842 -4.382669 7.334832 12.957771 -6.816120 8.136098 13.948115 -4.419566 -3.153421 13.009773 15.650078 -7.373028 -19.349434 5.438451 5.678382 -0.388690 0.913781 9.065556 0.015867 25.505732 -14.885599 -2.884380 0.430137 -0.323295 0.791334 -3.014028 0.153495 2.275024 -5.376196 -5.154175 0.194067 3.504311 -3.401726 -0.070221 -0.277609 0.279147 -0.132339
+-0.121409 1.566785 0.132315 -6.229176 3.445084 -18.446049 -1.536514 -1.159212 -15.634907 -15.038079 3.294131 18.541788 -0.463389 -0.059730 -0.076676 0.604382 0.388259 0.389530 11.291673 9.667732 8.384093 25.887857 -7.714139 45.613132 -0.368481 0.256638 0.150165 0.161794 -0.054369 0.002377 1.364210 5.486217 9.669513 -4.779380 7.198331 12.780397 -7.464574 7.914199 13.271833 -4.824913 -2.566663 12.457442 16.054541 -7.431819 -18.840149 5.961504 5.381151 -0.254147 1.152591 8.954454 -0.044735 25.942503 -14.216311 -2.751684 0.439331 -0.300730 0.778080 -2.842363 0.548663 2.284291 -5.187572 -4.820549 0.114477 3.618735 -3.787461 -0.104767 -0.269047 0.262371 -0.121411
+-0.121633 1.563252 0.133136 -6.207879 2.716420 -18.530725 -0.798228 -0.952371 -15.733153 -15.976245 3.521087 18.726164 -0.451276 -0.060329 -0.062844 0.566421 0.359079 0.338161 11.524342 9.766999 8.315435 25.639431 -7.772152 46.547638 -0.343655 0.253816 0.164740 0.146837 -0.021867 -0.019739 1.977451 4.988690 10.728998 -5.274837 7.147072 12.504950 -8.386013 7.781594 12.364853 -5.290700 -1.732056 11.745614 16.866001 -7.538753 -18.161772 6.321446 5.139113 -0.095538 0.651253 9.072498 -0.247198 26.910023 -14.317163 -2.854932 0.433777 -0.305133 0.760922 -2.344515 0.992614 2.391790 -4.722337 -4.535479 0.062922 3.664660 -3.335208 -0.064310 -0.264414 0.270255 -0.136835
+-0.121898 1.562045 0.132095 -6.296937 2.237329 -18.538651 -0.196385 -0.842635 -15.620030 -16.648272 3.532489 18.272446 -0.421624 -0.062168 -0.044324 0.548567 0.338759 0.306686 11.848676 9.686393 8.116293 25.149817 -7.674862 47.029305 -0.335757 0.249593 0.175524 0.125016 0.000061 -0.014687 2.419848 4.389591 11.900627 -5.707050 6.949331 12.287120 -9.131953 7.471502 11.475921 -5.680685 -1.111133 10.893270 17.812616 -7.712327 -17.820562 6.519305 4.803987 0.275100 -0.151435 9.524633 -0.458687 27.471832 -15.247224 -3.120506 0.434999 -0.286010 0.748011 -1.653504 1.503774 2.651853 -3.934599 -4.403604 0.036218 3.880179 -2.273012 0.014895 -0.253817 0.264878 -0.129494
+-0.122583 1.563203 0.129728 -6.370316 2.379146 -18.180025 -0.111760 -1.011142 -15.512547 -16.722134 3.250673 17.135126 -0.440092 -0.007641 -0.028148 0.517641 0.298907 0.276611 12.050435 9.344055 7.730395 24.413095 -7.506826 47.093266 -0.309598 0.220128 0.180614 0.122768 0.053540 -0.014729 2.093888 4.088501 12.456456 -5.736309 6.593401 12.289157 -9.027953 7.131604 11.195807 -5.441470 -0.945093 9.397714 17.450848 -7.749553 -17.205772 6.627807 5.445283 -0.556064 -2.006414 7.137973 -0.851998 28.450481 -15.871873 -3.580874 0.388686 -0.293490 0.725561 -1.326600 1.048519 2.015600 -2.466781 -3.484174 -0.133951 3.995342 -2.012242 0.005046 -0.274097 0.260361 -0.156308
+-0.122330 1.566770 0.126004 -6.862566 2.167047 -17.945341 0.107629 -1.063304 -14.915633 -16.067343 2.740838 15.318274 -0.466176 0.045496 -0.023798 0.488294 0.249888 0.274261 12.590283 8.930395 7.613179 23.621336 -7.181594 46.643768 -0.293799 0.218007 0.181075 0.108841 0.084267 -0.009947 2.462157 3.703882 13.238460 -5.646223 6.314587 12.249623 -9.064575 6.913510 10.781544 -5.288212 -1.016388 8.728507 17.213570 -7.698281 -17.416704 6.649496 5.805310 -1.218261 -4.689087 4.937608 -1.356343 29.498144 -17.218878 -4.320535 0.346171 -0.329679 0.732530 -1.481122 0.950674 1.551869 0.289414 -2.788719 -0.583706 3.724111 -2.041247 0.041688 -0.290575 0.286985 -0.182382
+-0.121876 1.570924 0.121349 -7.277102 2.349147 -17.486326 -0.299998 -1.329397 -14.468218 -14.614100 2.097471 13.347012 -0.474041 0.108227 -0.019255 0.420475 0.162894 0.228699 12.924494 8.456316 7.200593 22.933365 -6.960938 46.031380 -0.267872 0.182777 0.172078 0.069147 0.126971 0.012523 2.433203 3.421620 14.182847 -5.411819 5.896744 11.808802 -8.784131 6.479448 9.729136 -4.818884 -1.033386 8.062301 16.318027 -7.672631 -15.897619 6.520482 5.928554 -1.331696 -7.374492 3.514424 -1.666415 29.705997 -19.821272 -5.242815 0.285555 -0.327840 0.716255 -1.659985 1.161210 1.459286 3.382258 -2.585826 -1.051680 3.455165 -1.741092 0.094011 -0.300304 0.291817 -0.200811
+-0.121052 1.575325 0.116321 -7.176392 2.172981 -16.553852 -1.237175 -1.552315 -14.162011 -12.741652 1.438776 10.710757 -0.459499 0.110266 -0.010060 0.422467 0.170392 0.241272 12.404871 8.134282 6.572304 22.403255 -6.671595 44.991665 -0.269803 0.159104 0.171338 0.069817 0.126816 0.029661 1.367676 3.754752 14.370745 -4.876679 5.635292 11.436094 -7.680348 6.152471 9.166446 -3.867156 -1.165315 7.536928 14.857112 -6.968556 -15.042185 6.164510 6.532460 -1.823331 -10.642793 1.309045 -2.002665 29.405722 -22.136473 -6.036434 0.266510 -0.310068 0.691340 -2.195982 0.912099 0.883817 6.705359 -1.676299 -1.420694 3.741755 -1.833966 0.063025 -0.299391 0.265327 -0.188253
+-0.118246 1.580098 0.109927 -7.711839 2.075364 -15.587891 -2.088654 -1.835086 -14.202435 -10.109858 0.801686 8.486234 -0.441670 0.088577 -0.027452 0.479225 0.227037 0.306912 12.040537 7.666810 5.746990 22.462009 -6.724844 43.824299 -0.295205 0.133230 0.165084 0.084466 0.069559 0.081053 0.806512 3.957070 14.487797 -3.805872 5.297740 11.191707 -6.132635 5.824849 8.921922 -2.679579 -1.973135 7.175693 12.479910 -6.068850 -15.259023 4.406346 7.096613 -2.811057 -13.778641 -1.106776 -2.268214 28.906534 -24.795628 -6.924478 0.263654 -0.253814 0.673941 -3.153684 0.288356 0.224831 10.035183 -0.926798 -1.743588 4.105676 -1.873696 0.025924 -0.303234 0.214187 -0.132173
+-0.114862 1.584567 0.101931 -8.740442 1.905554 -14.505961 -2.350240 -1.884379 -14.665668 -7.717851 0.374252 6.604163 -0.439979 0.081357 -0.036211 0.511341 0.261599 0.356569 12.131114 7.159822 4.751263 22.863031 -6.897527 42.459049 -0.318512 0.120248 0.161797 0.093616 0.037566 0.114388 1.206626 3.983779 14.601110 -2.751334 5.130107 10.879861 -5.038743 5.701476 8.615458 -1.284028 -2.591045 7.060310 10.643373 -5.052985 -15.613962 2.561202 7.182442 -3.885128 -16.511860 -3.883932 -2.304093 27.073845 -27.518414 -7.518256 0.250585 -0.238313 0.671737 -4.112470 -0.486091 -0.340489 13.856544 -0.541222 -2.200242 4.130472 -1.385617 0.026595 -0.312973 0.194391 -0.104998
+-0.111653 1.588717 0.092943 -9.580932 1.938409 -13.071809 -2.774422 -1.995113 -15.587181 -5.479844 0.084802 4.950943 -0.450784 0.073900 -0.059684 0.516137 0.270156 0.368477 12.051138 6.629433 3.344998 23.300184 -7.073602 40.853096 -0.325742 0.112034 0.151600 0.096996 0.010127 0.127193 2.367603 3.662552 14.544272 -2.300927 5.032442 10.374562 -4.940774 5.629103 8.166381 -0.456285 -2.840114 7.537911 9.931774 -4.497946 -15.633410 1.278644 6.299837 -4.638807 -18.993738 -6.416201 -2.319404 24.388172 -28.466503 -7.368638 0.246393 -0.226625 0.678114 -4.338342 -1.046778 -0.519125 18.322056 -0.927267 -2.912134 3.519533 0.244504 0.066412 -0.319135 0.188831 -0.095946
+-0.107687 1.591367 0.083690 -10.365875 1.587422 -11.407109 -3.041477 -2.004628 -16.891371 -3.434665 -0.069550 3.456881 -0.468509 0.084028 -0.069495 0.529481 0.272144 0.419691 11.766008 6.263106 1.633495 24.164347 -7.413058 39.434261 -0.344595 0.114909 0.143007 0.096394 -0.017786 0.148005 3.174097 3.375661 14.198696 -1.732412 4.794790 9.791350 -4.461377 5.439648 7.734949 0.695003 -3.263393 7.727342 8.347216 -3.514747 -16.261333 -0.609418 5.460496 -5.295821 -21.369019 -7.883554 -2.388442 21.405855 -29.465984 -7.074156 0.232986 -0.244612 0.700580 -4.472658 -1.269404 -0.997553 22.855288 -0.506443 -3.657374 2.081141 1.298265 0.078064 -0.327344 0.196078 -0.094661
+-0.103623 1.594249 0.075134 -10.676368 -0.541627 -10.126528 -2.962898 -1.659159 -17.407568 -1.695443 -0.096874 1.489791 -0.472091 0.054948 -0.101665 0.572698 0.324096 0.480299 11.640573 6.414000 0.549522 24.135914 -7.255526 38.962532 -0.374231 0.121832 0.122955 0.116367 -0.078071 0.170036 3.389520 3.627431 13.544667 -1.203354 4.916288 9.550274 -3.726349 5.574574 7.882900 1.832137 -2.895388 8.249529 7.252992 -1.913786 -17.259890 -3.327069 4.371879 -6.073265 -23.620604 -8.793082 -2.706412 19.274776 -29.980612 -6.865378 0.242340 -0.222372 0.712701 -3.192371 -1.151574 -1.539329 25.508799 0.351278 -3.907566 1.875103 2.776520 0.017741 -0.325225 0.183665 -0.065521
+-0.100158 1.596338 0.067743 -10.743060 -4.249978 -9.004866 -2.176583 -1.023096 -17.446777 -0.428128 -0.050101 -0.618364 -0.486922 0.037035 -0.126380 0.618947 0.360951 0.545748 11.812025 6.992308 -0.135721 22.769899 -6.445992 39.025208 -0.410490 0.136140 0.103693 0.129657 -0.135156 0.191831 3.887447 3.945993 13.276469 -1.011871 5.296007 9.298170 -3.598031 5.982064 7.785995 1.855152 -1.910181 8.998516 6.085312 -0.431414 -18.625816 -5.510310 3.480265 -6.606335 -26.439394 -9.226962 -3.130168 17.302073 -29.293293 -6.484406 0.265439 -0.214550 0.751546 -1.920061 -1.061195 -1.949684 28.230600 1.015548 -4.318895 2.411154 6.408478 -0.120510 -0.323313 0.180882 -0.048902
+-0.097533 1.597633 0.059465 -10.768269 -7.751304 -8.021132 -1.151258 -0.476258 -17.733234 0.198507 0.003402 -1.863529 -0.481496 0.011635 -0.135894 0.662701 0.404263 0.602277 11.815592 7.464859 -0.753441 21.749920 -5.827280 39.087379 -0.442300 0.152349 0.090666 0.145218 -0.180264 0.205419 3.474221 4.371689 13.129768 -0.515508 5.450000 9.112489 -2.694355 6.131138 7.655249 1.867284 -0.771943 9.392219 5.225754 0.983774 -19.677412 -7.801723 2.592673 -6.890826 -29.759911 -9.232000 -3.716399 16.027205 -28.753725 -6.338119 0.291514 -0.202986 0.771694 0.135106 -0.453572 -2.622035 29.660341 2.229525 -4.469664 2.748702 9.116249 -0.250170 -0.311327 0.171817 -0.030197
+-0.095542 1.597074 0.050804 -10.682375 -11.093835 -7.073360 0.232117 -0.034097 -18.682926 0.234990 0.017817 -1.927449 -0.497061 0.011271 -0.154227 0.695764 0.438507 0.622805 12.035393 7.999822 -1.598497 20.276812 -5.091345 39.508476 -0.456617 0.143508 0.079380 0.168213 -0.197154 0.221194 2.834883 4.844185 12.949556 -0.078207 5.593792 9.071894 -1.730728 6.275786 7.728148 1.451176 0.621287 8.959104 4.835809 1.975133 -20.670458 -9.961541 1.764418 -7.482730 -32.615372 -9.744394 -4.036368 13.958906 -28.009691 -5.955474 0.294939 -0.177878 0.779480 3.292212 0.021180 -3.832868 29.940405 3.884016 -4.385713 3.431431 11.219625 -0.329157 -0.321903 0.155525 -0.019049
+-0.091720 1.595362 0.042873 -10.531297 -13.868399 -6.487523 1.454017 0.080399 -19.953587 0.083305 -0.016876 -0.470651 -0.544859 0.050466 -0.173859 0.709304 0.448273 0.636417 11.873093 8.151453 -1.935811 18.922718 -4.566908 39.686890 -0.458207 0.120636 0.071339 0.193853 -0.189472 0.235707 2.585171 4.929061 12.497750 0.263597 5.477036 9.288976 -0.986578 6.209398 8.301510 1.181025 1.761880 8.599656 3.503222 2.945799 -21.269123 -12.909211 0.250549 -8.175206 -33.912518 -10.129675 -4.193420 10.952181 -27.437540 -5.363461 0.261794 -0.185990 0.787387 6.924839 0.775010 -5.268367 29.368313 5.833721 -4.142728 4.577650 12.763718 -0.318809 -0.355796 0.153093 -0.032387
+-0.087358 1.593021 0.034954 -10.154297 -16.510944 -6.336051 2.687575 0.032264 -21.391552 -0.546176 -0.056879 2.189341 -0.582823 0.086696 -0.183261 0.734651 0.480606 0.666497 11.586700 8.275984 -2.092062 17.515150 -4.091831 40.286354 -0.461133 0.090816 0.060040 0.235942 -0.177562 0.247518 2.311195 4.932173 12.279837 0.499985 5.371855 9.665775 -0.405770 6.070732 9.070761 1.400689 2.949356 7.851189 1.935036 4.203703 -21.539318 -16.289186 -1.296401 -9.335744 -34.191463 -11.115684 -4.075907 7.255441 -26.229082 -4.458590 0.222805 -0.189869 0.773111 10.983436 1.267169 -7.181695 28.194967 8.150480 -3.735981 6.912456 14.313531 -0.148609 -0.384245 0.132853 -0.042660
+-0.082290 1.590908 0.026135 -9.674929 -19.653587 -6.441548 4.778462 0.103319 -23.311642 -2.880351 0.039479 6.514984 -0.613003 0.109717 -0.188663 0.758729 0.502808 0.692191 11.037043 8.567432 -2.312833 16.089779 -3.593109 41.139725 -0.469174 0.095240 0.049079 0.267381 -0.170634 0.242277 2.197282 4.846527 13.150053 0.622613 5.322367 9.724824 -0.215018 6.000103 8.952825 0.588603 4.860611 7.727464 1.822828 5.147485 -22.076241 -18.109533 -2.546503 -10.031176 -35.841206 -12.272231 -3.879541 4.546419 -24.582525 -3.834703 0.216030 -0.207590 0.784267 14.176224 2.165993 -8.892341 28.154507 10.636209 -3.422447 9.278061 15.029361 0.134653 -0.396183 0.136905 -0.059782
+-0.076728 1.589217 0.017525 -9.337086 -22.675936 -6.650127 7.111570 0.265263 -25.584240 -5.432250 0.419341 12.321162 -0.636163 0.111654 -0.204623 0.789197 0.526674 0.726981 10.958919 8.799173 -2.446165 14.123393 -2.879994 41.935795 -0.487384 0.104296 0.040392 0.285007 -0.192338 0.248215 2.081067 4.785146 14.379545 0.974503 5.271582 9.644013 0.256006 5.960065 8.507165 -0.287498 6.491506 8.313399 1.108517 6.137515 -22.766132 -19.582798 -3.797518 -10.279150 -38.393330 -13.199995 -3.839222 2.764426 -24.543068 -3.639683 0.226223 -0.216343 0.810983 16.254305 3.311919 -10.049994 29.119520 12.619970 -3.263388 10.961274 15.305230 0.368482 -0.402988 0.142162 -0.060848
+-0.070639 1.587947 0.009293 -8.588428 -25.256002 -7.034620 9.284584 0.214736 -28.314030 -8.723649 1.278155 19.648899 -0.619495 0.064143 -0.228233 0.837040 0.585594 0.758053 10.341713 8.946970 -2.767771 12.391591 -2.348774 42.892838 -0.521324 0.120074 0.027642 0.298312 -0.245361 0.265464 1.843598 4.651171 15.952848 1.166214 5.239953 9.381445 0.535340 5.878619 7.715352 -1.167545 8.114583 9.229746 0.719982 7.116445 -23.612904 -20.519329 -5.584527 -9.936342 -40.615978 -13.899993 -3.865438 1.144542 -25.576572 -3.512211 0.267486 -0.182611 0.826508 18.022318 4.773543 -10.540502 30.964613 13.816966 -3.302941 11.883787 16.041054 0.493940 -0.387114 0.131579 -0.020390
+-0.064251 1.587862 0.001830 -7.582339 -27.892616 -7.406356 11.398551 0.158419 -30.935560 -12.378336 2.696329 27.031349 -0.615334 0.024362 -0.251280 0.858736 0.620031 0.785345 9.368890 8.993286 -3.085620 10.803086 -1.870944 43.360626 -0.545688 0.151365 0.020230 0.302255 -0.291567 0.264251 1.344945 4.636975 17.044071 1.277169 5.192320 9.088566 0.881750 5.828482 7.038770 -1.838528 9.580663 11.048082 -0.033992 8.218720 -24.259003 -20.974840 -7.602017 -9.410316 -43.056358 -14.798287 -3.768966 -0.274711 -26.678377 -3.435072 0.295781 -0.194723 0.850567 19.080612 6.628206 -10.669480 33.482502 14.985076 -3.254134 12.418055 16.110548 0.547830 -0.373111 0.153378 -0.001379
+-0.057341 1.588561 -0.005188 -6.809907 -30.579470 -7.550349 13.400704 0.121882 -33.016388 -15.408962 4.352577 33.676102 -0.626646 0.023545 -0.263316 0.858298 0.613667 0.795665 8.653202 9.076246 -3.766886 9.173681 -1.362657 43.767143 -0.547694 0.166566 0.016648 0.299375 -0.304079 0.257012 1.180748 4.611382 17.794598 1.416092 5.238131 8.803474 1.131272 5.921054 6.466387 -2.449370 10.721713 12.514604 -0.285077 8.840532 -23.884501 -21.824026 -9.999587 -8.896431 -45.014500 -15.913357 -3.560483 -1.642877 -28.329353 -3.389562 0.301999 -0.213824 0.869005 20.552895 8.372422 -10.289063 34.785896 15.441662 -3.345138 13.876097 18.417870 0.850852 -0.370481 0.171608 -0.008109
+-0.050809 1.591287 -0.012226 -6.123955 -33.404877 -7.895464 15.146324 0.036083 -34.329250 -17.774126 6.158177 39.931210 -0.658255 0.021642 -0.291472 0.870189 0.615126 0.847926 8.029611 9.127069 -4.338978 7.508443 -0.824190 44.040855 -0.566306 0.185212 0.002085 0.301694 -0.349018 0.258370 0.837340 4.727928 18.217047 1.625928 5.275351 8.767420 1.628955 6.021292 6.427030 -2.078348 11.463920 14.774514 -1.915507 10.211136 -24.178553 -22.797016 -12.876400 -8.575180 -46.401260 -17.695297 -3.031675 -3.264457 -29.202883 -3.167481 0.304311 -0.247500 0.908528 21.120480 10.514746 -9.856177 36.316490 16.214890 -3.311450 15.704465 20.593342 1.256162 -0.374275 0.194726 -0.016687
+-0.044784 1.595225 -0.018543 -5.243031 -36.308411 -8.383995 16.863348 0.024552 -35.057407 -20.436405 8.400620 45.672112 -0.705283 0.028226 -0.325621 0.902137 0.633898 0.910241 7.333644 9.236161 -5.073282 5.537334 -0.134703 44.540131 -0.595285 0.202722 -0.012282 0.316869 -0.393063 0.270928 0.219744 5.124094 18.338137 1.784375 5.417981 8.933867 2.215036 6.213049 6.807394 -1.600638 12.038110 16.592712 -3.133415 11.378983 -25.478693 -23.222706 -15.719395 -8.550082 -48.061256 -20.138439 -2.316854 -4.268013 -30.914459 -3.161460 0.305300 -0.280671 0.961503 21.850754 12.503804 -9.593614 37.586441 17.192619 -3.314294 17.168060 23.052763 1.671400 -0.392749 0.219261 -0.023702
+-0.037880 1.601872 -0.024103 -3.944030 -38.643448 -9.156026 17.917011 -0.480206 -35.352627 -23.084803 10.693775 50.365582 -0.760832 0.039299 -0.373129 0.930771 0.653277 0.982446 6.154510 8.923654 -5.498709 3.367103 0.524818 44.249519 -0.627968 0.231209 -0.041062 0.334425 -0.446824 0.285819 -0.361312 5.279794 18.052982 1.663221 5.347169 9.327538 2.453972 6.220126 7.678231 -1.024856 12.227106 18.894524 -4.340035 12.329124 -27.314934 -23.006369 -19.134781 -8.570673 -49.065998 -22.984152 -1.486997 -3.958987 -32.332741 -3.495274 0.298242 -0.329179 1.019500 22.184492 15.048985 -9.186317 39.179314 18.316572 -3.430213 18.396908 26.191151 2.081500 -0.408578 0.261018 -0.029149
+-0.030149 1.611075 -0.028939 -2.329648 -40.833126 -10.386823 18.169176 -1.266523 -34.731030 -25.180538 12.671412 53.777958 -0.806785 0.034349 -0.425188 0.951582 0.682212 1.029198 4.770388 8.366419 -5.484551 1.306127 1.101586 43.291843 -0.648813 0.245138 -0.060089 0.351240 -0.496251 0.298748 -1.128718 5.329763 18.030581 1.481508 5.127775 9.848531 2.584974 6.069211 8.565516 -0.546830 12.558703 20.621790 -5.885605 13.296539 -29.129614 -23.385605 -22.317192 -8.452600 -48.575809 -25.492346 -1.046355 -4.139489 -35.633602 -3.682168 0.286223 -0.359278 1.054532 22.967888 17.741011 -9.044477 39.877590 20.014585 -3.284785 20.479877 28.782412 2.791781 -0.426642 0.292744 -0.023073
+-0.023760 1.619569 -0.032854 -1.326498 -43.010807 -10.709376 18.430225 -1.895622 -34.283737 -26.259142 14.162395 56.798191 -0.819272 0.039760 -0.437249 0.966845 0.698361 1.059230 4.112092 7.786780 -5.768792 -0.637084 1.620485 41.965118 -0.659374 0.240475 -0.067026 0.361953 -0.509176 0.310738 -1.792899 5.393530 17.076418 1.463870 4.935923 10.288431 2.979496 5.876730 9.544247 -0.114180 12.799664 21.578428 -6.735719 14.133934 -29.321909 -22.626268 -25.042858 -8.110881 -48.956902 -28.113268 -0.340618 -3.898420 -39.556431 -4.051702 0.272360 -0.363527 1.058355 23.371780 20.147465 -8.846654 40.778412 21.673870 -2.934761 22.840670 31.196224 3.653859 -0.435051 0.290253 -0.019083
+-0.016223 1.628408 -0.036436 -0.216050 -45.438114 -11.067581 18.018665 -2.597883 -33.349453 -26.379347 15.012912 59.110443 -0.835889 0.056691 -0.438466 0.969832 0.701991 1.067346 3.373744 7.170098 -5.937366 -2.400672 2.029167 40.177803 -0.666412 0.220319 -0.066142 0.371481 -0.500474 0.322498 -2.171825 5.444689 15.962061 1.283122 4.864514 10.808869 3.004338 5.795840 10.635302 0.692456 13.137923 22.173567 -7.396810 15.286156 -29.202721 -21.606020 -27.714966 -7.596881 -48.126549 -30.798569 0.248973 -3.130774 -45.408188 -4.650240 0.251227 -0.364526 1.062479 23.310848 22.688040 -8.672698 42.126072 23.556051 -2.417055 24.519754 33.130379 4.331645 -0.453022 0.280190 -0.029984
+-0.008526 1.638044 -0.039496 0.345234 -47.872005 -10.937167 17.421329 -3.125296 -32.033611 -25.642794 15.282559 61.087753 -0.837751 0.067096 -0.437068 0.974866 0.701410 1.089191 3.166177 6.576193 -5.947394 -4.319799 2.479144 37.531116 -0.657222 0.196616 -0.065618 0.376822 -0.502651 0.327464 -1.956878 5.400740 14.711784 1.194172 4.918184 11.425623 2.904609 5.784266 11.959918 1.117989 13.210009 21.947445 -8.610518 16.099981 -28.826668 -20.874163 -29.544418 -7.399006 -46.854317 -34.086674 1.400307 -2.687394 -50.646118 -4.816702 0.230056 -0.344587 1.039803 23.148514 24.658007 -9.095463 43.398216 26.029205 -1.486876 26.502352 34.626743 5.208508 -0.460241 0.250342 -0.029836
+-0.000935 1.646505 -0.041518 0.539706 -50.054752 -9.855972 16.460606 -3.308074 -30.890961 -23.812643 14.871906 62.651970 -0.886891 0.138802 -0.433379 0.949382 0.664410 1.087481 2.945152 6.139464 -6.565036 -5.846557 2.695843 34.269836 -0.633040 0.144105 -0.075635 0.393932 -0.459723 0.330813 -1.115814 5.348762 11.864999 0.971613 4.946169 12.265228 2.660460 5.698934 14.396877 1.647901 13.167585 20.787241 -9.799139 16.669756 -28.166208 -18.044188 -30.541647 -7.698162 -46.300476 -37.622993 3.030749 -0.091714 -55.815071 -6.255778 0.165026 -0.352996 1.020585 21.673033 26.092312 -10.106341 45.357559 29.047106 -0.123314 27.783638 36.686089 6.012128 -0.495624 0.225790 -0.074628
+0.005256 1.654104 -0.042790 0.180768 -51.755867 -8.524004 15.233724 -3.320123 -29.348419 -20.762964 13.701805 64.384651 -0.922192 0.206464 -0.415517 0.926679 0.639159 1.071826 3.150133 5.716417 -6.779891 -7.098650 2.763778 30.621151 -0.603276 0.075717 -0.060993 0.411713 -0.396930 0.338897 -0.248446 5.369173 8.997069 0.924284 4.954095 13.070316 2.593556 5.510279 16.858480 2.638926 13.059347 19.503614 -11.000761 17.470186 -27.056196 -14.042281 -30.683777 -8.197059 -46.377510 -41.534576 5.418648 4.556721 -60.567123 -9.093345 0.088124 -0.352478 0.981064 18.646257 26.848083 -11.631490 47.801434 32.582085 2.096767 29.180138 39.328918 7.140772 -0.542986 0.187719 -0.111771
+0.011177 1.660779 -0.043640 -0.469235 -53.071259 -6.989410 13.761934 -3.153218 -27.470335 -17.129795 11.876129 65.177322 -0.911274 0.253083 -0.387259 0.916468 0.637943 1.050353 3.287821 5.362221 -6.796794 -7.664825 2.653923 27.192055 -0.570571 -0.010453 -0.049478 0.430593 -0.333544 0.360278 0.547004 5.408997 6.066652 1.050094 4.879773 13.713514 2.748568 5.061334 19.246479 3.534879 12.996459 18.051666 -11.654007 18.193640 -24.736010 -10.033770 -30.943958 -8.249392 -46.187489 -45.406017 7.950586 13.101711 -64.287277 -14.734966 0.016811 -0.296766 0.895948 15.871672 27.807774 -13.028104 49.537968 36.451687 4.874414 29.105736 41.918633 7.908497 -0.569591 0.107595 -0.112899
+0.016387 1.666238 -0.044848 -0.959668 -53.882881 -5.552499 12.213819 -2.928858 -25.481783 -13.724709 9.862381 64.569145 -0.916958 0.324771 -0.356828 0.901538 0.634897 1.014652 3.142250 5.076992 -6.864185 -7.635260 2.412869 24.364468 -0.535911 -0.107094 -0.038566 0.459450 -0.241564 0.385661 1.130234 5.566401 3.170544 1.058378 4.840948 14.234748 2.809404 4.619390 21.631672 4.854272 13.062694 16.165592 -11.430703 18.843885 -22.495291 -5.166532 -30.817669 -8.758216 -46.752029 -49.712818 11.130754 25.075491 -65.071457 -22.712080 -0.075701 -0.247868 0.810599 12.475660 27.929701 -14.499917 51.519993 40.565510 8.342980 28.173979 45.857697 8.624625 -0.613121 0.031345 -0.127145
+0.020830 1.670397 -0.046280 -1.173458 -54.036171 -4.447215 10.211468 -2.619926 -23.342306 -9.943294 7.504820 62.743015 -0.924339 0.395978 -0.316326 0.881915 0.642009 0.967881 2.867887 4.733041 -6.549827 -7.494579 2.181579 21.506014 -0.487309 -0.203339 -0.012636 0.501230 -0.130522 0.391574 1.392416 5.757218 0.467651 1.095656 4.768246 14.747674 2.965233 4.081998 24.094690 6.116565 13.032990 13.736625 -11.123012 19.097061 -20.254526 -0.352057 -30.210875 -9.411083 -46.832886 -54.058926 14.280040 37.173328 -63.409958 -30.079004 -0.177564 -0.218721 0.706202 8.951498 27.810001 -15.535131 52.720387 45.184765 12.208359 22.750887 51.308090 7.374693 -0.663522 -0.039998 -0.151357
+0.024779 1.673042 -0.046942 -1.207814 -53.699409 -3.406551 8.081964 -2.286350 -21.152769 -6.200592 5.203951 59.949688 -0.955523 0.495282 -0.271555 0.843363 0.618496 0.903873 2.424139 4.396047 -6.316773 -7.264716 1.935531 18.867821 -0.429256 -0.303297 0.012807 0.538343 0.002920 0.389868 1.364346 5.850482 -1.809862 1.178314 4.569081 14.985292 3.229892 3.523268 26.012440 6.973453 13.034779 11.015517 -10.673641 18.890011 -17.991638 3.776378 -28.534470 -9.806660 -47.814186 -58.275261 18.333158 47.887138 -61.011257 -35.994171 -0.289825 -0.209766 0.615003 5.595275 26.873817 -16.162714 53.966068 49.995464 16.869511 13.628213 56.403671 3.585502 -0.725472 -0.098484 -0.201196
+0.028205 1.674232 -0.046871 -1.731077 -53.389935 -2.209347 6.634295 -1.896335 -18.054928 -3.255263 3.346537 55.452576 -0.952764 0.580243 -0.230159 0.815210 0.607671 0.854501 2.321575 4.141191 -6.075737 -7.021814 1.742799 16.766270 -0.387872 -0.405575 0.024409 0.563725 0.112042 0.420521 1.612369 5.624309 -3.722794 1.276926 4.217242 15.137303 3.405852 2.949592 27.700352 7.629457 13.192994 8.730769 -10.962315 18.834248 -16.023176 6.578010 -26.134007 -9.956131 -48.455280 -62.111660 22.208340 55.361801 -57.581387 -38.757103 -0.396962 -0.167755 0.511097 1.730402 25.434643 -16.466232 55.496189 55.334835 22.541298 -1.647177 60.404892 -4.847795 -0.765889 -0.171096 -0.211955
+0.032364 1.674111 -0.046728 -2.256626 -52.909401 -1.212368 5.671906 -1.638146 -14.262360 -1.447922 2.107789 49.348183 -0.978126 0.660523 -0.218000 0.799541 0.601928 0.820214 2.373644 3.955387 -5.971650 -6.946975 1.612850 14.967504 -0.349134 -0.499687 0.018829 0.599420 0.192782 0.444575 1.776198 5.200869 -5.293624 1.343317 3.707423 15.260667 3.587335 2.341715 29.165981 7.954035 13.782743 6.735585 -10.919444 18.844135 -14.506988 9.238744 -24.303852 -9.831750 -47.349991 -65.011215 24.013906 62.591080 -52.897907 -40.513161 -0.491916 -0.122490 0.430504 -1.964227 24.323439 -16.556448 55.734577 60.556126 27.633781 -19.343679 61.188793 -15.520700 -0.812115 -0.239581 -0.227336
+0.036628 1.672208 -0.044945 -3.290248 -51.874744 0.218740 5.343167 -1.660143 -10.303707 -0.142126 1.052480 42.519733 -0.991421 0.721342 -0.201778 0.784318 0.588885 0.784218 2.616390 3.734074 -5.848286 -6.675889 1.426349 13.244569 -0.319236 -0.567511 0.019174 0.619432 0.260619 0.460455 2.390364 4.560790 -6.592905 1.469314 3.057482 15.107872 3.782181 1.669818 29.797119 7.957111 14.290574 5.547637 -10.542043 18.747747 -13.086506 11.997070 -22.997919 -9.590491 -46.092548 -66.755424 24.712898 66.278648 -48.393105 -39.981495 -0.555400 -0.086110 0.373948 -5.343866 23.352652 -16.281370 55.876293 64.525116 31.861109 -32.759510 59.920414 -23.383692 -0.843582 -0.289677 -0.241344
+0.040674 1.669608 -0.043613 -3.971669 -49.764397 1.110065 4.906065 -1.693422 -5.860209 1.581229 -0.038105 34.556232 -1.004003 0.768534 -0.182840 0.781436 0.604544 0.758929 2.851780 3.597019 -5.586694 -6.457114 1.328944 12.091945 -0.300859 -0.630621 0.023102 0.653213 0.322256 0.475104 2.864322 3.852616 -7.794526 1.681827 2.299321 15.162473 4.052951 0.829506 30.627407 8.214466 13.888855 4.378451 -10.685382 18.297972 -12.226327 13.817783 -21.144844 -9.592664 -44.480293 -68.980453 25.606787 68.248352 -44.624580 -38.483128 -0.613867 -0.067973 0.316851 -8.763444 21.954578 -16.415827 55.347401 67.717171 34.784950 -42.139133 57.252598 -28.182941 -0.875570 -0.334535 -0.250543
+0.046366 1.665878 -0.042233 -5.266114 -47.395664 2.447992 5.499413 -1.687430 -1.929722 2.888417 -0.734935 26.990812 -1.021686 0.821962 -0.172238 0.789213 0.629818 0.740743 3.344638 3.586419 -5.642381 -5.905100 1.213343 11.412690 -0.281618 -0.706338 0.022509 0.694830 0.380198 0.499937 4.427049 3.121125 -8.798155 1.844641 1.628747 15.129389 3.878113 0.099112 31.315825 8.514285 13.229555 3.092165 -10.868461 17.653017 -11.290122 15.057023 -19.230263 -10.093170 -43.471043 -71.199425 26.536755 67.296043 -40.778664 -35.348030 -0.682056 -0.033064 0.249698 -11.940026 19.959269 -16.712763 55.291599 69.953644 37.190300 -48.890438 54.577919 -31.261019 -0.915902 -0.393446 -0.250274
+0.052584 1.662059 -0.042529 -6.431387 -45.600491 3.536648 6.545576 -1.448728 1.483114 3.318952 -0.881176 20.197004 -1.053736 0.890126 -0.173544 0.781340 0.633095 0.723494 3.656317 3.838358 -6.202827 -5.067804 1.155454 11.784363 -0.254432 -0.782688 0.007056 0.731455 0.436476 0.522428 5.698939 2.602547 -9.497391 2.025046 1.099972 15.120334 3.744249 -0.509495 31.891428 8.952615 12.836171 1.812229 -10.962914 17.272177 -10.331335 16.333370 -17.039124 -10.781209 -41.696667 -73.221825 27.045338 66.291214 -38.236027 -33.038532 -0.764934 -0.000685 0.185126 -14.918709 17.772314 -17.137106 55.093426 71.923866 39.101379 -53.966152 51.682739 -33.063679 -0.957524 -0.446228 -0.260021
+0.059402 1.659711 -0.043697 -6.941912 -43.825195 4.096900 7.384290 -1.291045 3.835479 3.335922 -0.885262 14.936798 -1.070965 0.941834 -0.168678 0.763326 0.608673 0.717506 3.259534 4.009666 -6.897241 -3.953108 0.989223 12.205113 -0.233730 -0.836430 0.000128 0.737230 0.469353 0.544554 6.251256 1.813306 -9.726709 2.104901 0.305617 15.195408 3.689377 -1.289448 32.115398 9.139599 12.732682 0.892009 -11.632235 17.393703 -9.632825 15.845903 -15.424744 -10.881114 -35.908157 -73.655998 23.703051 66.948273 -38.058380 -32.749851 -0.824684 0.018171 0.148919 -17.233620 16.339539 -17.520828 53.774715 73.631668 39.765720 -57.063835 49.789803 -33.938019 -0.982580 -0.481283 -0.269793
+0.065650 1.658256 -0.044277 -6.960798 -42.819855 4.254874 7.894347 -1.021454 5.713054 2.831353 -0.751921 10.657269 -1.093285 0.974740 -0.174080 0.777262 0.629688 0.723006 2.666457 3.954504 -7.205228 -3.366493 0.862160 11.838869 -0.224978 -0.876358 -0.012163 0.769780 0.490264 0.557184 6.221876 1.351170 -9.992504 2.197429 -0.202390 15.383808 3.802520 -1.891260 32.659401 9.215397 12.493174 -0.003385 -11.743753 17.016123 -9.390532 15.405009 -13.737053 -11.154136 -33.295506 -74.476639 22.625280 67.601135 -37.414944 -32.410606 -0.863725 0.039984 0.114554 -18.051785 15.042164 -18.000347 54.186207 75.059509 41.497402 -58.337666 48.361847 -33.912193 -1.007614 -0.516090 -0.269926
+0.070823 1.657103 -0.043917 -6.624625 -42.166958 4.360177 8.257011 -0.711776 6.669240 1.727280 -0.532054 7.685227 -1.131355 1.010287 -0.180984 0.779319 0.629125 0.711936 2.132733 3.850815 -7.505539 -3.429740 0.796503 11.226822 -0.221321 -0.889229 -0.010573 0.786140 0.518447 0.559677 5.580051 0.903072 -10.195440 2.176279 -0.735132 15.361766 4.049510 -2.390837 32.779556 9.361556 12.301540 -0.254739 -11.477374 16.561384 -9.548285 15.325025 -12.597578 -11.071490 -34.168427 -74.630302 23.741774 69.028702 -37.350571 -33.110500 -0.888781 0.022408 0.122476 -18.965796 14.503507 -18.262161 56.813812 75.778625 44.233711 -58.781261 47.249149 -33.698475 -1.039101 -0.507392 -0.288164
+0.077689 1.658636 -0.043071 -6.150938 -41.920200 4.456381 8.277065 -0.478351 6.700149 0.481968 -0.337764 6.213029 -1.131555 1.012600 -0.176054 0.794275 0.646771 0.697315 1.232634 3.713801 -7.990142 -3.224606 0.705244 10.715714 -0.222676 -0.893515 -0.007201 0.799883 0.533038 0.558755 5.059777 0.589834 -10.146471 2.153121 -1.048556 15.340273 4.230238 -2.765184 32.699535 9.375555 11.903297 -0.494516 -10.807954 15.824446 -9.379675 14.942574 -12.093244 -11.114971 -33.925117 -74.529976 23.870192 69.151634 -38.333408 -33.687523 -0.879296 0.033744 0.118045 -18.729731 14.625992 -18.368483 57.384201 76.129707 45.143669 -58.358936 47.403790 -33.485218 -1.044106 -0.516080 -0.284995
+0.085484 1.661927 -0.041732 -5.664074 -42.278553 4.492303 7.746435 -0.331188 6.350278 -0.283085 -0.236999 5.495908 -1.113932 0.962798 -0.181273 0.814125 0.668730 0.716813 0.357089 3.470462 -8.216311 -3.202318 0.606696 9.835293 -0.241930 -0.852172 -0.004854 0.794553 0.488132 0.543959 5.107885 0.546471 -9.911638 2.062612 -1.049525 15.409582 3.960825 -2.791318 32.515560 9.518795 11.310336 -0.036939 -10.851774 15.532160 -10.103300 13.933469 -12.918200 -11.285889 -32.305183 -74.560608 22.812469 67.706062 -39.827080 -33.549690 -0.824694 0.024096 0.146381 -18.389204 15.134132 -18.385303 57.119015 75.494225 44.306969 -57.490253 48.662090 -33.653316 -1.019513 -0.497376 -0.270958
+0.093596 1.664203 -0.040188 -4.980245 -42.585957 4.528403 6.748477 -0.345814 5.401388 -0.612134 -0.229382 5.507876 -1.061504 0.872676 -0.184004 0.860353 0.734717 0.752643 -0.608260 3.066938 -8.290551 -3.396968 0.495681 8.386323 -0.279327 -0.794633 0.002359 0.793846 0.420124 0.535340 4.990063 0.232380 -9.595216 1.811546 -1.217914 15.452978 3.632563 -3.002324 32.208752 9.137323 11.172256 0.456108 -11.087883 15.433730 -11.303026 13.811772 -13.750783 -11.015731 -31.568436 -72.803108 21.177378 68.638733 -41.581448 -35.130375 -0.744773 0.028673 0.165079 -18.155415 15.966803 -18.517729 58.780121 74.756401 45.004471 -56.288155 50.593178 -34.050549 -0.974973 -0.482421 -0.223742
+0.100936 1.665655 -0.037504 -4.851494 -42.918503 4.991039 6.128959 -0.414692 4.447311 -0.730564 -0.226466 5.675186 -1.012589 0.837694 -0.165143 0.824244 0.697142 0.730515 -1.125341 2.800078 -8.398616 -3.701256 0.393578 7.181369 -0.277407 -0.768437 0.018475 0.743861 0.407759 0.529132 5.622285 0.062739 -9.338334 1.646016 -1.260815 15.273209 3.222669 -2.966510 31.482546 8.900829 11.097034 1.196562 -11.634215 15.757787 -11.096888 12.574641 -14.611901 -10.659853 -32.807045 -71.467697 21.783295 67.862419 -44.899872 -36.592525 -0.718117 0.020984 0.170223 -17.496250 16.396448 -18.462267 60.482620 73.606079 45.763588 -53.659897 53.374538 -33.807327 -0.938385 -0.459205 -0.212416
+0.107944 1.666422 -0.035417 -4.596417 -43.395435 5.175663 5.457792 -0.496397 3.517495 -1.078575 -0.196427 6.311500 -0.974749 0.780668 -0.163388 0.820627 0.689769 0.744531 -1.642789 2.546052 -8.427622 -4.049558 0.309586 6.042753 -0.299952 -0.703966 0.026589 0.705866 0.356667 0.517156 6.046828 0.041803 -8.905970 1.527175 -1.197564 15.290967 2.845442 -2.827752 30.899927 8.216281 11.102348 2.039486 -12.221486 15.800844 -12.111193 11.664289 -16.094206 -10.256409 -33.386311 -69.210411 20.947456 67.827560 -48.146358 -38.698151 -0.657422 -0.008357 0.211921 -16.078112 17.573017 -18.489208 60.644829 72.001205 44.495499 -49.511589 56.666138 -32.676971 -0.895810 -0.410989 -0.194314
+0.113973 1.666501 -0.033141 -4.500572 -44.459019 5.589544 4.845727 -0.572288 2.760034 -1.405391 -0.158790 6.873722 -0.938904 0.720062 -0.169756 0.805515 0.658026 0.760777 -1.968096 2.420747 -8.855069 -4.587792 0.254511 5.263743 -0.316734 -0.631423 0.030523 0.650070 0.290673 0.501396 6.165148 0.031671 -8.372957 1.463254 -1.149219 15.194142 2.717439 -2.623543 29.967518 7.220787 11.423241 3.161364 -13.030349 16.043474 -13.118226 11.026108 -17.601217 -9.535933 -35.553368 -65.519913 20.492027 68.550468 -53.134136 -42.831207 -0.589981 -0.037744 0.265702 -14.804384 19.207966 -18.320457 60.737556 69.818146 42.683041 -44.328365 60.766979 -31.053774 -0.846057 -0.354925 -0.178190
+0.119838 1.664188 -0.030562 -4.421982 -45.209560 6.166308 4.473031 -0.678857 1.548273 -1.955051 -0.065309 7.805702 -0.916213 0.691242 -0.171022 0.774650 0.596437 0.775521 -2.267616 2.453084 -9.706220 -4.968254 0.199363 4.946353 -0.326653 -0.575739 0.033555 0.585762 0.241905 0.495994 6.181069 0.107803 -7.738973 1.522928 -1.077061 14.888722 2.838022 -2.415406 28.691483 6.613058 11.705554 4.125902 -14.210561 16.619797 -13.880965 9.641332 -18.575409 -8.817298 -38.789005 -62.281868 21.170906 69.500053 -59.297649 -48.146931 -0.548917 -0.071280 0.320779 -13.292752 20.391663 -18.324484 62.099762 67.012436 41.241535 -34.907124 64.508705 -26.134050 -0.808710 -0.302179 -0.176434
+0.125322 1.661303 -0.028417 -4.377361 -45.672707 6.526807 4.219688 -0.768439 0.590855 -2.410159 0.026082 8.730102 -0.891450 0.652645 -0.179821 0.748705 0.550470 0.795075 -2.341130 2.569870 -10.539226 -5.786746 0.226897 5.222316 -0.341068 -0.518091 0.030929 0.528253 0.186050 0.491540 5.754165 0.033900 -6.946912 1.606812 -1.198418 14.751355 3.033429 -2.419646 27.453598 6.516326 12.231105 5.118654 -15.293788 17.574949 -14.951193 7.721933 -19.823172 -8.838898 -41.099621 -58.811192 20.892488 65.099014 -67.298988 -50.746021 -0.508307 -0.101154 0.372155 -10.801096 21.643499 -18.480904 63.152889 63.530182 38.564259 -18.909105 67.012184 -15.848239 -0.768460 -0.249448 -0.168292
+0.131013 1.657694 -0.026598 -4.453258 -45.942970 6.991978 4.415339 -0.856235 -0.659217 -3.494602 0.243570 10.097691 -0.873301 0.613409 -0.196407 0.726417 0.503780 0.813032 -2.406764 2.942341 -12.055311 -6.285938 0.339976 6.883733 -0.351333 -0.469104 0.020538 0.474887 0.125047 0.486048 5.265535 -0.026331 -6.048739 1.705586 -1.306025 14.418541 3.359947 -2.434633 25.993261 6.661047 12.708971 6.387573 -15.911964 18.513685 -15.605532 5.632679 -21.029112 -8.941526 -44.075436 -55.430077 20.366735 51.416321 -73.424759 -44.198700 -0.463724 -0.115237 0.424151 -7.638421 22.793562 -18.287312 64.739471 59.724045 35.616867 -1.782592 66.147781 -4.215763 -0.729727 -0.210127 -0.160917
+0.136965 1.653489 -0.023974 -4.521633 -45.725830 7.388296 4.483037 -1.057476 -2.085336 -4.176654 0.403314 11.732553 -0.867445 0.592837 -0.208538 0.691294 0.435699 0.832543 -2.533491 3.337996 -13.621043 -6.774370 0.482145 8.947886 -0.359912 -0.411738 0.010253 0.416349 0.072407 0.475403 4.871581 -0.246062 -5.124758 1.836820 -1.582595 14.014394 3.768221 -2.510570 24.460619 6.810654 12.864364 7.930159 -16.746666 19.227747 -16.260281 2.965408 -22.061213 -8.680306 -48.570004 -51.732334 19.659237 27.193115 -76.521805 -26.792507 -0.426237 -0.157376 0.488585 -4.904137 23.625067 -17.895819 66.220039 55.488194 31.908815 12.223148 63.248169 4.490403 -0.693902 -0.152226 -0.170990
+0.143052 1.648896 -0.020363 -4.495141 -44.764992 7.658629 4.488468 -1.379789 -3.798103 -4.596609 0.525367 14.010952 -0.831222 0.531814 -0.217955 0.682929 0.409611 0.856343 -3.078216 3.660815 -15.151029 -6.676285 0.579731 11.220285 -0.382651 -0.351531 0.003074 0.365460 -0.001633 0.469220 4.757620 -0.595176 -3.978148 2.049545 -1.920521 13.467404 4.118104 -2.689900 22.567736 6.930366 12.380527 9.402244 -17.516674 19.528595 -16.929794 -0.012258 -22.851067 -8.408978 -52.526741 -48.008633 18.469044 -7.590754 -76.449936 0.444432 -0.357465 -0.169757 0.540488 -2.011261 23.782238 -17.223866 66.824760 50.381554 26.817139 24.083410 59.091946 10.577999 -0.642315 -0.114108 -0.150107
+0.148862 1.643875 -0.017632 -4.183511 -43.525417 7.595090 4.401174 -1.802899 -5.546171 -5.170064 0.673737 16.674118 -0.789561 0.464006 -0.230393 0.687754 0.401881 0.869909 -3.802325 3.991675 -16.874559 -6.649596 0.738451 14.440981 -0.405543 -0.287675 0.003462 0.321853 -0.069122 0.463111 4.463219 -0.795635 -2.599943 2.312649 -2.114779 12.826352 4.533935 -2.694463 20.484848 6.896309 11.852939 11.126021 -17.182184 19.496807 -17.269096 -2.752407 -23.620628 -7.963122 -55.815571 -44.499950 16.535870 -26.048658 -71.816406 13.034382 -0.282766 -0.171104 0.587890 0.886948 23.275854 -16.631189 65.736572 45.030788 20.954069 33.301323 52.791771 13.676422 -0.595075 -0.076559 -0.119057
+0.154883 1.639500 -0.014347 -3.952111 -42.859989 7.177482 4.217796 -2.165020 -6.750565 -5.872120 0.866282 19.222778 -0.753862 0.359087 -0.255454 0.728589 0.453576 0.912722 -4.427598 4.334466 -18.402655 -6.350749 0.890851 17.821808 -0.450297 -0.204934 -0.004609 0.309768 -0.171708 0.445258 4.493441 -0.795755 -0.803910 2.651134 -2.057292 12.403310 4.741822 -2.486247 18.691319 6.296203 11.196002 12.656752 -17.367382 18.993441 -18.930382 -5.976078 -23.964989 -7.841374 -57.104824 -41.319092 14.021559 -37.124447 -66.126198 18.605885 -0.178738 -0.184126 0.643282 3.962199 22.460783 -16.232822 64.023254 40.227348 15.564224 37.379642 45.102654 12.936171 -0.542611 -0.035657 -0.076470
+0.161944 1.634901 -0.011759 -3.624690 -41.216553 6.610679 3.951601 -2.668632 -8.204784 -6.136802 0.959292 21.872089 -0.759114 0.302059 -0.286162 0.749270 0.468503 0.947720 -5.367487 4.698485 -20.130106 -5.477237 0.915694 21.989759 -0.486524 -0.122276 -0.012147 0.293463 -0.247265 0.428272 4.711639 -1.034817 1.278527 2.975082 -2.259655 11.942585 4.859623 -2.419474 16.898903 5.903854 10.808914 13.883596 -17.309713 18.336639 -21.036810 -9.521943 -23.761175 -7.978493 -58.523380 -37.839813 11.367652 -43.421028 -58.994205 19.311821 -0.106374 -0.233111 0.721655 6.406395 20.762794 -15.469452 62.367306 35.865894 10.767262 36.992363 39.701912 10.647602 -0.516289 0.035127 -0.064840
+0.170064 1.629130 -0.009075 -3.444241 -39.284695 6.231213 3.829916 -3.293027 -9.879519 -6.495755 1.058800 24.725649 -0.754982 0.269786 -0.300205 0.761945 0.459902 0.973735 -6.257490 5.073783 -22.343895 -4.398115 0.820258 26.873705 -0.512405 -0.067296 -0.024008 0.270396 -0.300231 0.423904 5.269894 -1.382351 3.423795 3.371609 -2.480225 11.244256 5.033272 -2.412079 14.893768 5.392836 10.416062 14.909293 -16.869602 17.628906 -21.772068 -13.232208 -23.038097 -7.981762 -59.119865 -34.393570 8.746590 -44.601337 -51.713383 16.603939 -0.047086 -0.256108 0.782542 8.527350 18.771461 -14.726421 60.229092 31.975515 6.909196 34.578453 34.544041 8.062260 -0.488524 0.075146 -0.055864
+0.179023 1.624232 -0.005680 -3.033178 -37.391220 5.512206 3.491205 -3.902393 -11.113439 -7.162653 1.214173 27.127600 -0.736799 0.192764 -0.323251 0.797155 0.504792 0.995987 -7.372683 5.268885 -24.478722 -3.137982 0.572447 31.934090 -0.546745 0.001534 -0.033947 0.269889 -0.373712 0.403724 5.922967 -1.927678 5.699970 3.633477 -2.782386 10.548667 4.868347 -2.539112 13.010868 4.513954 10.171990 16.265821 -16.226355 16.539724 -22.917603 -16.698685 -22.427568 -7.556205 -58.835835 -30.670757 5.690525 -42.173485 -45.785538 12.677499 0.040073 -0.271519 0.830115 9.808117 17.575054 -14.134135 58.379482 28.969801 4.067314 29.634253 29.714815 5.257321 -0.451411 0.113266 -0.026746
+0.187218 1.618683 -0.002267 -2.605163 -34.879635 4.914313 3.046903 -4.656746 -12.478355 -7.420127 1.229704 29.546038 -0.711239 0.147343 -0.340485 0.819170 0.524886 0.997773 -8.520115 5.253216 -26.768766 -1.726469 0.054987 37.355255 -0.565195 0.036468 -0.038888 0.254604 -0.418922 0.410910 6.409304 -2.403704 7.782810 4.125042 -3.133983 9.743608 5.192228 -2.774892 11.148511 3.403871 9.677570 16.816675 -15.659340 15.222878 -23.277140 -19.632877 -21.240931 -7.260473 -58.621105 -27.510284 3.479827 -38.387852 -40.804810 9.153694 0.092385 -0.254987 0.851352 11.254871 16.041977 -13.623103 55.768978 26.235464 1.782423 24.367012 25.221102 3.116332 -0.426772 0.129361 0.013673
+0.194305 1.613997 0.001775 -2.288307 -32.851723 3.967691 2.703844 -5.153720 -12.850134 -7.953547 1.358947 31.270790 -0.698414 0.096963 -0.356549 0.842767 0.552246 1.014011 -9.148337 5.325193 -28.786930 -0.714273 -0.404600 42.586533 -0.586495 0.076122 -0.047146 0.252922 -0.472858 0.400619 6.646039 -2.618747 9.819848 4.734432 -3.355924 9.162924 5.695049 -2.914185 9.745563 2.512045 9.177427 17.574385 -15.744227 14.253150 -24.006432 -22.228968 -19.740435 -7.085320 -57.749424 -24.582052 1.439801 -33.931557 -37.110916 6.299410 0.149845 -0.256800 0.878182 11.863873 14.548391 -13.310349 53.104740 23.895857 0.100879 19.478428 20.854410 1.608147 -0.402387 0.146677 0.036676
+0.201263 1.610118 0.006086 -2.327027 -31.099403 2.870206 2.381796 -5.580511 -12.723948 -7.934176 1.325979 32.989853 -0.682956 0.036722 -0.358770 0.881691 0.605609 1.028350 -9.303290 5.486425 -30.532761 0.284049 -0.945813 47.793709 -0.612889 0.124015 -0.041279 0.267501 -0.512159 0.376640 7.379470 -2.905293 12.060617 5.309377 -3.435803 8.629048 5.778666 -2.915177 8.375629 1.540879 9.073153 18.691069 -15.092113 13.284627 -24.736008 -24.357878 -18.819170 -7.070393 -56.475105 -22.000605 -0.157597 -28.633747 -33.075798 3.665793 0.219429 -0.273426 0.905945 12.367572 13.094316 -12.963645 50.282692 21.702820 -1.278263 14.900525 17.145065 0.587470 -0.380792 0.167063 0.053415
+0.207709 1.604384 0.011014 -2.353167 -29.912111 2.007099 2.284309 -5.963962 -12.845187 -8.616246 1.596230 34.956253 -0.662806 0.018555 -0.351764 0.891663 0.608407 1.029204 -9.486059 5.699275 -32.877155 1.545682 -1.761310 53.238129 -0.618997 0.143367 -0.037511 0.258957 -0.522302 0.372144 8.280876 -3.290240 13.912273 5.570117 -3.449355 8.008027 5.474157 -2.846458 6.984489 0.930497 9.203594 19.336174 -14.435527 12.795671 -24.173891 -25.812794 -17.991150 -6.952791 -55.176247 -19.268736 -1.442510 -22.778328 -28.591728 1.386261 0.250855 -0.270604 0.914900 12.353775 11.632796 -12.436190 48.206047 19.478132 -2.272755 10.966945 13.694363 -0.035486 -0.363277 0.171000 0.063997
+0.212946 1.600902 0.015005 -2.232178 -28.943707 0.841761 2.092714 -6.125780 -12.356762 -9.351002 1.912997 36.142456 -0.640044 0.001634 -0.345737 0.884866 0.605499 1.014645 -9.142975 6.126957 -34.794361 2.505933 -2.422399 58.017353 -0.620042 0.155452 -0.031153 0.244268 -0.522474 0.369844 8.508903 -3.401925 15.757234 5.904156 -3.489964 7.582520 5.495264 -2.837539 5.880509 0.753470 9.200855 19.965719 -14.059690 12.595991 -23.599268 -26.705629 -17.333450 -6.753673 -53.189896 -16.783232 -2.378613 -17.928053 -24.805099 0.007808 0.264654 -0.270058 0.912420 12.203951 10.515841 -11.840201 45.933983 17.428593 -3.132921 6.885266 10.672898 -0.437023 -0.349242 0.179733 0.075674
+0.217617 1.598152 0.018463 -2.422344 -28.266836 -0.213680 2.384688 -6.169274 -11.725047 -10.250439 2.309789 37.179012 -0.627467 -0.005690 -0.338040 0.880146 0.605068 1.003250 -7.957209 6.755866 -36.335049 3.045662 -2.854320 61.451057 -0.617705 0.162732 -0.022512 0.238445 -0.515040 0.364330 8.803827 -3.590994 17.310053 6.248067 -3.532067 7.518818 5.570156 -2.840569 5.360534 0.445384 9.484275 20.050589 -13.868807 12.523541 -23.320898 -26.635658 -16.416365 -6.703548 -51.207039 -14.749820 -3.010349 -13.735137 -22.040749 -0.846930 0.269768 -0.274837 0.907647 11.624216 9.373830 -11.652646 43.596210 16.136440 -3.422815 3.609488 6.572214 -0.483453 -0.343426 0.186547 0.078617
+0.223200 1.596030 0.021819 -2.126665 -27.469275 -1.782652 1.672478 -6.275284 -10.474031 -10.499490 2.396171 37.662640 -0.616860 -0.006900 -0.331650 0.866167 0.589540 0.986558 -6.976762 7.222673 -37.534420 3.723891 -3.344597 64.431877 -0.612402 0.168087 -0.021989 0.226652 -0.508166 0.360377 8.921383 -3.723997 18.985485 6.473265 -3.605864 7.640119 5.492465 -2.842886 5.004388 0.089600 9.669833 19.598154 -13.567339 12.329703 -23.242409 -25.870852 -15.735442 -6.393273 -48.581055 -12.837318 -3.493513 -10.766448 -20.503654 -1.264581 0.274474 -0.274216 0.906299 10.560067 8.299950 -10.998531 41.179836 14.527845 -3.715440 1.601997 4.220675 -0.388568 -0.334070 0.192388 0.077697
+0.228173 1.594655 0.026274 -1.804563 -26.249460 -3.201733 1.116353 -6.438733 -9.327925 -11.025900 2.542485 38.049370 -0.599428 -0.002646 -0.316438 0.835593 0.562387 0.957062 -5.905601 7.413191 -38.674904 4.282881 -3.907092 66.977798 -0.596452 0.164580 -0.011475 0.207418 -0.485009 0.354803 8.979470 -4.108222 19.868603 6.578048 -3.876720 7.998407 5.497869 -3.045623 5.163596 0.085632 9.592309 18.688194 -13.585629 12.303694 -22.891462 -24.372791 -14.470881 -6.077526 -46.156403 -11.102891 -3.884527 -8.626238 -20.160210 -1.482221 0.262829 -0.275212 0.888902 8.526585 6.826194 -10.426429 39.768200 13.140475 -3.864841 0.097821 2.475348 -0.271209 -0.326864 0.197372 0.072966
+0.233035 1.594418 0.032546 -1.679562 -25.187477 -4.569133 0.649584 -6.550749 -7.753493 -11.571621 2.644225 38.114288 -0.592167 0.009912 -0.298127 0.798294 0.518295 0.923493 -4.838246 7.452619 -39.132042 5.525730 -4.913861 67.985703 -0.577268 0.164719 0.003418 0.182496 -0.458970 0.342713 9.485059 -4.720131 20.373091 6.649680 -4.108967 8.430401 5.298298 -3.126735 5.475948 -0.369367 9.422765 17.998899 -13.810413 12.008615 -22.386843 -22.625044 -13.237387 -5.419275 -44.513908 -9.355874 -4.310347 -5.695478 -20.559711 -1.872646 0.254915 -0.291378 0.884264 5.596475 5.260001 -9.416073 38.917995 11.203755 -4.222831 -1.260209 1.850868 -0.182855 -0.323587 0.211240 0.056097
+0.237539 1.594012 0.040973 -1.369306 -23.922575 -5.858514 -0.190446 -6.753480 -6.070091 -11.693400 2.536991 38.169586 -0.557929 0.006513 -0.270935 0.758018 0.478166 0.888748 -3.834711 7.193406 -38.980324 6.743868 -5.844870 67.739456 -0.553247 0.162813 0.015484 0.154361 -0.436303 0.327568 9.717808 -5.259652 20.589069 6.750438 -4.362711 8.765852 5.287862 -3.257515 5.691108 -0.638797 9.074290 16.874151 -13.886122 11.831811 -21.495819 -20.882048 -11.357428 -4.882822 -43.165756 -7.866342 -4.637118 -3.110697 -21.031797 -2.176273 0.252341 -0.285944 0.856838 2.777769 2.966269 -8.525648 37.869495 9.267689 -4.563337 -2.013566 1.638327 -0.114193 -0.302557 0.207712 0.050126
+0.241558 1.593870 0.049883 -1.137395 -22.644058 -7.118357 -1.082106 -6.991593 -4.388474 -11.620667 2.315094 38.246460 -0.532350 0.017920 -0.240523 0.717990 0.433369 0.850833 -2.455350 6.906177 -38.022877 7.700905 -6.476032 66.191360 -0.531317 0.145299 0.032092 0.125703 -0.401843 0.325653 10.066670 -5.855882 20.784899 6.810965 -4.592896 9.141994 5.112583 -3.339120 5.909271 -0.483722 8.501899 15.326027 -14.102504 11.753889 -20.816017 -19.446186 -8.925656 -4.786551 -40.987446 -6.825021 -4.739176 -1.446009 -21.974779 -2.326929 0.237352 -0.275945 0.833284 0.253488 0.020324 -8.014013 36.687878 7.660507 -4.946275 -3.033747 1.922114 -0.093912 -0.294967 0.197615 0.040467
+0.245325 1.594929 0.059176 -0.992732 -21.498859 -8.308155 -1.786819 -7.143144 -2.590635 -11.733212 2.163009 38.019768 -0.519135 0.048771 -0.215020 0.658370 0.361778 0.801031 -0.939768 6.676599 -36.849350 8.720360 -6.980497 63.667435 -0.492477 0.118114 0.043373 0.093474 -0.357561 0.316849 10.578384 -6.652063 20.656233 6.704151 -4.918283 9.545127 4.670345 -3.512694 6.248835 -0.448315 8.141277 13.875668 -14.265206 11.796906 -19.359398 -18.058964 -6.696718 -4.494890 -38.188206 -5.580476 -4.696716 -0.132041 -22.873039 -2.398786 0.206586 -0.267084 0.803434 -1.599140 -2.580541 -7.574400 34.919418 6.328996 -5.193836 -3.674332 2.580867 -0.105720 -0.292031 0.186116 0.016203
+0.249276 1.595459 0.068902 -0.752424 -21.160147 -8.835504 -2.347541 -7.187489 -1.492656 -12.235509 2.264957 37.955757 -0.503667 0.091914 -0.188338 0.594650 0.287194 0.732210 0.554019 6.769032 -36.269821 9.701848 -7.221381 60.671131 -0.444765 0.072507 0.053694 0.061815 -0.293378 0.316138 11.295139 -7.161820 19.812965 6.449951 -4.914819 9.812726 4.141172 -3.409309 6.670527 -0.860671 8.030176 12.236598 -13.923474 11.581095 -17.174906 -16.058844 -4.218153 -4.399998 -36.286671 -4.918536 -4.433996 1.328168 -22.950310 -2.469236 0.162052 -0.240848 0.756723 -2.953982 -5.473418 -7.301291 32.532204 5.066698 -5.341957 -4.687658 3.692283 -0.162840 -0.294537 0.161614 -0.002857
+0.253603 1.595984 0.078533 -0.353159 -20.863052 -9.418110 -3.112488 -7.195996 -0.515826 -13.038367 2.441380 37.689999 -0.484368 0.137768 -0.162546 0.551024 0.227875 0.671411 1.954434 6.754713 -35.222424 10.491559 -7.133895 56.510468 -0.412410 0.024120 0.058850 0.034093 -0.231056 0.333744 12.196878 -7.741111 18.814215 5.980557 -4.902232 10.083558 3.217443 -3.337538 7.153722 -1.428625 8.099026 10.856631 -13.217525 11.193367 -15.086435 -13.838768 -1.959012 -4.134923 -34.329456 -4.112505 -4.201969 3.111566 -23.294819 -2.650537 0.122979 -0.197190 0.715563 -4.444632 -7.952677 -6.987654 30.151312 4.023106 -5.303527 -5.204040 4.299339 -0.168203 -0.299081 0.128436 -0.007568
+0.257439 1.597667 0.087953 0.199103 -20.652004 -10.102246 -3.920231 -7.163254 0.413223 -13.601293 2.549612 37.388134 -0.479359 0.173017 -0.138925 0.506357 0.178985 0.635593 3.299662 6.747756 -33.865356 10.635223 -6.604719 52.185276 -0.377644 -0.004087 0.068466 0.020086 -0.180425 0.324222 12.686689 -8.104976 17.675224 5.507959 -4.951399 10.508345 2.472768 -3.361330 7.983298 -1.240639 8.130158 10.004673 -13.038573 11.434473 -13.516266 -12.176252 -0.193220 -4.035262 -31.750566 -3.487419 -3.874991 4.649142 -23.136652 -2.723243 0.083046 -0.198047 0.680857 -5.660131 -9.944618 -6.737962 27.548159 3.247669 -5.119371 -5.767383 4.830956 -0.187820 -0.303476 0.116337 -0.032524
+0.261253 1.602394 0.096647 0.776359 -20.831135 -11.147813 -4.575734 -6.881484 1.836203 -14.331759 2.726639 36.564987 -0.466982 0.169822 -0.129164 0.507544 0.193566 0.644823 4.656156 6.844425 -31.854317 10.507524 -5.794252 47.216835 -0.376880 -0.006475 0.070464 0.026580 -0.176622 0.324213 12.725271 -8.135523 16.651106 5.237010 -4.970528 11.373977 2.077701 -3.349981 9.513337 -1.168206 7.798651 9.570769 -13.808531 11.459855 -13.832242 -11.750551 0.569963 -4.130961 -28.771826 -3.039447 -3.619078 6.532375 -22.596296 -2.856187 0.070913 -0.202767 0.657517 -5.820331 -10.849893 -6.253922 23.705336 2.202748 -4.659867 -6.019753 5.628711 -0.206974 -0.299128 0.111720 -0.025288
+0.265102 1.605783 0.106312 1.509543 -20.546747 -11.941781 -5.426848 -6.834595 2.596623 -15.080201 2.882154 36.342155 -0.439381 0.155297 -0.110472 0.509255 0.223222 0.627560 5.388550 6.478948 -30.098579 10.345504 -5.109653 42.165100 -0.369353 -0.014280 0.083978 0.039218 -0.152108 0.316187 13.148519 -8.472137 15.162544 4.605397 -5.061192 11.928950 1.169580 -3.510801 10.782343 -1.216235 7.744538 9.140695 -13.484951 11.285516 -13.437781 -10.701100 1.506507 -3.970622 -25.873207 -2.326818 -3.344156 8.325457 -22.733202 -3.012520 0.062421 -0.194426 0.615338 -5.866334 -11.664648 -5.973337 20.448063 1.453238 -4.190457 -6.813042 6.217705 -0.259349 -0.294202 0.098407 -0.013473
+0.267712 1.607775 0.115012 2.507116 -20.461100 -12.670695 -6.273822 -6.805063 2.954646 -15.928895 3.128758 36.399998 -0.441079 0.147544 -0.116088 0.541775 0.265972 0.640284 6.203708 6.307174 -28.441244 9.863848 -4.286054 37.236328 -0.377128 -0.039560 0.084529 0.066705 -0.161141 0.329236 13.001389 -8.391287 13.406409 3.984993 -5.040024 12.439559 0.595321 -3.548923 12.278625 -1.044972 7.466175 9.051798 -13.864154 11.280949 -13.441063 -9.812380 2.114730 -3.989099 -22.634626 -2.013847 -2.904276 9.932492 -21.954315 -3.042250 0.063089 -0.161804 0.598456 -5.675417 -12.203488 -5.743667 17.233034 0.692959 -3.680873 -7.530044 6.283172 -0.283310 -0.306511 0.061624 0.001928
+0.269723 1.608621 0.123833 3.415229 -20.432686 -13.422240 -6.531923 -6.755730 3.241849 -17.213652 3.600445 36.568054 -0.435094 0.140483 -0.127908 0.578140 0.304986 0.676491 7.103052 6.117584 -26.149174 9.459355 -3.466158 31.442125 -0.394230 -0.055242 0.070113 0.084411 -0.186495 0.356628 12.805659 -8.272581 11.670363 3.390185 -5.033550 12.947404 0.031338 -3.579120 13.775165 -0.679220 7.280112 9.481005 -14.451628 11.549043 -13.697821 -8.897223 2.924107 -3.860555 -19.323626 -1.382806 -2.470083 10.623823 -22.644186 -3.106488 0.062249 -0.127346 0.587278 -5.800202 -12.774473 -5.730629 14.982851 0.286638 -3.362186 -8.968638 6.913739 -0.391247 -0.306559 0.030014 0.030572
+0.271582 1.608173 0.132732 4.178040 -20.401508 -13.989384 -6.728358 -6.666316 3.472641 -18.435589 4.057239 36.627659 -0.448988 0.137338 -0.134323 0.594408 0.332478 0.676378 8.150285 5.966251 -24.118416 8.591938 -2.674802 26.335051 -0.393951 -0.066596 0.071292 0.109303 -0.185483 0.349733 13.017832 -8.322638 10.027901 2.739346 -5.033140 13.218043 -0.787431 -3.596462 14.859611 -0.958070 7.543903 9.780329 -14.447697 11.533258 -13.625312 -7.711068 3.614034 -3.627153 -16.468252 -0.666111 -1.985993 10.841960 -22.122223 -2.931691 0.062805 -0.121886 0.579755 -5.805629 -13.148984 -5.854373 12.717903 0.189523 -3.025524 -10.356219 6.965841 -0.462074 -0.319137 0.016402 0.027700
+0.273219 1.608014 0.142551 4.946043 -20.508833 -14.940403 -6.958041 -6.559960 4.086045 -19.648905 4.556996 36.886921 -0.450139 0.123199 -0.135574 0.624946 0.364964 0.705129 9.229939 5.678442 -21.447493 7.385245 -1.915828 21.160921 -0.405331 -0.058375 0.070062 0.129015 -0.203491 0.345481 12.976206 -8.243620 8.728724 2.239534 -5.024657 13.625073 -1.424046 -3.578228 15.948986 -0.981530 7.313973 10.527342 -14.422009 11.311280 -13.748481 -6.871079 3.704405 -3.267263 -13.163970 0.135595 -1.440503 10.389285 -20.049818 -2.452715 0.082419 -0.124207 0.584684 -6.183993 -13.081244 -5.309736 10.162413 -0.671082 -2.564939 -10.699128 7.353082 -0.487681 -0.316043 0.008306 0.032860
+0.274287 1.605311 0.152947 5.703775 -20.256701 -15.519925 -7.196785 -6.545850 4.257950 -20.927525 5.093308 37.295616 -0.500497 0.140539 -0.153777 0.629641 0.370836 0.719907 10.193837 5.346374 -19.318495 5.769405 -1.305561 16.639442 -0.409684 -0.056625 0.063502 0.150821 -0.207580 0.335314 12.797185 -7.907486 6.964044 1.761632 -4.947074 13.856715 -1.827735 -3.432480 17.138826 -0.531857 6.803260 11.213492 -14.633528 11.101587 -14.468023 -6.005608 3.623890 -3.380766 -9.705785 -0.122615 -0.731042 8.637973 -16.405525 -1.742671 0.071445 -0.164527 0.611322 -6.471622 -13.350546 -4.653766 7.661216 -2.127180 -2.048133 -10.403763 7.991581 -0.476066 -0.341601 0.028269 0.006326
+0.274939 1.599870 0.162251 6.505923 -19.816099 -15.792547 -7.225764 -6.594086 4.017480 -22.743587 5.930781 38.025814 -0.524168 0.152893 -0.170459 0.622984 0.364369 0.725636 10.931604 5.140923 -18.166302 4.152296 -0.897252 13.644516 -0.412881 -0.051382 0.050218 0.154105 -0.213325 0.335602 12.312098 -7.396590 5.260131 1.402020 -4.795534 13.713645 -1.886873 -3.237499 17.828917 -0.183519 6.420335 12.238024 -14.572721 10.980402 -14.632392 -4.635122 3.152243 -3.321966 -7.274454 -0.893738 -0.275724 7.121032 -12.048379 -1.200795 0.059367 -0.186750 0.625442 -7.011807 -13.445061 -3.798611 5.645732 -3.947573 -1.640895 -10.607961 8.770006 -0.469666 -0.349905 0.047000 -0.002222
+0.275323 1.593639 0.172135 7.416900 -19.494242 -15.515124 -7.424826 -6.558841 3.373274 -24.341486 6.689623 38.389465 -0.518145 0.139356 -0.193565 0.633673 0.382409 0.753107 11.013094 4.972200 -17.876244 3.351829 -0.731983 11.951494 -0.425001 -0.057061 0.041721 0.149341 -0.245427 0.360881 11.158368 -6.683503 2.925661 1.058700 -4.698024 13.332677 -1.426903 -3.248408 18.659351 1.121216 5.317670 13.745837 -15.512632 11.424509 -14.613899 -3.754623 2.911975 -2.823275 -4.038575 -0.525182 0.325413 4.316759 -9.738640 -0.771512 0.044617 -0.172640 0.617361 -7.524969 -13.032667 -3.001089 3.638146 -5.289234 -1.164997 -10.563555 8.773877 -0.409337 -0.351947 0.042364 0.028888
+0.276952 1.586275 0.181558 7.794327 -19.313000 -15.174962 -7.297858 -6.537753 2.950397 -25.697102 7.403965 38.881237 -0.492120 0.129246 -0.203287 0.633125 0.386721 0.770137 11.229336 5.004048 -17.991112 2.874230 -0.663293 11.619857 -0.424290 -0.073812 0.033037 0.137936 -0.267916 0.386499 11.414920 -6.510054 1.247990 0.610726 -4.569388 12.911345 -1.834156 -3.198718 18.979137 1.936558 4.535670 14.316800 -16.555805 11.890673 -14.008277 -3.470664 2.829899 -2.519805 -0.606102 -0.176974 0.854123 2.670272 -8.343901 -0.529685 0.027446 -0.140962 0.587086 -8.204558 -12.842981 -2.446150 1.981864 -6.081917 -0.724465 -10.856956 9.108917 -0.407645 -0.340807 0.019659 0.062113
+0.279106 1.578729 0.187963 7.579402 -19.323778 -15.490830 -6.361194 -6.463493 3.213246 -27.150126 8.325544 39.662460 -0.443766 0.083952 -0.203008 0.640009 0.397184 0.786582 11.456369 5.230164 -18.043110 3.342711 -0.729393 12.733683 -0.435465 -0.061484 0.028717 0.117925 -0.311334 0.396568 12.139112 -6.629135 1.241002 0.523028 -4.460130 12.709960 -2.277727 -3.122156 18.574244 2.059748 4.103112 14.764845 -17.487783 12.194468 -13.765767 -2.983247 2.301095 -1.975176 1.602722 0.192268 1.049478 1.480643 -6.219151 -0.375063 0.059949 -0.111983 0.576696 -10.012108 -12.408910 -1.667515 1.691757 -6.802887 -0.690436 -11.437198 9.514336 -0.399485 -0.303349 0.006077 0.098906
+0.282560 1.572436 0.192023 6.619047 -19.515514 -16.170013 -5.049762 -6.438457 3.994563 -27.722490 8.970179 40.695061 -0.414075 0.060881 -0.196965 0.645113 0.382013 0.812867 12.207331 5.730344 -17.998344 3.794617 -0.809540 14.557367 -0.448982 -0.036615 0.027127 0.086324 -0.347967 0.407241 13.207967 -6.881624 2.611502 1.062378 -4.369789 12.824994 -2.233368 -2.979116 17.863140 1.805662 3.666406 14.254072 -18.466263 12.003782 -14.364811 -3.470206 1.145984 -1.504568 3.472540 0.628361 1.088927 1.137852 -3.970195 -0.355941 0.093388 -0.105908 0.595226 -11.256709 -11.627702 -0.682971 0.497248 -8.147976 -0.546913 -12.174492 9.683573 -0.324828 -0.273249 0.012949 0.120209
+0.284695 1.567122 0.194768 5.936457 -19.291494 -16.510584 -4.314813 -6.596530 4.166833 -27.716173 9.325768 41.968533 -0.394559 0.036430 -0.196829 0.638981 0.376217 0.808760 12.360656 6.107997 -18.496819 4.488555 -0.965436 16.414574 -0.452255 -0.026597 0.027710 0.070869 -0.368298 0.406355 13.689814 -7.071288 3.664774 1.392390 -4.324204 12.869937 -2.131558 -2.953768 17.327047 1.898479 3.659154 13.519573 -18.857964 12.177397 -14.835176 -3.913601 0.263147 -0.987425 5.348692 1.344064 1.236656 0.650495 -2.797549 -0.337061 0.115479 -0.094630 0.600837 -11.445036 -10.924508 -0.109233 -0.463606 -9.095818 -0.408058 -12.674798 9.739704 -0.280264 -0.255049 0.013882 0.129564
+0.285077 1.563287 0.196082 5.877979 -19.275055 -16.642439 -4.231072 -6.563033 3.977530 -27.651634 9.639736 42.940331 -0.356939 0.009156 -0.193326 0.623640 0.366510 0.792632 11.944232 6.402825 -19.390488 5.223431 -1.148553 18.239754 -0.453429 -0.008864 0.037452 0.041037 -0.377324 0.410700 13.449501 -6.987158 4.385611 1.450511 -4.202438 12.782251 -2.048116 -2.894012 16.811174 2.206767 3.451781 13.570646 -18.901318 12.359043 -14.885515 -4.097636 -0.487771 -0.104574 6.466041 2.751614 1.433196 0.520889 -2.941653 -0.287135 0.128721 -0.085205 0.596147 -11.562263 -9.780145 0.505087 -0.402581 -9.572149 -0.456800 -12.212416 9.738600 -0.208238 -0.232805 0.028218 0.151654
+0.284952 1.560614 0.195924 5.501058 -19.350945 -16.332731 -3.837939 -6.523833 3.333602 -27.364178 9.856051 43.908699 -0.339580 -0.002777 -0.172045 0.606557 0.354069 0.763989 11.635836 6.679457 -20.195469 6.269488 -1.349541 19.030222 -0.451436 0.013829 0.061649 0.020584 -0.352534 0.395421 13.789616 -6.851826 5.068429 1.554950 -3.860307 12.644027 -2.129804 -2.590947 16.209314 1.986827 3.537918 13.261209 -18.228060 12.075634 -15.078617 -3.935500 -1.102296 0.624516 6.667927 3.518052 1.607352 0.009885 -3.920501 -0.230239 0.140701 -0.109313 0.604410 -11.419358 -8.933211 1.035986 -0.023178 -10.230865 -0.564252 -11.882740 10.352825 -0.206273 -0.225986 0.058319 0.145742
+0.285161 1.560395 0.194657 5.674904 -19.822447 -16.197651 -4.145495 -6.207398 2.875183 -27.154366 9.923443 44.033684 -0.346207 -0.009245 -0.169459 0.605458 0.361128 0.730350 11.433462 6.782385 -20.254290 6.450199 -1.295807 18.598076 -0.457899 0.031789 0.079264 0.020780 -0.336233 0.386858 13.316810 -6.445817 5.878270 1.711433 -3.542288 12.712184 -1.883802 -2.277228 15.895347 1.282376 3.780632 12.934625 -17.386822 11.335402 -16.010757 -3.421887 -1.236075 1.136385 5.349965 4.078175 1.609992 -0.275495 -5.253672 -0.200125 0.157189 -0.128348 0.626756 -11.274018 -8.355663 1.170930 0.794309 -9.959766 -0.767251 -11.134212 10.553237 -0.177398 -0.235596 0.088233 0.139320
+0.284191 1.562047 0.192517 5.892371 -19.963974 -15.925244 -4.408271 -5.949177 2.377213 -27.043991 9.973926 43.967609 -0.374413 0.006644 -0.166641 0.606943 0.355931 0.732649 11.376003 6.714146 -19.852692 6.347617 -1.127597 17.053879 -0.450238 0.036726 0.080054 0.035612 -0.323032 0.366030 12.463628 -5.909529 6.296504 1.896662 -3.284564 12.838424 -1.374429 -2.048463 15.925504 0.894400 4.254560 12.223474 -16.760063 11.133621 -16.480106 -3.083818 -0.701103 1.128502 3.556656 3.962779 1.557954 -0.022438 -7.912034 -0.173670 0.155078 -0.149009 0.639582 -10.680950 -8.496921 0.640541 1.857337 -8.790471 -0.998634 -11.055090 10.886378 -0.275493 -0.249577 0.095522 0.111265
+0.283131 1.565357 0.188444 6.165240 -20.005770 -15.635146 -4.529255 -5.598358 1.993390 -27.011898 9.929109 43.251141 -0.386259 0.027305 -0.175337 0.592773 0.337767 0.726744 11.544346 6.617626 -19.253981 5.727003 -0.878350 15.151564 -0.439691 0.025442 0.068230 0.032976 -0.316646 0.370999 10.791121 -5.186068 6.735569 2.329285 -3.194785 13.007287 -0.173148 -1.983963 16.022852 0.677495 4.371609 11.771368 -16.974062 11.088167 -16.466160 -2.745077 0.247081 1.107432 0.963121 4.017067 1.385157 -0.171500 -12.009102 -0.173802 0.132109 -0.144011 0.630670 -10.462401 -8.816373 0.005802 3.416561 -7.173996 -1.271380 -11.018720 12.153153 -0.479636 -0.255963 0.094012 0.107897
+0.283341 1.568121 0.185266 6.289305 -19.746407 -14.884016 -4.902536 -5.495458 1.099663 -26.763027 9.758233 42.975407 -0.415889 0.059626 -0.185210 0.583701 0.324088 0.717177 11.583754 6.413103 -19.225742 5.001235 -0.703977 13.211629 -0.418526 -0.003871 0.055076 0.049219 -0.298876 0.367174 10.197975 -5.057222 6.696467 2.248960 -3.233037 12.986701 0.029809 -2.038419 16.098520 0.279523 4.780741 10.948934 -16.759459 11.051241 -15.972192 -2.211918 2.186041 0.787180 -2.457603 4.425470 0.989875 0.640502 -19.069113 -0.399566 0.102359 -0.130607 0.614572 -10.418701 -9.652276 -1.245412 5.683992 -4.246824 -1.551325 -10.165564 12.994842 -0.655952 -0.275387 0.073272 0.089560
+0.282819 1.571449 0.181685 6.217362 -19.357489 -14.474430 -4.849624 -5.331503 0.930427 -26.812569 9.613960 42.313641 -0.403308 0.078879 -0.146240 0.557345 0.301291 0.677366 12.044024 6.111474 -18.542292 3.879405 -0.524048 11.047929 -0.394174 -0.001332 0.083649 0.044970 -0.240997 0.340116 9.875425 -5.108322 7.570101 2.444498 -3.287029 12.839657 0.196800 -2.030328 15.280421 -0.938392 5.296642 10.237026 -16.154505 10.578448 -14.960071 -1.530023 3.556155 0.491242 -7.524105 4.169093 0.007737 1.661104 -24.897514 -0.924328 0.090254 -0.158742 0.591527 -10.930408 -10.264109 -2.102443 8.866497 -2.155239 -2.066560 -9.462255 14.177317 -0.841838 -0.276961 0.084889 0.064382
+0.281453 1.574790 0.178881 6.438879 -18.983433 -13.634878 -4.996562 -5.069914 0.448505 -26.976662 9.485672 41.312210 -0.422910 0.093854 -0.131487 0.555352 0.289601 0.655290 12.217135 5.817385 -18.419966 2.987233 -0.421200 9.006659 -0.382674 0.009685 0.098585 0.053556 -0.210113 0.311102 9.557613 -4.999937 7.469336 2.257371 -3.230847 12.454625 0.070070 -1.940069 14.706028 -2.111923 5.587919 10.418703 -14.805476 9.686121 -14.442270 -0.763843 4.530457 0.527368 -12.203588 4.299384 -0.972285 1.466293 -30.320681 -1.396747 0.101831 -0.185206 0.606704 -10.523526 -10.248473 -2.707335 11.884771 -0.730212 -2.555654 -8.184539 15.410304 -0.957671 -0.289411 0.099144 0.033561
+0.279876 1.577574 0.175972 6.590900 -18.473894 -13.192081 -4.916700 -4.718124 0.624047 -27.230591 9.335514 40.014912 -0.463780 0.120630 -0.126881 0.559995 0.275832 0.629370 12.542315 5.505054 -17.914700 1.989046 -0.353302 7.205283 -0.378806 0.028358 0.094119 0.070591 -0.179430 0.281900 9.933933 -5.209037 7.816594 1.871777 -3.203335 12.190755 -0.783658 -1.798967 14.023971 -4.328123 6.556165 10.329533 -12.491396 8.176528 -14.687619 0.190274 5.511032 0.480901 -17.630054 4.033924 -2.144210 1.617397 -34.709877 -2.087683 0.127531 -0.214165 0.647752 -9.684559 -10.317213 -3.567543 15.014855 0.938921 -3.019521 -6.052627 15.941678 -0.893611 -0.301818 0.122427 -0.007204
+0.279293 1.579559 0.172873 6.486798 -17.915457 -12.626208 -4.511978 -4.278030 0.804780 -28.024992 9.420947 38.596401 -0.489453 0.129820 -0.129154 0.568080 0.276546 0.608589 12.735289 5.294944 -17.750332 1.437603 -0.335111 5.804255 -0.367318 0.039235 0.085673 0.091633 -0.162829 0.251417 11.098965 -5.663876 8.365790 1.353060 -3.084488 11.893389 -2.159447 -1.653312 13.226781 -6.287505 7.422965 9.465563 -10.485162 6.895879 -15.016730 0.474856 6.809224 0.156094 -21.475296 3.574103 -2.908965 -1.135661 -38.719398 -1.769933 0.151326 -0.214316 0.661112 -8.335995 -10.673432 -4.835954 18.136326 2.821139 -3.338707 -3.690794 15.674169 -0.742449 -0.306081 0.125532 -0.031618
+0.278208 1.580633 0.169153 6.496053 -16.799917 -11.761994 -4.164052 -3.978837 0.356744 -28.888428 9.588257 37.660709 -0.507119 0.134476 -0.129004 0.585881 0.290950 0.600550 12.797791 5.124864 -18.132662 0.542473 -0.328995 4.499585 -0.364432 0.034018 0.084952 0.113231 -0.155069 0.239447 11.851890 -5.916537 8.227574 0.933982 -2.980747 11.454706 -3.032334 -1.553424 12.648370 -7.550700 7.497711 8.998584 -9.774533 5.935246 -15.131180 -0.501927 8.176579 -0.420931 -24.914446 3.240446 -3.683295 -4.279117 -43.584110 -1.103521 0.167474 -0.206179 0.665795 -6.558388 -10.994789 -6.181376 21.090391 4.318823 -3.659433 -1.781320 14.683353 -0.619247 -0.315897 0.113235 -0.041881
+0.276511 1.579899 0.165201 6.606724 -15.515498 -10.761499 -3.912666 -3.663511 -0.209434 -29.450039 9.703647 36.938599 -0.506894 0.146098 -0.118172 0.594446 0.297968 0.570985 12.580979 5.085282 -19.097672 -0.048135 -0.347027 3.694326 -0.359252 0.020107 0.094678 0.123812 -0.125763 0.240416 12.546407 -6.086960 7.963864 0.383093 -2.807762 10.893657 -4.044005 -1.429007 11.900754 -8.525380 7.479922 8.555558 -8.612842 4.936915 -14.725146 -1.606824 9.750141 -0.882209 -28.435911 3.098134 -4.524391 -8.374520 -49.044765 0.252092 0.171887 -0.186432 0.657627 -4.515014 -11.329265 -7.604988 24.580059 5.540813 -4.107621 -0.214454 13.408257 -0.554438 -0.327152 0.098074 -0.043467
+0.275091 1.579299 0.160618 6.846951 -13.412206 -9.996031 -4.205574 -3.688550 -0.661251 -29.383148 9.554474 36.704128 -0.507193 0.167680 -0.100546 0.564406 0.262201 0.536705 11.579796 4.791521 -20.036314 -0.129270 -0.401878 2.908229 -0.329231 0.016390 0.100761 0.116940 -0.087856 0.215536 12.808699 -6.272559 7.860372 0.026687 -2.846469 10.349310 -4.609389 -1.489342 11.069439 -9.777775 7.490836 8.138124 -7.942896 4.006900 -13.645101 -3.247888 10.604901 -1.366510 -31.971022 2.656558 -5.334971 -14.056494 -52.754684 2.650846 0.162624 -0.198499 0.638849 -2.040987 -11.456670 -8.653467 27.142281 6.240992 -4.321498 2.422256 12.260751 -0.365779 -0.323963 0.101538 -0.066962
+0.273588 1.577826 0.154961 6.788787 -11.134368 -9.614805 -4.261551 -3.814380 -0.808450 -29.310335 9.510910 36.974522 -0.521859 0.191249 -0.089561 0.559006 0.239795 0.532668 10.937528 4.572268 -20.635897 -0.337695 -0.445414 2.217181 -0.320929 0.033838 0.105267 0.112757 -0.065382 0.201044 12.753426 -6.405128 8.169694 0.008934 -2.971954 10.075360 -4.622120 -1.569485 10.458385 -11.021444 7.419281 7.895995 -7.173454 2.898945 -13.991714 -5.389252 10.770049 -1.971978 -35.751251 2.154402 -6.323444 -20.101421 -55.027874 5.328976 0.164766 -0.227667 0.653576 0.690645 -10.992711 -9.553598 29.057413 6.800388 -4.482231 4.684982 10.646732 -0.206501 -0.327411 0.125222 -0.086834
+0.272566 1.575711 0.149385 6.907387 -8.808911 -9.017999 -4.747157 -3.956686 -1.112989 -28.830578 9.288108 37.203205 -0.538541 0.209651 -0.081172 0.552664 0.231140 0.507164 9.714401 4.300671 -21.690802 -0.050915 -0.481154 1.758110 -0.307726 0.027059 0.108730 0.124085 -0.035511 0.183618 12.783366 -6.612916 7.836720 -0.255752 -3.141009 9.813004 -4.893421 -1.766727 10.150003 -11.858894 7.526943 7.324223 -6.254012 2.068009 -13.801638 -8.428396 10.003999 -2.483597 -38.703457 2.293346 -7.564543 -24.192644 -55.855354 6.923777 0.164581 -0.233411 0.651674 4.469385 -9.501974 -10.452719 30.442530 7.312328 -4.552038 6.268474 8.732052 -0.183151 -0.337578 0.123945 -0.109508
+0.271278 1.573161 0.142743 6.775599 -6.507912 -8.862823 -5.171206 -4.089110 -0.955636 -27.720991 8.876371 37.626236 -0.534073 0.188696 -0.087676 0.576613 0.266977 0.499557 8.937410 4.127944 -22.383862 -0.121529 -0.483163 1.646141 -0.317544 0.032691 0.104554 0.141972 -0.041325 0.181035 13.116732 -6.870962 8.310552 -0.555759 -3.112181 9.578821 -5.486259 -1.838255 9.563967 -12.046547 7.589824 7.081832 -4.907162 1.466473 -14.496325 -11.639562 8.751147 -3.462270 -40.203728 1.616122 -8.190225 -28.786757 -54.461182 8.540463 0.188206 -0.211507 0.652425 7.835373 -8.014629 -11.214699 32.668186 7.632522 -4.768003 7.094429 6.933567 -0.238031 -0.336093 0.115624 -0.096245
+0.268115 1.570560 0.135892 6.633000 -3.379308 -8.963644 -5.359104 -4.458471 -0.615360 -26.219837 8.311506 38.355980 -0.506872 0.168480 -0.082647 0.590854 0.280681 0.504045 7.685139 3.786134 -22.846666 0.119188 -0.486873 1.514526 -0.322953 0.044360 0.106106 0.138804 -0.051946 0.183437 12.830571 -6.839167 9.189353 -0.610072 -2.988507 9.075729 -5.569285 -1.865801 8.469414 -11.673670 6.729028 7.838302 -3.860596 0.691865 -14.111486 -15.080119 6.766972 -4.574650 -40.491974 0.356427 -8.174877 -32.617580 -51.536537 9.515482 0.209653 -0.193560 0.646073 11.314700 -6.320184 -11.282820 35.187767 6.961077 -5.255075 6.964103 5.145133 -0.332704 -0.320729 0.107729 -0.076074
+0.265066 1.567788 0.128846 6.195649 0.476792 -9.144032 -5.695021 -5.174690 -0.457100 -23.786228 7.350578 39.803192 -0.489150 0.136968 -0.103485 0.598728 0.284289 0.520162 6.428799 3.452326 -23.384386 -0.012477 -0.509746 1.821608 -0.340038 0.060420 0.093679 0.120103 -0.100616 0.200337 12.191336 -6.764834 10.340174 -0.289334 -3.037114 8.305818 -4.977554 -1.994376 6.976995 -10.789354 5.058816 9.340853 -3.860896 0.062813 -14.103300 -18.551046 4.631237 -5.555517 -41.698776 -1.277525 -8.032069 -33.229149 -48.064198 8.790215 0.235023 -0.176267 0.662087 13.340326 -4.712874 -10.690874 38.376675 6.124826 -5.813799 6.899889 3.997362 -0.349236 -0.303472 0.111973 -0.044822
+0.261129 1.565032 0.121690 5.889039 4.027993 -9.381686 -6.177385 -5.733287 -0.360138 -21.145191 6.346475 41.281322 -0.480794 0.095810 -0.136325 0.635769 0.326584 0.544057 4.886581 3.243263 -24.132982 0.126773 -0.492946 3.124017 -0.375925 0.076931 0.074487 0.122696 -0.157869 0.226612 11.215116 -6.394166 11.346626 0.031668 -2.962643 7.721260 -4.228791 -2.005972 5.892842 -9.931376 3.643891 10.932244 -3.249624 -0.614939 -15.026593 -21.152819 3.001294 -6.619433 -43.263359 -3.333680 -7.552732 -34.165466 -44.198189 8.164322 0.272759 -0.146938 0.689683 15.491241 -3.360891 -10.549704 41.642200 5.898207 -6.354410 6.035789 3.544833 -0.377619 -0.293818 0.111690 -0.003321
+0.256824 1.563407 0.114181 5.790192 7.748963 -9.290643 -6.843565 -6.347860 -0.874907 -18.338005 5.277672 42.960579 -0.489328 0.076215 -0.158331 0.639729 0.330039 0.571174 2.649520 2.890831 -25.126398 0.867230 -0.512140 4.613028 -0.392325 0.101840 0.069029 0.113425 -0.197171 0.230841 9.274328 -5.609239 11.931591 0.496533 -2.974296 7.063812 -2.776736 -2.062853 4.870038 -8.351538 1.289216 12.945567 -3.259971 -1.269555 -15.253655 -23.412178 1.997335 -7.498384 -45.566925 -5.403112 -6.880269 -35.154152 -40.903614 7.734395 0.283502 -0.174639 0.719710 16.905842 -1.801016 -10.186190 44.908562 6.075357 -6.669163 5.625559 3.377562 -0.373105 -0.292405 0.140568 0.005154
+0.252674 1.563301 0.104139 5.444503 11.091393 -9.337664 -7.292743 -6.890935 -1.679170 -15.633410 4.239280 44.620853 -0.524525 0.069692 -0.180778 0.666439 0.346769 0.626465 0.377726 2.727043 -26.340738 2.068004 -0.556169 6.900183 -0.418630 0.133603 0.057653 0.124755 -0.241335 0.229123 7.783958 -4.982745 12.536944 1.037389 -3.030974 6.807705 -1.400781 -2.109975 4.427903 -7.269387 -0.934046 14.430367 -3.465406 -2.017185 -16.500044 -25.518169 0.690638 -8.085207 -47.981094 -7.350722 -6.314770 -36.430801 -39.605522 7.813423 0.300733 -0.217047 0.768918 18.112000 0.683629 -9.987900 47.187668 7.177171 -6.534894 5.841741 3.755847 -0.366709 -0.301735 0.171345 -0.001595
+0.247573 1.564624 0.093981 5.140917 14.700566 -9.257553 -7.617283 -7.396221 -2.665056 -12.831518 3.093703 45.989662 -0.561137 0.056750 -0.205102 0.685723 0.363207 0.669600 -2.078820 2.491378 -27.523489 3.325748 -0.667084 9.491775 -0.435423 0.166990 0.052831 0.137159 -0.282085 0.215167 6.187521 -4.564235 12.958233 1.452019 -3.341072 6.580101 -0.106627 -2.414554 4.067213 -6.466203 -3.041080 15.888473 -3.680738 -2.808351 -17.588573 -27.122450 -0.889863 -7.959660 -50.138367 -8.858303 -5.839655 -38.189217 -39.620178 8.375214 0.317559 -0.266440 0.812265 19.045721 4.053458 -9.486546 49.144295 8.513583 -6.285137 6.160067 5.144678 -0.403840 -0.312525 0.207287 -0.012288
+0.242528 1.565489 0.085117 4.674037 17.894131 -9.122764 -7.568373 -7.568077 -3.641251 -10.455710 2.214752 46.878716 -0.568833 0.022832 -0.221989 0.727509 0.419270 0.704310 -4.612614 2.401094 -28.861809 5.347660 -0.924410 12.816666 -0.461351 0.185382 0.046128 0.164893 -0.319433 0.213177 5.360588 -4.290269 12.378952 1.442705 -3.491658 6.765563 0.463507 -2.665859 4.571858 -5.536810 -4.904373 16.657133 -3.049927 -3.569868 -18.673468 -27.262775 -2.064705 -7.615417 -52.433380 -10.924396 -5.001574 -41.596893 -41.422283 10.258605 0.345629 -0.269561 0.830347 18.869480 7.188067 -9.061037 51.782959 10.265279 -6.012962 6.841997 8.344935 -0.568907 -0.315193 0.208405 0.002023
+0.237501 1.568948 0.076573 4.352764 20.701208 -9.514061 -7.624806 -7.507493 -3.916563 -8.307099 1.435458 47.252907 -0.589037 -0.003764 -0.241422 0.780072 0.490548 0.729637 -7.280618 2.358363 -29.561993 7.891869 -1.388176 16.730862 -0.491534 0.211425 0.040546 0.206172 -0.341295 0.207593 4.675524 -3.995425 12.212840 1.493172 -3.606462 7.209406 0.835801 -2.859912 5.356023 -5.429156 -6.063474 17.707420 -1.559872 -4.580997 -20.432966 -27.186787 -4.661180 -7.050848 -54.059475 -13.224689 -4.012879 -44.873283 -43.280090 12.223423 0.376182 -0.283724 0.857334 19.185154 11.218606 -8.611263 52.720711 12.296453 -5.495497 7.627233 11.524870 -0.680140 -0.326706 0.222715 0.012090
+0.230763 1.573960 0.067367 3.902190 23.131449 -9.817772 -7.091005 -7.263295 -4.586116 -6.470473 0.922654 47.406464 -0.599875 -0.023277 -0.252923 0.834138 0.569557 0.739246 -9.796522 2.663103 -30.255285 11.229040 -2.094781 20.610754 -0.515379 0.210846 0.036121 0.254810 -0.345627 0.209716 4.079899 -3.611621 11.961162 1.617828 -3.604820 7.787615 1.232804 -2.995565 6.384168 -5.370366 -7.014481 18.022215 -0.329715 -5.486229 -21.524443 -26.786692 -7.744493 -6.469048 -54.614410 -15.926503 -2.720302 -48.847843 -46.338074 15.293496 0.394347 -0.268519 0.855962 19.520689 15.817826 -8.554372 52.306324 15.267834 -4.242362 8.479193 13.175737 -0.634887 -0.342827 0.207970 0.029750
+0.223425 1.581554 0.057388 3.340364 24.986353 -10.399273 -6.553118 -6.700752 -4.828434 -4.284128 0.304712 46.842049 -0.611254 -0.041784 -0.260557 0.896812 0.650461 0.749104 -11.787798 3.423436 -30.931515 14.524968 -3.007082 24.950720 -0.535138 0.217434 0.034414 0.308262 -0.345590 0.203098 4.307357 -3.246231 11.763131 1.693547 -3.355433 8.567758 1.115697 -2.875676 7.686456 -6.087947 -7.601295 18.446281 1.503665 -6.731266 -22.879425 -25.852041 -11.266815 -5.984095 -54.646667 -19.303923 -1.083377 -51.974373 -50.511169 18.938475 0.426271 -0.253215 0.858091 19.293089 20.227831 -8.606131 51.271729 18.473427 -3.167467 8.610084 15.805938 -0.696701 -0.355118 0.193019 0.043103
+0.214875 1.591180 0.048862 2.574727 26.411364 -11.249447 -5.704976 -5.767097 -4.465809 -2.047333 -0.226933 45.554066 -0.629889 -0.041481 -0.267808 0.928224 0.700160 0.729131 -13.002821 4.720261 -31.158447 17.416796 -3.973168 29.132910 -0.546667 0.215335 0.031523 0.347864 -0.326138 0.198373 4.755208 -2.895724 11.626527 1.745035 -3.077947 9.427836 0.749930 -2.676699 9.038092 -6.702932 -8.187261 18.972996 3.247222 -7.902697 -23.919952 -24.892681 -14.792261 -5.269094 -53.935734 -22.475761 0.428190 -56.237373 -56.129036 24.449215 0.439075 -0.247233 0.860718 18.506235 24.502462 -8.734241 49.908413 21.849981 -2.127067 8.686869 18.662460 -0.728739 -0.373203 0.189986 0.043915
+0.207146 1.602595 0.041104 1.084065 27.862707 -12.237287 -4.531384 -4.959218 -3.949564 0.621185 -1.050939 43.435452 -0.648016 -0.027089 -0.265759 0.939690 0.720619 0.711155 -13.544262 6.035306 -31.078773 20.601147 -5.201355 32.541603 -0.543211 0.211734 0.033525 0.373458 -0.297999 0.187902 6.174717 -2.997992 11.238691 1.889531 -2.923465 10.237421 0.114070 -2.531337 10.361115 -7.205350 -8.818517 19.124388 4.377102 -8.996162 -24.557495 -24.104315 -18.352659 -4.705760 -52.976940 -25.857395 2.054389 -57.892948 -61.063164 28.683056 0.436944 -0.255652 0.855481 16.802036 27.978418 -9.021023 48.240959 24.988777 -1.289507 9.076638 22.529875 -0.701426 -0.388458 0.192115 0.033908
+0.199735 1.612867 0.034670 -0.157658 29.672157 -12.791768 -3.645278 -4.357064 -3.632952 3.092369 -1.792673 41.157894 -0.685380 0.008217 -0.269988 0.936455 0.717409 0.690593 -14.261652 6.967924 -31.090961 23.464724 -6.652688 35.937088 -0.528016 0.192493 0.031125 0.397189 -0.264269 0.176891 7.117581 -3.085521 10.249029 1.881544 -2.924058 11.022483 -0.383868 -2.526937 11.900953 -6.970782 -9.615442 18.835859 5.266111 -9.773144 -24.735203 -22.032505 -21.499079 -4.712995 -52.627575 -29.853632 4.281100 -56.841473 -64.996628 30.823324 0.415342 -0.263186 0.850021 13.979361 30.389048 -9.677240 46.967880 28.108070 -0.523525 8.869577 27.491089 -0.840880 -0.415441 0.188452 0.007703
+0.192704 1.623655 0.029248 -0.737231 31.760529 -12.884562 -3.408679 -4.051496 -3.396710 4.978698 -2.371037 38.835121 -0.706923 0.073935 -0.256831 0.914537 0.678078 0.667553 -15.058596 7.311622 -30.568090 25.421272 -8.025341 38.849129 -0.507950 0.165078 0.029166 0.395852 -0.206473 0.188079 7.443910 -3.043360 9.057798 1.799011 -2.997092 11.672008 -0.711227 -2.571478 13.298458 -6.665573 -10.362669 18.288492 6.055379 -10.549313 -24.359921 -19.468855 -24.336796 -4.853502 -52.497917 -34.061764 6.764423 -51.246044 -68.780975 29.489822 0.370312 -0.269720 0.836988 11.452595 31.989756 -10.172949 45.385487 30.810452 0.092491 8.423731 32.605316 -1.004074 -0.435630 0.186024 -0.016336
+0.184892 1.634738 0.024264 -1.132650 33.618259 -12.843373 -3.003345 -3.686340 -2.951400 6.131579 -2.600552 35.830009 -0.709885 0.099541 -0.249105 0.891214 0.668219 0.617282 -15.390014 7.580908 -29.836866 26.334887 -9.080176 41.527023 -0.483952 0.135351 0.037219 0.401409 -0.156557 0.187774 7.727562 -2.955788 7.902610 1.562106 -2.933486 12.376259 -1.237518 -2.519610 14.772305 -6.146260 -11.046305 17.343742 7.078821 -11.191075 -24.219412 -16.798454 -26.725185 -5.159769 -51.688663 -38.204365 8.997954 -40.547810 -72.454163 23.877092 0.336436 -0.258022 0.802829 9.020132 33.083729 -10.574512 43.823509 33.360817 0.529452 6.874249 38.518837 -1.641460 -0.452358 0.175818 -0.024151
+0.178182 1.645499 0.019871 -1.669462 35.966488 -12.863760 -2.559472 -3.487328 -2.332265 7.178030 -2.834816 32.471252 -0.729256 0.151028 -0.219987 0.872741 0.654954 0.570624 -15.867421 7.378201 -28.716722 27.359146 -10.412948 44.096806 -0.458428 0.106448 0.054889 0.420764 -0.077641 0.173900 8.401584 -3.092587 6.181583 1.264567 -2.992383 13.212544 -1.919180 -2.575034 16.747463 -5.791980 -11.739221 16.280205 8.157859 -12.109204 -24.015450 -13.222481 -28.496101 -6.037446 -50.733482 -42.651997 11.294716 -21.121883 -74.588760 10.186108 0.298478 -0.274024 0.774145 5.780999 33.472885 -11.349483 42.253662 36.111099 1.044659 2.876709 43.645061 -3.439074 -0.480661 0.169581 -0.058964
+0.171189 1.654921 0.015604 -2.363856 37.232601 -12.555926 -1.380674 -3.145419 -2.132905 7.019211 -2.561817 29.061306 -0.742413 0.212739 -0.198082 0.839089 0.621893 0.506912 -15.523519 7.535924 -28.395220 27.470814 -11.503848 47.098637 -0.416069 0.047610 0.066194 0.429589 0.000715 0.174507 9.755501 -3.024456 4.374388 0.919355 -2.623699 13.767676 -2.787028 -2.188471 18.505575 -5.478118 -12.435144 14.685334 8.432644 -13.261312 -22.895044 -9.676352 -29.617075 -6.837114 -50.237061 -46.967857 13.555501 4.105612 -73.626404 -8.817780 0.243427 -0.254196 0.719400 2.239951 33.225170 -11.838243 40.831387 38.575310 1.665223 -2.832540 49.904495 -6.576490 -0.509175 0.137014 -0.081751
+0.164259 1.663350 0.011999 -2.609052 38.426685 -12.076783 -0.686929 -2.750493 -1.495627 7.254966 -2.379292 25.025646 -0.774158 0.270261 -0.177352 0.809937 0.595219 0.464178 -15.145264 7.698559 -27.491161 26.864889 -12.157074 49.959770 -0.376674 0.006841 0.076937 0.449703 0.068978 0.154006 10.270957 -2.727148 2.926963 0.814813 -2.322742 14.248929 -3.079625 -1.842541 20.066139 -5.208372 -13.197989 13.085619 8.233158 -14.254351 -22.296799 -6.165112 -30.107103 -7.931626 -49.386536 -51.513702 15.947107 21.838621 -69.800568 -20.796450 0.196388 -0.268825 0.680208 -1.146971 32.630714 -12.537682 37.888630 41.263901 2.404889 -8.778207 53.905449 -9.855884 -0.538860 0.121953 -0.123116
+0.158235 1.669394 0.009573 -2.458194 39.096638 -11.085819 -0.113667 -2.426255 -1.043060 6.853725 -2.088103 21.353891 -0.770172 0.309080 -0.140322 0.811535 0.612144 0.411920 -14.523732 7.664659 -26.699749 25.181278 -12.337781 53.073620 -0.342226 -0.054531 0.096298 0.486188 0.147364 0.144993 10.486082 -2.210652 1.133899 0.656766 -1.770930 14.519561 -3.172300 -1.319613 21.613180 -4.837639 -13.836258 11.312216 8.424127 -15.531708 -21.024355 -2.186809 -29.764450 -9.434537 -49.840656 -55.719635 18.427782 30.441025 -62.633739 -24.320833 0.162637 -0.231475 0.604523 -4.162244 31.209024 -12.945097 34.833958 43.420773 3.052536 -16.312780 57.293392 -14.431362 -0.562502 0.061849 -0.133599
+0.152634 1.673978 0.007720 -1.931368 39.525993 -9.763933 0.107907 -2.125005 -0.672897 6.383749 -1.817671 18.206617 -0.767250 0.329273 -0.107957 0.810795 0.633394 0.368567 -13.959478 7.614527 -25.785774 23.240271 -12.039417 55.526455 -0.309201 -0.111123 0.111688 0.525504 0.204671 0.123270 10.172791 -1.773887 -0.443471 0.409661 -1.348616 14.542229 -3.182944 -0.971675 22.748981 -4.490136 -14.192956 9.860512 7.893536 -16.344986 -19.524393 1.747664 -28.534069 -10.507598 -50.045864 -59.156509 20.711250 36.987701 -57.076359 -26.331371 0.139308 -0.198371 0.531335 -6.831972 29.629082 -13.198753 32.790993 45.884430 4.096642 -25.357063 58.677620 -19.937016 -0.579806 -0.000013 -0.148199
+0.147527 1.676851 0.005905 -1.855489 39.993675 -8.534652 0.581855 -1.898165 -0.609261 6.072489 -1.618398 15.414845 -0.787126 0.387814 -0.098280 0.805649 0.638670 0.320845 -13.009922 7.475474 -24.452150 21.262867 -11.278568 56.305237 -0.269699 -0.196729 0.111687 0.563239 0.272173 0.132773 10.211312 -1.471810 -2.060840 0.113046 -1.017849 14.419915 -3.395011 -0.697476 23.777367 -3.498134 -14.639064 7.884964 7.236074 -16.955624 -17.916395 5.028893 -26.834433 -11.602651 -50.155472 -62.959286 23.695637 40.778461 -52.011105 -26.312860 0.078547 -0.141134 0.453787 -9.251797 27.824507 -13.586556 31.788395 48.672009 5.606067 -33.552673 58.065155 -24.539715 -0.616679 -0.071504 -0.157200
+0.142485 1.678552 0.003156 -1.287819 40.650135 -7.109170 0.558041 -1.741863 -0.675211 5.791753 -1.464033 12.952365 -0.790623 0.451500 -0.069028 0.776776 0.617841 0.259159 -12.303564 7.058856 -22.429678 18.755112 -9.946091 55.874199 -0.230309 -0.259377 0.123348 0.577013 0.361300 0.138715 9.836038 -1.238977 -3.412211 -0.246978 -0.797325 14.255778 -3.648972 -0.426101 24.427528 -2.777560 -14.911052 6.580720 7.138536 -17.656530 -16.478281 8.136375 -25.788128 -12.451897 -50.526089 -66.041878 26.097467 42.857132 -46.487469 -25.181768 0.015304 -0.119410 0.386420 -11.358751 26.511700 -13.646576 30.249725 50.779602 6.367391 -40.160397 55.919910 -27.509962 -0.642141 -0.108385 -0.173704
+0.137230 1.678872 0.001626 -0.229136 40.975327 -5.397136 0.326516 -1.540542 -0.694824 5.043427 -1.231175 10.463954 -0.812217 0.517534 -0.055132 0.754188 0.581387 0.209459 -11.642634 6.754961 -19.837704 16.044327 -8.091333 53.924271 -0.196655 -0.308766 0.122851 0.586104 0.429061 0.141518 8.833982 -0.679342 -4.589886 -0.478321 -0.393616 14.082074 -3.582697 0.051444 24.868689 -2.445581 -15.071013 5.926495 7.649890 -18.425760 -15.514771 11.560550 -24.841127 -13.458413 -52.238525 -69.530991 29.758286 43.397720 -39.980606 -22.952154 -0.025506 -0.094189 0.352894 -12.530213 25.207895 -13.675694 28.082966 52.878036 6.931263 -42.668774 53.344749 -27.421837 -0.665601 -0.138593 -0.200275
+0.131548 1.677657 -0.000174 0.959566 41.104847 -3.594487 0.155735 -1.279684 -0.811514 4.171115 -0.979924 7.751913 -0.824138 0.572533 -0.040398 0.721922 0.552391 0.146740 -11.233198 6.256358 -17.111258 13.639364 -6.406019 50.908218 -0.154620 -0.365771 0.127401 0.596922 0.499197 0.139764 8.097175 -0.219603 -5.654725 -0.871037 0.053406 13.916703 -3.923025 0.583317 25.213308 -2.116305 -15.147931 4.912374 7.587058 -19.085005 -14.261256 14.231448 -24.117250 -14.527091 -51.549965 -72.897079 31.825752 42.341152 -33.660423 -20.002796 -0.074823 -0.067302 0.297338 -13.124614 24.301594 -13.621152 25.465263 55.125561 7.022866 -44.859642 50.077713 -26.820478 -0.687026 -0.172790 -0.220541
+0.126524 1.674780 -0.001452 1.830665 40.887085 -2.090642 0.203341 -0.954765 -0.745023 3.412243 -0.753820 4.873243 -0.814740 0.600247 -0.016794 0.684655 0.520836 0.093087 -10.378187 5.538208 -13.516997 10.813956 -4.532704 46.161552 -0.120794 -0.398017 0.143334 0.589635 0.552605 0.131268 7.501117 0.185551 -6.643847 -1.183736 0.461419 13.700514 -4.161107 1.097803 25.225357 -2.021372 -15.178529 4.577046 7.414250 -19.561419 -13.088565 16.812534 -23.516056 -15.387744 -48.947865 -75.615837 32.031956 40.235561 -27.932566 -17.082621 -0.107736 -0.059401 0.252675 -13.820351 23.767580 -13.328532 21.956116 56.987392 6.513611 -45.908699 47.053776 -25.580280 -0.694409 -0.188261 -0.233888
+0.121108 1.670923 -0.001388 3.214448 39.995869 -0.400861 -0.172369 -0.706984 -0.704552 2.465333 -0.578901 2.867577 -0.784245 0.603264 0.001498 0.668136 0.519923 0.044827 -9.935522 5.001680 -9.852243 8.032180 -2.723483 40.627617 -0.100701 -0.429270 0.152086 0.587611 0.590374 0.135726 6.053524 0.832766 -7.594070 -1.472706 1.063311 13.561659 -4.107346 1.763380 25.276775 -1.713637 -15.009738 4.171632 7.770448 -19.833454 -12.257958 18.805857 -22.693398 -16.168581 -45.025600 -78.042137 31.089230 37.399231 -23.531763 -14.552328 -0.123626 -0.021353 0.203154 -13.979415 23.608257 -13.260382 17.644209 58.995838 5.293576 -44.641987 43.057518 -22.753746 -0.689299 -0.218243 -0.220942
+0.115414 1.667116 -0.001869 4.041986 38.260788 0.594429 -0.001946 -0.393636 -0.289911 1.297697 -0.416093 1.081805 -0.765974 0.607201 0.024447 0.670154 0.529064 0.026175 -9.254503 4.691311 -6.477743 4.992439 -1.036441 35.051476 -0.097320 -0.446263 0.162433 0.592240 0.618592 0.138083 5.467309 1.606624 -8.325973 -1.702718 1.867656 13.662179 -4.398946 2.648496 25.536352 -1.452954 -14.958820 3.692956 7.889690 -19.984180 -11.892357 19.756786 -22.420794 -16.740669 -36.328949 -79.980850 25.520666 34.929585 -20.203608 -12.623283 -0.128426 -0.004274 0.177889 -14.112598 24.032343 -13.301061 13.245157 60.299522 3.252534 -43.238102 39.019749 -20.197981 -0.689144 -0.238971 -0.216283
+0.108637 1.663505 -0.003737 5.104290 37.222961 1.615566 -0.240683 -0.185450 -0.144335 0.592479 -0.316342 -0.405420 -0.736195 0.618846 0.038954 0.636596 0.503462 -0.030630 -9.081887 4.134128 -3.473577 2.565075 -0.024397 29.616327 -0.081818 -0.457703 0.163048 0.572104 0.659229 0.146194 5.097970 2.293075 -8.704230 -2.106709 2.635574 13.919961 -5.069269 3.550424 25.750603 -1.375894 -14.946222 3.327837 8.987719 -20.545603 -11.755752 20.987288 -22.442354 -17.527714 -22.815420 -81.186272 14.998302 32.264179 -17.207109 -10.897923 -0.142293 0.015493 0.149503 -13.741647 24.259371 -13.205703 8.258407 60.593971 0.634206 -41.903019 36.643791 -18.400705 -0.675251 -0.238598 -0.207686
+0.101412 1.661618 -0.005874 5.852717 36.023449 2.215918 -0.185361 -0.036818 -0.171264 -0.349911 -0.229349 -1.285258 -0.734838 0.602443 0.031015 0.624536 0.507131 -0.056659 -8.748388 3.513398 -0.655237 0.248337 0.668614 24.423582 -0.078985 -0.441205 0.166362 0.570012 0.663036 0.132547 5.001862 2.743685 -8.852294 -2.554771 3.222870 14.288876 -5.795392 4.371886 26.114792 -1.622642 -14.624389 3.388548 9.966020 -20.587978 -12.521220 21.675379 -22.483337 -17.954811 -10.330646 -81.106750 4.553654 31.120750 -15.683968 -10.084130 -0.132992 0.000772 0.155983 -13.817961 24.514492 -13.282081 3.933015 60.883949 -1.739448 -41.091583 34.993103 -17.245577 -0.670386 -0.214035 -0.209511
+0.093694 1.659649 -0.007629 6.131881 35.297848 2.557128 0.140792 -0.076288 -0.700369 -0.945605 -0.195595 -1.348137 -0.735919 0.615639 0.039135 0.623030 0.509823 -0.064835 -8.137462 2.948272 1.566549 -1.656938 1.063582 20.056902 -0.078516 -0.436332 0.170880 0.573877 0.685527 0.132780 5.203964 3.027670 -8.987067 -2.935827 3.644809 14.544716 -6.430330 4.970622 26.468714 -1.715857 -14.595074 3.133125 10.391131 -20.751883 -13.027472 22.307554 -22.069473 -18.394569 -3.464134 -80.831306 -1.070836 30.342783 -14.991481 -9.655028 -0.143049 -0.016428 0.153628 -14.138993 24.599751 -13.440356 1.880020 61.035263 -2.997286 -41.170979 33.948147 -16.881983 -0.673929 -0.200437 -0.213240
+0.085203 1.658314 -0.009493 5.960455 34.002510 3.163736 0.682037 -0.217011 -1.864792 -1.128206 -0.188258 -1.227100 -0.763171 0.674046 0.045236 0.601561 0.487997 -0.111852 -7.494087 2.730364 1.876862 -2.839525 1.258644 17.465479 -0.051700 -0.484481 0.174603 0.586676 0.746890 0.141622 5.676180 3.298579 -9.076401 -3.282069 4.062600 14.392307 -7.085402 5.542564 26.450905 -1.872245 -14.158875 2.274806 10.132704 -20.946558 -12.466346 22.521252 -20.788273 -18.695835 -4.992489 -80.579605 0.703920 29.917797 -15.813098 -9.680202 -0.192998 -0.006835 0.124030 -14.273344 24.135994 -14.065504 1.358220 62.807419 -3.065654 -40.000774 32.790577 -16.121183 -0.705238 -0.218068 -0.234289
+0.077202 1.657614 -0.009918 5.453221 33.028862 3.660711 1.641788 -0.297832 -3.050116 -1.474649 -0.163428 -1.000444 -0.771593 0.711449 0.065923 0.569237 0.444057 -0.147392 -6.791658 2.609566 1.474994 -3.132654 1.263377 16.153952 -0.028051 -0.499574 0.183984 0.575861 0.793300 0.131388 6.246250 3.485019 -9.047722 -3.525821 4.374689 14.036756 -7.661132 6.001658 26.009985 -2.389523 -13.841954 2.069211 10.304131 -21.346611 -11.900013 22.487663 -20.205582 -18.443094 -12.881796 -80.229149 7.255956 30.983335 -17.082664 -10.321006 -0.215359 -0.018506 0.113267 -13.915841 23.607002 -14.039582 3.067813 64.022621 -1.645805 -40.102722 34.100372 -16.643835 -0.713974 -0.215651 -0.262187
+0.069801 1.657736 -0.009577 4.916332 32.620441 4.376898 2.315460 -0.452144 -4.469755 -1.153489 -0.179857 -0.798818 -0.775162 0.750004 0.075509 0.529064 0.385368 -0.186128 -6.208131 2.539699 0.584355 -2.812706 1.134082 15.222023 -0.000596 -0.528919 0.180524 0.555788 0.825924 0.133544 6.671027 3.718239 -9.128987 -3.618779 4.642916 13.447472 -7.950418 6.331552 25.371599 -2.808104 -13.534370 1.966437 10.238871 -21.713171 -10.781826 22.177227 -19.920835 -17.643257 -27.425217 -79.746002 19.012197 33.702026 -19.412605 -11.854951 -0.239858 0.000493 0.096109 -13.289996 22.932802 -13.565120 8.296214 64.747215 1.989123 -41.725578 37.136616 -18.509134 -0.716703 -0.230645 -0.281501
+0.063039 1.658456 -0.008618 4.003965 32.788124 4.840666 3.212996 -0.618104 -6.001636 -0.504762 -0.219728 -0.282488 -0.801564 0.772736 0.073209 0.522865 0.363371 -0.172984 -5.456772 2.489627 -0.343292 -1.937934 0.914417 14.788194 0.009172 -0.538319 0.179718 0.557816 0.824922 0.126989 7.351855 3.833125 -9.183214 -3.492319 4.739820 12.859618 -7.923731 6.443955 24.833860 -2.974798 -13.731130 1.955606 9.426987 -21.815243 -10.321687 21.122181 -19.454792 -16.758776 -44.364414 -79.027069 32.739819 36.405079 -22.399908 -13.767385 -0.252362 -0.011473 0.102143 -13.294688 22.132700 -13.033670 15.881107 64.539932 6.900066 -44.752182 41.038544 -21.676315 -0.730775 -0.234082 -0.303218
+0.055925 1.659370 -0.006387 3.210335 33.209690 5.070128 3.959821 -0.709801 -7.099002 0.274986 -0.267421 0.040806 -0.806341 0.780559 0.075508 0.538505 0.373692 -0.140717 -4.776027 2.418915 -0.944138 -1.029419 0.707528 14.399861 0.009676 -0.557325 0.178543 0.568182 0.814972 0.136537 7.483667 3.717680 -9.406837 -3.278350 4.567672 12.435507 -7.474792 6.227635 24.650534 -3.096117 -13.722536 1.924549 8.107860 -21.527048 -9.606344 19.553572 -18.304516 -15.632386 -59.704826 -77.050789 44.409248 39.375587 -26.958700 -16.423458 -0.267279 -0.001405 0.087542 -13.110203 21.245829 -12.729794 24.303730 64.399689 12.467034 -46.927135 45.180073 -24.919319 -0.739410 -0.260204 -0.298586
+0.048523 1.660086 -0.003551 2.405284 33.847500 4.986825 4.808879 -0.743719 -7.914105 1.202046 -0.333014 0.483440 -0.807180 0.775475 0.071905 0.575853 0.433174 -0.115036 -4.165576 2.212433 -0.919981 0.230435 0.431386 13.634420 -0.003064 -0.576829 0.181055 0.601705 0.811189 0.155496 7.609995 3.478138 -9.731476 -3.102810 4.281628 12.252445 -6.982843 5.896212 24.948536 -2.947755 -13.687493 1.699193 7.137354 -21.073893 -9.711421 17.436028 -16.506262 -14.743447 -72.680977 -74.272087 53.267750 41.411968 -31.998646 -19.207521 -0.285676 0.010030 0.063321 -13.027251 20.394306 -12.891348 34.501976 64.344765 19.099611 -47.908665 49.015976 -27.805302 -0.756503 -0.283991 -0.275118
+0.040955 1.659004 -0.000245 1.769227 33.683697 5.158602 5.985386 -0.606450 -8.480288 1.259977 -0.313284 0.189739 -0.865306 0.817283 0.056830 0.586940 0.437726 -0.076280 -3.764702 2.160793 -1.428794 1.191885 0.218834 13.231978 -0.008952 -0.580450 0.172351 0.627847 0.815678 0.158247 7.201216 3.339205 -10.041555 -2.972286 3.987144 11.928468 -6.350002 5.627696 24.860329 -2.910725 -13.472461 1.538499 6.097837 -20.417250 -10.162145 16.063993 -14.072212 -14.076571 -81.620674 -70.282127 57.399010 42.221367 -37.094517 -21.832954 -0.320447 -0.038487 0.086913 -13.495538 19.350491 -13.298965 45.798290 63.360043 26.231855 -46.811165 53.752232 -30.072666 -0.790140 -0.265427 -0.305028
+0.034388 1.657605 0.003000 1.144738 33.025787 5.307882 7.033484 -0.448961 -8.729427 1.381562 -0.301370 -0.251613 -0.877875 0.818331 0.044097 0.596842 0.448076 -0.057899 -3.291155 2.121921 -1.888854 1.963012 0.078161 12.697372 -0.016969 -0.572665 0.162653 0.636253 0.804818 0.161538 6.976700 3.347194 -10.208448 -2.928607 3.909959 11.683503 -5.986039 5.510717 24.604748 -2.745797 -13.007541 1.366728 6.285728 -19.888689 -10.660829 14.415115 -12.292968 -13.341600 -85.224579 -66.551514 57.041687 41.779133 -42.537186 -23.895697 -0.321497 -0.045966 0.100342 -13.231837 18.825428 -13.634550 54.367344 61.988094 31.261580 -43.298069 57.807617 -30.236252 -0.792365 -0.257303 -0.306645
+0.029314 1.656499 0.005097 0.669527 32.429909 5.372944 7.841229 -0.380284 -9.006553 1.467680 -0.304590 -0.109049 -0.890625 0.816625 0.032260 0.605173 0.445830 -0.034567 -2.892600 2.141472 -2.302336 2.423281 -0.002901 12.440843 -0.029012 -0.555611 0.155990 0.633152 0.785317 0.164586 6.744302 3.348310 -10.215914 -2.882294 3.829966 11.536366 -5.658938 5.414783 24.333467 -2.706018 -12.687343 1.444749 6.532473 -19.482269 -11.222239 13.231344 -11.151945 -12.730559 -86.726524 -63.624542 55.535744 40.800503 -47.029503 -25.299522 -0.311934 -0.059239 0.130391 -12.893551 18.718836 -13.714771 59.558746 60.562210 33.678078 -40.230492 60.605011 -29.822653 -0.792353 -0.241202 -0.310784
+0.022668 1.654605 0.007282 0.092142 31.597691 5.424376 8.836014 -0.350310 -9.512893 1.626200 -0.317067 0.738954 -0.897748 0.795198 0.014435 0.604065 0.421635 0.001174 -2.476802 2.180535 -2.854814 3.073027 -0.122512 12.143336 -0.047730 -0.509152 0.148696 0.605717 0.736376 0.160575 6.412073 3.356744 -9.996611 -2.835008 3.732319 11.412697 -5.244916 5.289596 23.673195 -2.849306 -12.387654 1.799806 6.992700 -18.997723 -12.095221 11.217264 -10.980042 -11.968382 -85.918465 -59.576199 50.509739 36.548660 -52.498924 -25.223112 -0.278501 -0.088753 0.191059 -11.630080 19.760973 -13.522481 63.401157 57.686375 33.489197 -32.438881 64.026749 -26.379099 -0.777157 -0.200458 -0.316274
+0.015816 1.651898 0.009311 -0.346052 30.225321 5.750088 9.531106 -0.300225 -10.131926 2.119071 -0.325227 1.347871 -0.878593 0.754624 0.003394 0.570500 0.358994 0.024517 -2.025930 2.525628 -4.155605 3.312904 -0.146578 12.885932 -0.056367 -0.451923 0.144641 0.543078 0.674624 0.147494 5.965568 3.657798 -9.588206 -2.725786 3.915745 11.112229 -4.736913 5.366370 22.351368 -3.014244 -12.278728 2.694350 7.286094 -18.560572 -12.151581 9.155830 -11.925589 -10.879488 -84.275963 -54.997200 43.980423 28.727808 -57.309170 -22.576441 -0.234277 -0.117662 0.250222 -10.244849 21.932104 -13.108867 65.382286 53.725140 30.628954 -18.825352 65.762871 -18.167976 -0.738716 -0.151958 -0.319804
+0.008760 1.649626 0.012510 -0.999998 29.335575 5.424058 10.527983 -0.171201 -10.518970 2.311136 -0.339245 2.378149 -0.825436 0.665377 -0.006380 0.596336 0.362738 0.100848 -1.173438 2.781909 -4.656137 3.620914 -0.168552 13.683772 -0.110414 -0.373355 0.135275 0.492918 0.564564 0.156979 5.869252 3.727466 -8.864503 -2.668628 3.966125 11.067311 -4.468282 5.249524 21.111616 -3.081929 -12.207443 3.958512 7.653275 -17.707989 -12.922266 5.672904 -13.086706 -10.138650 -80.174736 -50.558403 36.178272 14.291852 -61.110950 -14.655278 -0.146614 -0.120485 0.323428 -7.790674 24.402287 -12.775517 65.683685 49.101234 25.930243 1.063916 64.972542 -5.279998 -0.680986 -0.120330 -0.279121
+0.002342 1.647969 0.015906 -1.545002 28.503132 4.917855 11.255604 -0.112813 -11.187887 2.554923 -0.356537 4.445276 -0.768865 0.547068 -0.029979 0.592443 0.356620 0.158759 -0.336017 2.999358 -4.896440 3.812555 -0.206337 14.648819 -0.159455 -0.259794 0.131750 0.424873 0.443809 0.144621 6.138334 3.888362 -7.623950 -2.718828 4.163181 10.921990 -4.609787 5.295933 19.414034 -3.299735 -12.379153 6.243906 8.549666 -16.876646 -14.212322 2.163591 -14.333405 -9.709208 -75.590454 -45.950649 28.556053 -5.795544 -61.292072 -2.159915 -0.054062 -0.168231 0.410493 -4.063213 26.283182 -11.405672 66.063904 43.012012 19.783836 18.945408 61.808441 5.129745 -0.612648 -0.037668 -0.241363
+-0.004034 1.644409 0.019044 -2.046311 27.653175 4.539516 11.724346 -0.073588 -12.399853 3.162879 -0.415166 7.392632 -0.672674 0.418927 -0.035707 0.608762 0.372285 0.222884 0.397444 3.299001 -5.284660 4.084406 -0.221023 15.640098 -0.218023 -0.160060 0.132093 0.354525 0.324163 0.157174 6.143893 3.934645 -6.121440 -2.699832 4.324343 10.455042 -4.652387 5.300210 17.206573 -3.460623 -12.583629 8.459460 9.184999 -16.207094 -14.927953 -1.505674 -15.215812 -8.888121 -71.796814 -40.839802 21.651861 -23.209408 -57.960960 7.782998 0.042970 -0.176965 0.470766 -0.510126 27.831076 -9.719409 65.360329 37.274128 13.784561 27.870729 55.404690 8.450658 -0.531611 0.012753 -0.169966
+-0.010498 1.640933 0.022349 -2.233043 27.238579 3.961143 11.760059 -0.163287 -13.844517 3.857262 -0.544328 11.236992 -0.609022 0.298193 -0.070127 0.655837 0.422302 0.289971 0.990264 3.529787 -5.217776 4.242348 -0.228390 16.699554 -0.288210 -0.073266 0.122675 0.313232 0.196006 0.182494 5.940618 3.663647 -4.339733 -2.750357 4.217844 9.962990 -4.756522 5.125760 15.130462 -3.696817 -12.523713 10.992363 9.895925 -15.424960 -16.279505 -5.669021 -16.076023 -8.397373 -67.712822 -36.101723 15.293859 -30.137659 -50.419628 9.602019 0.141062 -0.167769 0.544226 3.041803 29.458523 -8.241609 64.120483 32.167873 8.529281 27.684877 45.489082 5.932588 -0.474296 0.054013 -0.093745
+-0.017929 1.637595 0.024738 -2.526578 26.390026 3.281994 11.859721 -0.398713 -15.907858 4.322669 -0.720167 16.379829 -0.576837 0.201797 -0.107915 0.706499 0.483274 0.362983 1.691269 3.903660 -5.586570 4.314372 -0.212810 18.413666 -0.347105 0.000672 0.105034 0.303264 0.083556 0.191757 5.669950 3.361036 -2.416411 -2.743640 4.133983 9.466788 -4.766204 5.008610 13.434272 -3.972103 -12.054435 12.986801 9.888752 -14.380226 -17.601641 -9.669702 -15.824588 -8.754024 -64.464470 -32.356384 10.911187 -30.276041 -40.833458 7.347875 0.219656 -0.172996 0.604624 6.769095 29.729076 -6.881930 63.583786 27.953762 4.900280 24.332163 36.803856 3.119418 -0.431472 0.088738 -0.041413
+-0.025906 1.634918 0.025309 -2.978992 24.742067 2.354896 12.045663 -0.707246 -17.998175 4.633310 -0.932183 22.216169 -0.580952 0.124310 -0.156029 0.754247 0.531115 0.438724 2.318411 4.542555 -6.405538 4.740817 -0.267876 21.177885 -0.401851 0.084192 0.084814 0.300761 -0.022304 0.185894 5.319794 3.151179 0.003651 -2.663121 4.167975 8.904583 -4.675383 5.063518 11.740530 -4.406235 -11.455246 15.146665 10.427155 -13.344041 -19.584890 -13.915477 -14.979415 -8.975922 -61.607368 -28.843891 7.250041 -27.536211 -33.652313 4.740300 0.295767 -0.204325 0.690821 10.796494 29.657585 -5.520434 62.738575 24.077337 2.029039 20.597664 28.916431 1.261694 -0.403661 0.144232 -0.017180
+-0.033604 1.631461 0.026291 -2.938291 23.196104 1.665060 11.743255 -1.365583 -20.472963 4.670496 -1.176808 28.744678 -0.593355 0.094028 -0.184494 0.759990 0.528423 0.452361 2.454143 4.989292 -7.128467 5.086215 -0.372964 23.673584 -0.425461 0.140258 0.071171 0.288516 -0.060632 0.171416 4.127890 3.104728 2.044532 -2.478197 4.114188 8.424778 -4.044780 5.023692 10.357756 -5.493556 -10.132643 16.806961 12.063702 -12.761723 -20.664846 -15.978810 -13.230397 -9.054479 -61.277134 -26.025434 4.431917 -21.489691 -30.057558 1.932083 0.343104 -0.232048 0.758958 14.737449 28.680328 -4.591903 60.852917 20.876347 0.473342 17.325766 20.632584 0.450206 -0.386390 0.195444 -0.025037
+-0.040319 1.625461 0.026921 -3.139272 21.789230 1.088092 11.549229 -2.144103 -23.743189 4.734555 -1.493840 35.868851 -0.587350 0.067222 -0.196489 0.758475 0.518299 0.470893 2.479411 5.563029 -8.446764 6.035028 -0.702205 26.933628 -0.440072 0.178666 0.061357 0.271258 -0.097874 0.161634 2.955367 2.870569 4.298859 -2.124471 3.861637 7.741437 -3.255532 4.744660 8.609985 -6.378093 -9.075284 17.438549 12.287344 -12.162248 -21.043112 -18.055866 -10.573992 -9.369792 -60.906883 -23.154047 1.943765 -16.244444 -26.982914 -0.032990 0.376918 -0.243729 0.795665 17.573069 26.370966 -4.479882 58.671471 18.371773 -0.064664 14.899653 12.588306 0.298212 -0.364035 0.222130 -0.025561
+-0.045310 1.616833 0.028576 -3.721910 20.571373 0.405763 11.584590 -2.809723 -27.204296 4.597153 -1.777532 42.993851 -0.596537 0.064302 -0.204855 0.740473 0.484392 0.472920 2.781845 6.112828 -9.514110 7.276214 -1.195430 30.066996 -0.437875 0.197874 0.062607 0.248340 -0.114336 0.153702 2.887526 2.501115 6.548411 -1.863120 3.751830 6.986165 -3.113288 4.678326 6.820383 -6.980174 -8.374520 17.448805 12.196870 -11.864803 -21.240942 -19.825966 -8.055820 -9.822625 -59.771877 -20.386696 0.043366 -12.204634 -23.521408 -1.211346 0.388413 -0.262002 0.826478 18.780666 23.616423 -4.681273 56.686462 16.278784 -0.600133 12.053510 6.484162 0.243022 -0.358833 0.247507 -0.038983
+-0.050390 1.609850 0.031528 -4.164714 18.779064 -0.571429 11.651412 -3.189358 -29.927025 3.951278 -1.723227 49.565891 -0.585724 0.046345 -0.199193 0.727997 0.464540 0.485919 3.089249 6.575175 -9.795017 8.262147 -1.562730 32.450603 -0.447486 0.230806 0.058465 0.227480 -0.131548 0.140561 2.905967 2.278013 9.153730 -1.862588 3.990889 6.227502 -3.481675 4.923924 5.023766 -7.037124 -7.792000 17.676662 12.762646 -11.455729 -21.567152 -20.872562 -6.144718 -9.970915 -57.116722 -17.528547 -1.568299 -9.404504 -20.669231 -1.741714 0.410909 -0.283389 0.853394 19.181568 20.903532 -4.870619 54.449150 14.406320 -1.301590 9.243716 2.090031 0.278573 -0.337335 0.272931 -0.047898
+-0.057211 1.605782 0.036266 -4.612236 16.427341 -2.135710 11.820450 -3.107033 -31.206917 3.091653 -1.322016 54.947258 -0.626754 0.048919 -0.216443 0.718806 0.443222 0.517402 4.185810 6.984067 -8.841696 8.102322 -1.426917 33.979382 -0.460147 0.266863 0.053371 0.220950 -0.153298 0.122410 2.427021 2.401033 11.749820 -1.927197 4.383028 5.716813 -3.726162 5.376480 3.741900 -6.367495 -7.498810 18.583605 13.039213 -10.518732 -22.383707 -21.309656 -4.651912 -10.035110 -53.589840 -14.920925 -2.754882 -7.078250 -18.959539 -2.059306 0.415850 -0.343465 0.913075 18.751753 18.903433 -4.866766 51.884148 12.727719 -2.065844 6.672866 -0.804184 0.376527 -0.345897 0.323400 -0.083478
+-0.064128 1.603041 0.041122 -4.742250 14.785318 -3.866420 11.541334 -3.234601 -32.209484 2.247242 -0.883049 59.591805 -0.645862 0.057845 -0.233904 0.700061 0.416020 0.543019 5.047765 7.111754 -7.223330 8.218668 -1.401028 34.957157 -0.463283 0.285419 0.046263 0.203705 -0.170998 0.126565 1.404873 2.644516 14.223445 -1.885231 4.638927 5.455352 -3.553349 5.662379 2.828120 -5.478572 -7.589102 19.147963 12.737132 -9.688244 -22.674809 -21.496178 -3.338287 -9.826394 -49.896580 -12.431218 -3.733506 -5.174586 -18.959841 -2.288249 0.397207 -0.381450 0.942090 18.211502 17.283218 -4.631820 48.264683 11.044409 -2.834854 4.661848 -2.397516 0.448268 -0.348293 0.359857 -0.096127
+-0.069281 1.600868 0.045711 -5.080117 13.542512 -5.808462 11.198509 -3.444896 -32.859943 0.999826 -0.218608 63.356174 -0.663429 0.060625 -0.245815 0.696588 0.411216 0.562385 5.840366 7.123978 -5.370850 8.698271 -1.541639 35.842030 -0.474441 0.292967 0.043815 0.198753 -0.183775 0.134869 1.130462 2.583256 16.295437 -1.830120 4.790107 5.639744 -3.595851 5.847186 2.595757 -4.652845 -7.310275 19.085495 12.422848 -8.621764 -23.338688 -20.916506 -2.140730 -9.444902 -46.766697 -10.292544 -4.396543 -3.669480 -19.995323 -2.481628 0.384241 -0.401387 0.966884 16.610487 15.358989 -4.852176 44.734409 10.001855 -3.376023 3.274905 -2.787215 0.446029 -0.358763 0.379680 -0.103430
+-0.074458 1.598766 0.050820 -4.873990 13.022504 -7.250898 10.048257 -3.977962 -33.546955 -0.350746 0.582151 65.759186 -0.655742 0.068646 -0.232701 0.684207 0.395246 0.565436 5.888405 7.001862 -3.791795 9.446332 -1.827027 36.441429 -0.471601 0.287115 0.052007 0.186085 -0.173529 0.141450 0.411803 2.723772 17.395706 -1.855618 4.776449 6.162052 -3.440972 5.829131 2.923939 -4.101944 -7.133761 18.307856 11.991088 -8.035526 -23.165541 -19.417786 -0.824710 -8.871023 -44.519711 -8.417058 -4.978661 -1.524055 -21.865860 -2.850051 0.367466 -0.405771 0.961909 14.722197 13.643157 -4.894085 41.189999 9.011080 -3.776797 2.086179 -2.738231 0.412427 -0.360218 0.379198 -0.106974
+-0.079784 1.597909 0.056354 -4.809546 12.073950 -8.736429 9.394713 -3.925914 -33.527271 -2.189096 1.901391 66.879860 -0.654295 0.069118 -0.219790 0.659468 0.379724 0.552277 6.313759 7.036048 -2.154211 9.629060 -1.800329 36.975513 -0.459036 0.281753 0.066804 0.178455 -0.158759 0.129122 -0.323338 3.194349 18.095259 -1.827985 4.958994 6.899821 -3.158443 6.019390 3.627603 -3.309435 -7.412144 17.305094 11.513452 -7.628661 -23.046267 -17.866680 0.381365 -8.430048 -42.091728 -6.959424 -5.241391 0.621886 -23.314865 -3.173356 0.347769 -0.422449 0.949155 12.663950 12.007515 -4.618950 37.429699 7.834501 -4.095014 1.314404 -1.346673 0.306888 -0.367366 0.384559 -0.120845
+-0.084986 1.598303 0.062329 -4.905817 10.690448 -10.232709 8.813299 -3.516993 -32.624908 -4.000945 3.209200 66.177353 -0.628822 0.058627 -0.204224 0.642016 0.366629 0.535934 7.012474 7.160951 -0.450217 9.502440 -1.554054 37.370792 -0.447925 0.280693 0.073057 0.165153 -0.149896 0.122007 -0.181530 3.576280 18.614855 -1.929441 5.403606 7.652115 -3.457149 6.456235 4.370292 -3.180257 -7.459258 16.531399 11.955357 -7.746142 -22.854734 -16.217678 1.189944 -7.740199 -39.297939 -5.592618 -5.362935 2.573493 -25.246054 -3.504770 0.349338 -0.411427 0.929805 11.004084 10.558630 -3.919111 33.727859 6.368999 -4.323321 0.380682 0.369494 0.223897 -0.353273 0.377183 -0.118240
+-0.090045 1.599456 0.068382 -4.764175 9.472632 -11.389778 8.194818 -3.203891 -32.080097 -6.308816 4.726672 64.876518 -0.594184 0.045811 -0.180859 0.635236 0.366382 0.513613 7.542616 7.199426 1.087874 9.245399 -1.267772 37.488579 -0.435391 0.260886 0.083774 0.159656 -0.134604 0.119195 -0.259709 4.182143 18.623560 -2.098221 5.970319 8.501646 -3.703206 6.969938 5.385630 -2.635448 -7.721590 15.207582 12.445002 -7.977115 -22.183935 -14.880594 1.646604 -7.528221 -35.811028 -5.224490 -5.009884 4.472164 -26.187166 -3.699622 0.350936 -0.371288 0.891654 10.114367 8.734211 -3.147747 30.044931 4.500038 -4.546605 -1.424486 2.797348 0.078395 -0.344060 0.341090 -0.107309
+-0.094643 1.601078 0.073991 -4.638529 8.865036 -12.056458 7.228813 -3.230319 -32.151878 -8.541168 5.885347 62.703785 -0.555931 0.053639 -0.153522 0.609414 0.348818 0.467438 7.763189 7.193855 2.031472 9.502087 -1.262183 37.493080 -0.408380 0.224220 0.093881 0.148360 -0.095332 0.124063 -0.292985 4.645823 18.018602 -2.202692 6.297347 9.379336 -3.796278 7.270170 6.604698 -2.245090 -7.906760 13.372962 12.713310 -8.492113 -21.010517 -13.608711 1.922604 -7.252903 -32.840405 -4.936044 -4.726596 7.798020 -27.078276 -4.277680 0.330077 -0.326625 0.833062 9.330679 7.079579 -2.544061 25.858721 3.136989 -4.277082 -2.185851 3.598872 0.036887 -0.335863 0.301582 -0.096241
+-0.098509 1.604193 0.080551 -4.668190 8.392828 -12.915040 6.143889 -3.214820 -31.367960 -10.638514 6.606496 58.815426 -0.540175 0.060363 -0.146239 0.596673 0.333300 0.454337 8.259864 7.206565 3.228472 9.769401 -1.242452 37.568943 -0.395849 0.203685 0.091858 0.138729 -0.085013 0.131284 0.298186 4.796818 17.381380 -2.475327 6.585726 10.201623 -4.377612 7.573607 7.831286 -1.571793 -8.462477 12.707538 12.794375 -8.827060 -20.202139 -12.766110 1.656136 -6.799743 -29.322397 -4.287319 -4.482095 11.376641 -27.964632 -5.002304 0.317255 -0.298695 0.806718 7.995950 6.170955 -1.583618 22.531973 1.801779 -3.888522 -2.336093 3.534618 0.079791 -0.331641 0.278165 -0.088712
+-0.102589 1.608993 0.087801 -4.515129 8.508290 -14.171170 4.724641 -3.417014 -29.568516 -12.679696 6.892889 53.679901 -0.542896 0.079948 -0.150197 0.576519 0.307418 0.444044 8.547130 6.856709 5.327373 10.324254 -1.367736 36.719761 -0.389933 0.207023 0.087851 0.123648 -0.071947 0.140988 0.205218 5.100698 17.009731 -2.506179 6.642416 11.258969 -4.329958 7.734841 9.163054 -1.460240 -8.582478 12.430688 13.390949 -8.933520 -20.630688 -11.434558 1.256941 -6.365737 -26.768579 -3.896862 -4.375902 15.567303 -28.356167 -5.987316 0.298042 -0.308146 0.810638 6.794379 5.634328 -0.460415 18.499191 0.520377 -3.301985 -1.353282 2.821591 0.201188 -0.332234 0.297272 -0.091726
+-0.106132 1.612353 0.096472 -4.647935 8.156320 -15.108036 3.612535 -3.238226 -27.646391 -14.134160 6.781410 48.175400 -0.587231 0.127416 -0.160943 0.540394 0.254167 0.424194 9.165415 6.904548 6.592752 10.859378 -1.441973 36.782459 -0.369400 0.208376 0.081467 0.115114 -0.043592 0.129077 0.849933 5.252676 16.002842 -2.686818 6.808344 12.135622 -4.747991 8.073049 10.572889 -1.661015 -8.504340 12.417289 14.038247 -9.160443 -20.928003 -10.109330 1.281690 -6.068034 -24.055748 -3.332074 -4.221080 19.610655 -29.577295 -7.185842 0.270424 -0.346844 0.833003 5.606927 4.894911 0.205645 14.801491 -0.173862 -2.729801 -0.228601 1.499159 0.287694 -0.349434 0.331402 -0.133159
+-0.109715 1.614852 0.106168 -4.666320 8.091014 -15.454363 2.215467 -3.202193 -26.107677 -14.568086 6.133189 42.664192 -0.640263 0.188589 -0.171176 0.506537 0.205565 0.380487 9.456243 7.161919 6.923061 11.556711 -1.607391 37.258102 -0.340074 0.188872 0.077757 0.120177 0.004275 0.116288 1.205187 5.488316 14.241652 -2.874127 6.890341 12.829988 -4.989864 8.338240 12.124058 -2.303243 -8.041579 12.304311 14.657230 -9.638011 -20.747490 -8.696290 1.593258 -6.027452 -21.449450 -3.081878 -3.912217 23.158499 -29.773090 -8.086489 0.238096 -0.369093 0.842276 5.142882 3.800783 0.207637 10.800345 -0.143235 -2.115229 0.981255 0.112588 0.285438 -0.377984 0.348321 -0.179623
+-0.112747 1.616625 0.115095 -4.990741 8.164786 -15.865658 1.043461 -3.087590 -24.173313 -14.748280 5.222101 36.373734 -0.683668 0.250060 -0.168607 0.465346 0.141514 0.348504 9.717762 7.497554 6.983899 12.795793 -2.025599 38.039116 -0.318883 0.179148 0.078920 0.107374 0.051464 0.109039 2.012276 5.423952 13.253212 -3.071696 6.888405 13.184701 -5.539055 8.461892 12.861990 -2.746953 -7.700154 12.335080 14.982339 -9.958453 -20.515394 -7.200118 1.981705 -5.887343 -18.871796 -2.684505 -3.586296 26.492111 -28.849470 -8.599340 0.206723 -0.408235 0.863617 4.042210 3.053280 0.576295 8.387979 -0.728333 -1.799165 1.430843 -0.014770 0.295403 -0.399283 0.377449 -0.227601
+-0.115463 1.616859 0.124199 -5.450464 8.495954 -15.980325 -0.082884 -3.123311 -22.469206 -14.564780 4.167786 30.123472 -0.689176 0.276901 -0.158702 0.423207 0.082733 0.319910 10.045534 7.669461 6.689302 14.109858 -2.541101 38.632874 -0.294464 0.182988 0.081005 0.083759 0.081419 0.089145 2.597516 5.272849 12.169952 -3.216062 6.739087 13.135448 -5.925075 8.380306 13.078330 -3.344894 -6.949200 13.024004 15.546537 -10.218468 -19.273079 -5.055687 2.270844 -5.061776 -17.396822 -1.643019 -3.473819 29.611986 -28.293369 -9.116992 0.196602 -0.430118 0.866134 2.710117 2.595574 1.058337 6.394696 -1.610484 -1.632326 1.544837 -1.646039 0.288008 -0.392895 0.396230 -0.258273
+-0.117858 1.614863 0.134055 -6.061451 9.195331 -15.831934 -1.501298 -3.426906 -21.074863 -13.357212 2.985122 24.702532 -0.692994 0.303578 -0.143693 0.389224 0.033678 0.299776 10.340446 7.637849 6.225935 15.497364 -3.190669 39.035683 -0.274082 0.177473 0.089672 0.063842 0.109614 0.076712 2.998128 5.011083 10.540645 -3.275383 6.376997 12.872963 -6.085165 8.089252 13.292309 -3.519217 -6.618376 13.792407 15.296922 -10.437434 -17.670822 -3.321713 2.294897 -4.212504 -15.451892 -0.475142 -3.209919 31.677366 -27.372871 -9.164584 0.180383 -0.451834 0.862879 1.352678 2.111200 1.626733 4.355453 -2.467059 -1.297570 2.130320 -1.259604 0.279247 -0.393655 0.405323 -0.283223
+-0.120513 1.612530 0.144085 -6.603261 9.545199 -15.825659 -2.758981 -3.560180 -19.574232 -11.625344 1.991087 20.069298 -0.665384 0.288755 -0.130584 0.387868 0.038364 0.282512 10.582731 7.690639 5.792287 16.742950 -3.754691 39.623516 -0.274453 0.182917 0.097448 0.055862 0.121235 0.073051 3.591081 4.775169 9.176961 -3.424733 6.216575 12.704245 -6.480902 7.936376 13.571879 -4.004970 -5.928668 14.800937 15.995433 -10.609320 -16.790525 -1.665542 1.946813 -3.410395 -13.143541 0.400385 -2.866153 32.169460 -25.569466 -8.505278 0.191705 -0.443357 0.851276 0.621885 1.823771 1.944118 1.827471 -3.001677 -0.957822 2.640047 -2.206958 0.227907 -0.380538 0.402652 -0.271961
+-0.123220 1.608500 0.153391 -7.189845 9.813557 -15.963759 -3.706390 -3.512677 -18.148531 -9.916778 1.270711 16.204428 -0.637864 0.259861 -0.124064 0.398722 0.075254 0.257444 11.109981 7.739640 5.467600 17.587557 -4.148072 40.342140 -0.276966 0.172983 0.105461 0.068731 0.128764 0.070546 4.055035 4.415062 8.204596 -3.618448 5.985120 12.616246 -6.899271 7.640937 13.838318 -3.975210 -5.029077 15.042229 16.410110 -10.256472 -16.080297 -0.136868 2.209439 -3.057927 -10.736804 0.844927 -2.434971 32.167191 -23.359604 -7.573365 0.201447 -0.413948 0.823907 -0.264165 1.500163 1.611749 -0.304248 -2.315142 -0.683312 3.107346 -3.377892 0.129038 -0.375496 0.380101 -0.252288
+-0.125389 1.603304 0.161551 -7.762503 9.759625 -16.367041 -4.034342 -3.274439 -16.713995 -8.999638 0.903693 13.275191 -0.662607 0.286004 -0.145914 0.390860 0.053399 0.256722 11.935142 7.936140 5.336325 18.010324 -4.393959 41.526081 -0.267515 0.164279 0.089025 0.069417 0.126679 0.077573 4.779641 4.019969 7.819373 -3.762131 5.749017 12.606022 -7.364584 7.474751 13.956902 -4.216215 -4.234599 14.905465 16.374588 -9.882743 -16.095068 1.578741 2.796022 -2.966520 -9.473142 0.768060 -2.114720 32.032555 -21.322016 -6.828822 0.190352 -0.406092 0.834044 -1.883126 1.124859 1.292994 -1.650442 -1.648684 -0.590864 3.239905 -3.963721 0.092462 -0.380052 0.381701 -0.263474
+-0.127692 1.596628 0.169905 -8.287926 9.927526 -16.833183 -4.033185 -3.067184 -15.561388 -8.623568 0.755996 11.709300 -0.673577 0.305737 -0.146311 0.389679 0.038754 0.268602 12.661439 7.976710 5.375806 18.591475 -4.774434 42.587254 -0.262180 0.156926 0.082958 0.070027 0.129305 0.080348 5.197240 3.631244 7.733939 -3.852854 5.487174 12.597133 -7.647515 7.222457 13.924252 -4.091022 -3.659539 14.312510 16.001905 -9.378504 -15.880338 2.847676 3.333412 -2.945452 -7.813217 0.838075 -1.802546 32.203983 -19.784925 -6.276993 0.181334 -0.402622 0.836016 -3.128233 0.662186 1.185500 -2.829223 -1.517295 -0.430593 3.348774 -3.719612 0.078712 -0.382202 0.374753 -0.274060
+-0.130082 1.588887 0.177145 -8.330001 9.957185 -17.164865 -3.891643 -3.021239 -15.265197 -9.403909 0.900846 11.950698 -0.647356 0.275239 -0.131935 0.390185 0.059145 0.270892 12.436865 8.089232 5.304255 19.960138 -5.633677 43.946957 -0.261032 0.171944 0.096977 0.070410 0.127425 0.064011 5.324252 3.333356 7.641685 -4.170708 5.342016 12.541788 -8.132067 6.992322 13.855093 -4.123245 -2.979521 14.180596 15.774145 -8.761547 -15.667060 3.951105 3.313497 -2.394172 -5.163102 1.918368 -1.360538 31.343094 -18.887360 -5.635419 0.187795 -0.414962 0.818552 -3.774750 0.417719 1.397858 -4.096479 -1.912895 -0.166186 3.689137 -3.036293 0.077865 -0.369428 0.379664 -0.265328
+-0.133382 1.582611 0.183124 -7.826780 10.170585 -17.862226 -4.203766 -3.196898 -14.825809 -10.091387 1.055095 12.835079 -0.616163 0.214050 -0.131929 0.444946 0.141572 0.282222 11.478287 8.016389 5.764610 21.524401 -6.641990 44.930347 -0.284557 0.168425 0.106538 0.100806 0.095701 0.067029 4.610313 3.198848 8.023445 -4.533473 5.237597 12.838604 -8.313654 6.720548 14.093591 -4.039423 -2.456700 13.694516 15.934319 -8.169155 -16.077951 4.854856 3.296032 -2.243026 -2.315151 2.106153 -0.906347 29.448811 -17.323748 -4.749540 0.228575 -0.363391 0.802308 -3.731920 0.233858 1.292859 -5.112161 -2.066021 -0.036885 3.336510 -3.255187 0.040207 -0.364527 0.337668 -0.225992
+-0.137231 1.576327 0.187931 -7.121253 10.531985 -18.186544 -4.260695 -3.446183 -15.352843 -11.534386 1.446088 14.706898 -0.570227 0.165423 -0.105773 0.470611 0.198730 0.283171 10.551448 7.893314 5.902022 22.302813 -7.336543 45.840302 -0.297606 0.173449 0.123018 0.116589 0.094797 0.057875 3.073220 3.358293 8.209476 -4.744444 5.136832 12.972291 -7.971725 6.424567 14.194328 -3.737944 -2.164491 13.171371 16.108210 -7.749840 -15.899817 5.731382 3.020430 -1.954063 0.465151 2.154952 -0.428763 27.217068 -16.087132 -3.961681 0.250958 -0.345510 0.771507 -3.211960 0.240280 1.175716 -6.022431 -2.161690 0.025215 3.156392 -4.088842 -0.047712 -0.349228 0.314280 -0.200142
+-0.140306 1.572599 0.191439 -6.592206 10.240909 -19.057102 -3.434460 -3.264237 -15.230490 -13.532403 2.045304 16.499632 -0.551856 0.139127 -0.092752 0.491966 0.235377 0.289152 9.931205 7.788028 6.900056 23.022402 -7.871183 46.414806 -0.307767 0.174311 0.133989 0.129016 0.091692 0.055088 2.064168 3.528348 9.150163 -4.910594 5.235661 13.378220 -7.797083 6.389178 14.276160 -3.419210 -2.299507 12.188269 16.229305 -7.511631 -16.391148 5.789742 3.068403 -2.031269 2.835380 2.154497 -0.023702 26.051004 -16.586554 -3.816801 0.264727 -0.332984 0.760163 -2.497242 0.398254 1.184679 -6.591057 -2.424860 0.055855 3.158596 -4.734885 -0.128560 -0.347283 0.299110 -0.186866
+-0.141716 1.569335 0.195407 -6.353044 9.415371 -19.082039 -2.199905 -2.846102 -15.510859 -15.509788 2.605154 17.334547 -0.538553 0.108959 -0.086098 0.525088 0.280027 0.303491 9.947392 7.863386 7.057430 23.056442 -7.970661 47.010242 -0.319354 0.181068 0.141923 0.149293 0.081143 0.045526 1.735502 3.752327 8.963759 -5.055427 5.500407 13.345960 -7.861662 6.612251 14.374300 -3.254130 -2.108151 12.072378 16.796209 -7.275157 -16.625864 5.668366 2.969278 -2.230520 4.069798 1.680057 0.132304 26.270441 -17.528345 -4.008077 0.289562 -0.316038 0.754805 -1.705533 0.194707 1.183935 -6.843164 -2.626917 0.219491 3.792644 -4.511384 -0.184095 -0.344831 0.281109 -0.175595
+-0.143101 1.568544 0.196418 -6.376348 8.893342 -19.057211 -1.229423 -2.522139 -15.357548 -16.606953 2.785415 17.004843 -0.558100 0.148736 -0.103374 0.491119 0.225618 0.285350 10.435431 7.811507 7.003367 22.413446 -7.748784 47.337887 -0.314780 0.175398 0.123969 0.123129 0.088886 0.068763 1.815699 3.812340 9.163201 -5.085547 5.553216 13.219941 -7.927145 6.780885 14.084849 -3.655902 -2.285224 12.369410 16.903236 -7.623636 -16.768309 5.900065 2.361028 -2.219217 3.477397 0.895341 -0.016064 26.504028 -18.293598 -4.334065 0.266281 -0.324072 0.776435 -1.628961 0.383049 1.647285 -5.465694 -3.566809 0.060792 3.674902 -3.976267 -0.093138 -0.348287 0.304610 -0.185130
+-0.143752 1.569957 0.195626 -6.484953 8.266230 -19.135204 -0.690552 -2.263261 -14.517349 -16.955652 2.631006 15.561074 -0.589233 0.190014 -0.115982 0.459007 0.166414 0.289427 11.040097 7.663756 7.134979 21.777348 -7.467365 47.370899 -0.304290 0.192719 0.107907 0.101133 0.093824 0.067390 2.112092 3.630659 9.536168 -5.167405 5.459273 13.233742 -8.115698 6.837215 13.866920 -4.260360 -2.236377 12.409307 17.142771 -7.847057 -17.424526 6.202000 1.857190 -2.381680 1.555007 -0.287408 -0.432220 26.827141 -18.519663 -4.659024 0.248269 -0.362111 0.807142 -1.685102 0.562694 2.063397 -3.754040 -4.032571 -0.064484 4.200025 -2.719692 0.010411 -0.349034 0.345750 -0.212681
+-0.143985 1.573022 0.192893 -6.793901 7.878791 -19.172327 -0.803406 -2.253219 -13.635481 -15.883826 2.152753 13.820489 -0.614937 0.243773 -0.114223 0.415279 0.103309 0.258889 11.517089 7.314377 7.338673 21.419472 -7.320105 46.954151 -0.270968 0.168336 0.109150 0.085642 0.135478 0.063689 2.311306 3.393768 10.115484 -5.090553 5.254531 13.245630 -8.110356 6.662442 13.521987 -4.201078 -1.637134 11.857196 16.948696 -7.744476 -16.186363 6.481126 1.807885 -2.691044 -1.026267 -1.925356 -0.799904 26.896662 -19.123970 -5.044866 0.207140 -0.373712 0.800068 -1.534479 0.603735 1.959674 -1.537172 -3.777610 -0.342273 3.933936 -2.019085 0.079294 -0.363879 0.351008 -0.247020
+-0.144393 1.576939 0.189546 -6.986670 7.315241 -18.699711 -0.961043 -2.208764 -13.202392 -14.564507 1.686006 11.968073 -0.606289 0.250283 -0.091712 0.400672 0.092039 0.249615 11.614175 7.103593 6.981585 21.224133 -7.227644 46.577984 -0.256939 0.160631 0.123151 0.083043 0.159910 0.049123 2.201218 3.302735 10.348373 -4.909746 5.085827 13.087318 -7.856518 6.429253 13.164340 -3.938548 -1.188530 11.354896 16.469244 -7.364497 -15.220625 6.351259 1.954167 -2.725461 -3.412626 -2.873261 -0.945976 25.997648 -21.183775 -5.495074 0.192430 -0.382679 0.778344 -1.256353 0.563632 1.626116 0.892594 -3.231622 -0.653357 3.608182 -1.686814 0.105301 -0.365417 0.344464 -0.259478
+-0.143659 1.581384 0.186036 -7.495810 6.453617 -17.765280 -0.986510 -2.028461 -12.905587 -12.970312 1.166472 9.457721 -0.602859 0.255636 -0.088477 0.409610 0.092206 0.264427 12.007066 6.980643 6.232749 20.594732 -6.836505 45.949673 -0.262479 0.144549 0.119619 0.081127 0.153874 0.064547 2.632933 3.205266 10.285327 -4.560654 4.972835 12.574561 -7.589255 6.307287 12.560180 -3.681509 -1.032625 11.141140 15.622170 -6.963575 -14.742293 5.639156 1.985555 -2.895957 -6.700336 -4.034534 -1.208667 25.352171 -23.627840 -6.154997 0.188470 -0.361756 0.773928 -1.396793 0.603253 1.190646 3.956604 -2.464126 -1.092180 3.573009 -2.528329 0.078660 -0.366740 0.322445 -0.251896
+-0.143561 1.585771 0.181061 -7.891331 5.616909 -16.707088 -1.038863 -1.802781 -12.918028 -11.334343 0.765626 7.155252 -0.563200 0.216995 -0.084229 0.447742 0.145252 0.285479 12.216041 6.825730 5.474120 20.164080 -6.483178 45.036446 -0.273089 0.111050 0.121525 0.095101 0.124934 0.087404 2.341167 3.530588 10.308640 -3.887582 5.052749 12.077816 -6.654142 6.223885 11.990242 -2.464138 -1.317241 10.427986 14.437721 -6.324741 -13.786943 4.690553 2.173807 -3.396336 -9.275579 -6.174442 -1.186380 22.296011 -25.873808 -6.119763 0.196593 -0.287739 0.729604 -1.544602 0.495562 0.648046 7.137653 -1.726215 -1.438157 3.776860 -4.089069 -0.020733 -0.361225 0.253950 -0.204654
+-0.142153 1.589587 0.175036 -8.382668 5.219317 -15.597998 -1.532654 -1.802671 -13.185382 -9.114792 0.383747 5.110231 -0.550915 0.200093 -0.096390 0.479667 0.183914 0.326947 12.052597 6.470433 4.705566 20.159279 -6.414818 43.695225 -0.290919 0.085088 0.115604 0.107265 0.084800 0.121962 2.162014 3.718744 10.174959 -3.101935 4.942400 11.654117 -5.554317 6.049561 11.634850 -0.930983 -1.712035 10.194112 12.484281 -5.139941 -13.407394 2.641463 1.490197 -4.106717 -11.139167 -7.997139 -1.177489 18.854153 -26.704941 -5.618512 0.187962 -0.247050 0.712372 -1.719518 0.568603 0.357677 10.001715 -1.212972 -1.662145 4.643026 -5.751441 -0.138964 -0.365632 0.212493 -0.169808
+-0.140380 1.593287 0.166995 -9.027204 4.744779 -14.548042 -1.834996 -1.733656 -13.647279 -6.889219 0.114915 3.309836 -0.524321 0.135803 -0.085273 0.553670 0.280203 0.406310 11.977673 6.048143 3.933865 20.365271 -6.431501 42.296783 -0.331244 0.085103 0.126267 0.143234 0.024844 0.131496 1.957164 3.846817 10.438134 -2.151007 4.837667 11.290313 -4.242143 5.805895 11.173327 0.496606 -2.232753 9.864738 10.426703 -3.796636 -13.983381 0.913270 1.353712 -5.223752 -14.701874 -10.597493 -1.279086 15.743221 -26.208647 -4.987829 0.222932 -0.226788 0.704068 -2.448790 -0.074496 -0.085176 14.311878 -1.080026 -2.129186 3.667845 -4.527225 -0.033735 -0.359982 0.167045 -0.132422
+-0.138404 1.596462 0.158957 -9.776383 4.059186 -13.215046 -1.823263 -1.599085 -14.620114 -4.978984 -0.023326 1.825259 -0.529056 0.102689 -0.093614 0.604510 0.347831 0.471339 12.011581 5.687165 2.887980 20.592323 -6.407331 40.697468 -0.358858 0.087499 0.127645 0.175376 -0.020692 0.138435 2.239821 3.759958 10.046341 -1.569953 4.691078 10.848043 -3.491640 5.583406 10.962569 1.769138 -2.739426 9.969313 8.666273 -2.647504 -14.892704 -1.436027 1.036598 -6.581644 -17.266937 -12.685010 -1.299336 12.923602 -25.313492 -4.355545 0.233338 -0.229518 0.706753 -1.956451 -0.521411 -1.048034 18.555513 0.041602 -2.587674 1.968000 -3.485270 0.080998 -0.366786 0.150112 -0.113797
+-0.136592 1.599174 0.151080 -10.123203 2.627091 -12.215950 -1.639940 -1.305538 -15.035771 -3.632050 -0.074025 0.244632 -0.534666 0.068475 -0.135518 0.653835 0.406840 0.544688 11.738663 5.458891 2.501002 20.946465 -6.356446 39.155716 -0.397137 0.095535 0.097983 0.195685 -0.101240 0.171619 1.958084 3.950155 9.993382 -0.962064 4.607348 10.527426 -2.480434 5.447578 10.744049 2.818562 -3.179649 10.169446 6.974784 -1.446680 -16.642561 -3.630328 0.799495 -7.603771 -20.407801 -13.888970 -1.456517 10.679452 -25.084690 -4.031521 0.245982 -0.205878 0.723671 -1.488651 -0.430521 -1.875865 22.543802 1.385357 -2.937092 1.078595 -2.840028 0.137294 -0.361989 0.138753 -0.073214
+-0.135083 1.600857 0.144188 -9.921177 0.429309 -11.025945 -1.522462 -1.031967 -15.446438 -2.604009 -0.066624 -1.350608 -0.555501 0.070501 -0.159216 0.671909 0.421145 0.586737 11.004803 5.515843 1.924380 21.285566 -6.297642 38.132904 -0.417411 0.086992 0.081938 0.203967 -0.137504 0.195586 0.761206 4.727621 9.494501 -0.323004 4.765357 10.057901 -1.034976 5.567124 10.391333 4.051054 -3.483506 10.728874 5.551555 -0.387897 -17.001297 -5.892351 -0.022687 -8.610061 -23.867548 -15.246643 -1.548837 8.653895 -23.296774 -3.633492 0.236323 -0.202818 0.742190 -0.240737 -0.049205 -2.362751 25.758085 2.082410 -3.302260 -0.158863 -2.434607 0.179976 -0.372734 0.132387 -0.065850
+-0.133370 1.601738 0.136224 -9.872581 -1.958033 -10.419094 -0.974630 -0.763192 -15.773066 -2.127169 -0.062394 -2.083020 -0.560238 0.034634 -0.186074 0.720761 0.474156 0.653326 10.591419 5.524019 1.835879 21.385736 -6.156803 37.283363 -0.453897 0.104719 0.068437 0.220656 -0.200710 0.214201 0.246868 5.133430 9.404133 0.160709 4.869890 9.934151 -0.075491 5.603343 10.382166 4.942047 -3.348382 11.450862 4.746633 0.889198 -18.371925 -8.541239 -1.717255 -8.951467 -26.295155 -15.325187 -1.916689 7.033906 -22.497637 -3.423249 0.259060 -0.195746 0.771228 1.956504 1.080357 -2.437992 27.462528 2.755091 -3.295211 1.043740 -0.479981 0.071965 -0.369953 0.129946 -0.040088
+-0.131377 1.600938 0.127307 -9.647944 -4.717923 -9.603690 -0.181527 -0.592949 -16.732410 -1.922405 -0.060226 -2.180478 -0.573406 0.038840 -0.196856 0.735534 0.484681 0.678446 10.065540 5.806950 1.165645 21.006548 -5.907564 37.174519 -0.467924 0.109972 0.061205 0.226874 -0.214063 0.225854 0.004381 5.561260 9.440401 0.346306 5.146581 9.712429 0.378251 5.841915 10.135528 5.383222 -2.770237 11.409024 4.639002 1.752362 -19.222498 -10.953382 -3.305969 -9.397245 -28.514326 -15.637279 -2.164821 5.665021 -21.511124 -3.250450 0.255333 -0.198069 0.789267 4.930441 1.781448 -2.727591 28.419796 3.227601 -3.387752 2.119611 1.880615 -0.043422 -0.377108 0.135304 -0.039138
+-0.128887 1.599503 0.116906 -9.435866 -8.336448 -9.044202 1.072722 -0.350759 -17.867008 -1.701352 -0.055423 -1.565981 -0.570078 0.044278 -0.202251 0.739645 0.484156 0.699613 9.642530 6.390440 0.401400 20.297215 -5.556819 37.873341 -0.471934 0.105642 0.053451 0.223669 -0.227152 0.241272 -0.511208 6.070325 9.962725 0.767912 5.388580 9.476942 1.170743 6.043721 9.625716 5.392399 -2.009586 11.325860 3.590637 2.672496 -19.259977 -13.122442 -4.297865 -9.679485 -31.407284 -15.839343 -2.294109 4.222370 -20.115103 -3.025065 0.243795 -0.190079 0.785190 6.907000 2.738156 -3.273437 29.183681 4.394856 -3.306818 3.386668 3.407023 -0.105924 -0.373941 0.129223 -0.029048
+-0.125459 1.596927 0.107509 -9.579888 -12.482688 -8.710219 3.218583 0.164389 -18.823792 -2.294463 -0.039032 -0.200836 -0.598475 0.079064 -0.198656 0.732407 0.456978 0.723299 9.919378 7.204762 -0.242160 19.012878 -4.946747 39.071743 -0.475799 0.115121 0.048912 0.220032 -0.218750 0.240670 -0.197150 6.413641 10.692559 1.198683 5.700399 9.260411 1.581454 6.399115 9.084744 4.879220 -0.716920 11.851513 2.745705 3.679646 -19.395247 -14.985984 -5.263210 -9.868348 -34.493706 -16.091789 -2.213836 2.355788 -18.341587 -2.734648 0.228040 -0.232483 0.813469 8.582987 3.859685 -4.011241 30.194662 5.973421 -3.219791 5.035597 4.872182 -0.108568 -0.381901 0.153516 -0.057304
+-0.122777 1.593364 0.097888 -9.621915 -16.257168 -8.492223 5.581728 0.548239 -20.448727 -3.441711 0.032108 2.765704 -0.649798 0.130821 -0.215174 0.719918 0.422466 0.749807 10.243298 7.870256 -0.881705 17.446238 -4.341547 40.453072 -0.475809 0.117225 0.036306 0.219003 -0.215250 0.248608 -0.015302 6.352480 11.665519 1.357820 5.650978 9.115265 1.721152 6.421092 8.623117 4.457086 0.846030 12.155046 1.287119 5.082987 -20.030216 -17.033148 -6.029000 -10.108616 -36.442879 -16.019316 -2.198514 0.349033 -17.851665 -2.506887 0.191687 -0.277205 0.846225 10.546683 5.033948 -5.614567 31.639616 8.637599 -3.017914 5.724503 4.252343 -0.080797 -0.403582 0.184758 -0.088853
+-0.119298 1.590476 0.089459 -9.481879 -19.985016 -8.062796 7.796534 0.922420 -22.435055 -4.939568 0.209307 6.174063 -0.666812 0.146424 -0.223765 0.715919 0.420337 0.742581 10.370801 8.495475 -1.841652 15.481376 -3.582494 41.885983 -0.477879 0.133934 0.034691 0.222963 -0.202073 0.244527 0.551531 6.038683 12.324843 1.319908 5.570701 8.872602 1.483746 6.370450 8.112102 2.867787 3.224009 13.106088 1.354752 5.982525 -20.309654 -17.359308 -6.610505 -9.838503 -39.501263 -15.943443 -2.191265 -0.601712 -17.903221 -2.519135 0.184742 -0.308019 0.863673 12.392279 6.264670 -7.094346 34.072922 11.061261 -2.913743 5.914622 3.737904 -0.079236 -0.407806 0.217524 -0.100409
+-0.114489 1.587427 0.081975 -9.274545 -23.175203 -7.785938 10.007998 1.131527 -24.849091 -7.023811 0.599764 11.149457 -0.670079 0.126128 -0.241967 0.755516 0.456824 0.790589 10.364804 8.819472 -2.587156 13.743673 -2.977644 42.937664 -0.504013 0.154947 0.017147 0.238442 -0.243901 0.249530 1.156577 5.539341 13.141547 1.230909 5.455766 8.570706 1.167110 6.250221 7.549374 1.922059 5.131760 14.335105 0.781624 7.218653 -20.829351 -18.412113 -7.918836 -9.608155 -42.011936 -16.222061 -2.262578 -0.726578 -18.261301 -2.653229 0.212447 -0.302836 0.886735 13.953840 7.823244 -8.118277 36.925816 13.004215 -2.746341 5.865743 3.119009 -0.091559 -0.395417 0.217486 -0.086116
+-0.108896 1.585175 0.074137 -8.762495 -25.924629 -7.754950 12.031774 1.131276 -27.485889 -9.645499 1.328093 17.197067 -0.687709 0.119248 -0.266042 0.790041 0.496253 0.813684 9.943075 9.045139 -3.406051 12.187231 -2.537788 44.153786 -0.521947 0.165835 0.006951 0.262374 -0.262313 0.254600 1.589427 5.226251 13.705013 1.158972 5.452733 8.432469 0.979250 6.246717 7.334709 1.036815 6.983210 15.751721 0.984053 8.138221 -21.077276 -19.032856 -10.142715 -9.630461 -44.503723 -17.551111 -1.831762 -1.091477 -17.844158 -2.690248 0.223094 -0.304052 0.905518 16.070225 9.397329 -8.833432 38.891705 14.483012 -2.578414 5.835265 2.930105 -0.111479 -0.401666 0.223817 -0.077578
+-0.102291 1.584762 0.066295 -7.816001 -28.115036 -8.147283 13.419366 0.693598 -29.869659 -12.206682 2.305882 23.625994 -0.696405 0.056317 -0.297852 0.873517 0.614997 0.858728 8.771408 9.046077 -4.187751 11.085727 -2.365952 45.094135 -0.574014 0.196291 -0.001958 0.317981 -0.319456 0.255461 1.554944 5.041385 14.371879 1.189048 5.416692 8.521784 1.147369 6.143015 7.442298 -0.194363 8.499720 17.237143 0.886822 8.808413 -22.982040 -19.039608 -12.887521 -9.880662 -47.570629 -19.674337 -0.998168 -1.062973 -16.635492 -2.707341 0.277885 -0.302164 0.934549 17.732674 11.242092 -9.265613 40.413792 15.682255 -2.383039 6.131542 3.302848 -0.129522 -0.402671 0.227531 -0.042700
+-0.096361 1.585719 0.060169 -6.691835 -30.089706 -8.750011 14.670211 0.031095 -31.673883 -14.979071 3.596771 29.695944 -0.718236 0.024334 -0.335466 0.932299 0.690109 0.911402 7.233939 8.810682 -4.688260 10.272268 -2.388019 45.652504 -0.609610 0.214794 -0.014848 0.356029 -0.372964 0.264123 1.305026 4.891948 14.583576 1.154468 5.291867 8.657742 1.334564 5.993772 7.777369 -0.631232 9.540623 18.960327 0.130144 9.759798 -24.206102 -19.518185 -15.832146 -10.050529 -49.407986 -21.665363 -0.200329 -1.556772 -16.551971 -2.694484 0.300610 -0.307333 0.961227 19.362965 13.120638 -9.314664 41.827682 16.515898 -2.339788 6.624511 4.969577 -0.176897 -0.410893 0.233801 -0.019914
+-0.091084 1.587793 0.055731 -5.477449 -32.075066 -9.677759 15.671294 -0.764595 -32.850010 -17.560083 5.196311 35.689594 -0.738064 0.006293 -0.366415 0.974487 0.741309 0.969742 5.625000 8.470283 -4.934976 9.352080 -2.374818 46.169750 -0.639899 0.225438 -0.028207 0.380821 -0.420701 0.278680 0.932556 4.851438 14.410307 1.086872 5.197838 8.903420 1.533651 5.888756 8.391475 -0.234748 10.003583 20.866310 -1.149614 10.969938 -25.009699 -20.286894 -18.609407 -10.178786 -50.358410 -23.728495 0.546397 -2.814398 -17.875938 -2.616239 0.304100 -0.318012 0.982428 20.621862 14.892151 -9.138578 43.287216 17.228731 -2.406753 7.340977 7.993001 -0.253480 -0.419112 0.238936 -0.002798
+-0.085057 1.592329 0.050931 -4.275481 -34.218761 -10.699747 16.894588 -1.436849 -33.462967 -20.510601 7.126741 40.893337 -0.768753 0.000108 -0.398985 0.997171 0.765775 1.027212 4.422439 8.145576 -5.102117 7.808385 -1.992654 46.386856 -0.658558 0.243981 -0.047508 0.397433 -0.464001 0.280237 0.548574 4.702779 14.729568 0.978264 5.056152 9.099132 1.566480 5.795266 8.751904 0.091444 10.723618 22.479464 -2.354585 12.248425 -26.003216 -21.443880 -21.453941 -10.138045 -50.662258 -25.681345 1.116512 -3.489121 -19.547783 -2.630942 0.300990 -0.345499 1.008927 22.205805 16.651075 -9.074614 43.962494 18.337772 -2.364227 8.833105 11.021660 -0.203839 -0.423237 0.258786 -0.003379
+-0.078346 1.599664 0.046437 -1.882970 -36.433475 -12.618097 16.977129 -2.366022 -33.195255 -23.068577 9.127148 45.066254 -0.826644 0.006783 -0.446866 1.016415 0.779554 1.082392 2.403907 7.729887 -4.978648 5.499464 -1.208755 46.202560 -0.680634 0.256667 -0.071243 0.415049 -0.514808 0.288189 -0.894960 5.008406 14.773674 0.728998 4.814317 9.539832 1.880666 5.625733 9.502871 0.481985 11.132852 24.406157 -3.963163 13.447228 -27.493416 -21.919958 -24.452873 -9.874481 -50.519382 -27.605021 1.394769 -3.481914 -22.680683 -2.919984 0.293171 -0.381413 1.057725 23.551392 19.155375 -8.678759 44.427933 19.475800 -2.534384 10.078039 14.917957 -0.136241 -0.443249 0.286654 -0.014468
+-0.071652 1.607935 0.042837 0.238823 -39.238861 -14.378939 17.246164 -2.741065 -32.197899 -25.600136 11.241257 48.281536 -0.828927 -0.003474 -0.459932 1.046581 0.800791 1.133092 0.858499 7.428174 -4.730891 3.079095 -0.211007 45.367607 -0.697090 0.261287 -0.081477 0.423085 -0.556403 0.300455 -1.830559 5.288857 14.921275 0.611014 4.816435 9.875745 2.063020 5.651507 9.983761 0.213365 11.375553 25.710402 -5.501446 14.038312 -27.795765 -22.714998 -26.952948 -9.265451 -49.609154 -29.469955 1.793366 -5.268327 -26.537363 -2.625034 0.303896 -0.376783 1.066818 24.831026 21.618864 -8.144290 43.932644 20.646214 -2.517233 12.358344 18.527437 0.213746 -0.438089 0.275954 0.001273
+-0.064304 1.616068 0.039404 1.876936 -41.408436 -15.453056 17.315481 -3.309673 -31.762228 -27.458036 13.012508 51.162342 -0.853230 0.017257 -0.470488 1.040103 0.791094 1.137349 -0.158021 6.884166 -4.704592 0.910457 0.515511 44.064404 -0.694193 0.252056 -0.086085 0.427463 -0.553359 0.303073 -2.211656 5.232605 14.399217 0.448939 4.656695 10.410739 2.072017 5.548632 10.922960 0.120679 12.149110 26.049734 -6.363546 14.769971 -28.047478 -21.885748 -28.814566 -8.885612 -49.217857 -31.430677 2.167693 -6.195895 -32.240715 -2.587411 0.283281 -0.386881 1.072084 25.270052 23.226330 -8.199663 44.350948 22.273361 -2.195814 15.428885 21.894342 0.860539 -0.452317 0.280859 -0.011759
+-0.056314 1.624918 0.036065 3.008605 -43.793907 -16.128222 17.358213 -3.807299 -31.181992 -28.127312 14.355082 54.328346 -0.875380 0.030412 -0.478622 1.045152 0.801579 1.140562 -0.503042 6.345408 -4.653802 -1.238565 1.208363 42.467804 -0.696775 0.241634 -0.084501 0.439878 -0.545771 0.308435 -1.805209 4.923957 13.687533 0.194250 4.627897 11.082767 1.639677 5.581228 12.179871 0.086009 13.153048 25.982771 -7.032184 15.516168 -28.798433 -20.668625 -30.623541 -8.528894 -48.476280 -33.652847 2.571884 -6.499969 -39.004627 -2.637658 0.265644 -0.395420 1.076154 25.220594 24.555351 -8.555973 45.347664 24.207422 -1.781312 18.345381 25.557941 1.650612 -0.470212 0.284291 -0.019050
+-0.047591 1.634810 0.032969 4.000474 -46.216972 -16.110279 17.041389 -4.012347 -30.829884 -27.407703 15.105681 57.414116 -0.887821 0.055647 -0.475868 1.036110 0.781297 1.144281 -0.706903 5.986824 -5.174107 -3.264966 1.854724 40.227932 -0.678233 0.208492 -0.083553 0.442425 -0.537517 0.310133 -1.355690 4.766460 12.246209 0.064123 4.615983 11.587502 1.463282 5.535231 13.488696 0.044245 13.203000 25.498465 -8.423624 15.900200 -28.055286 -19.438356 -31.717064 -8.047983 -47.874111 -35.727654 3.130935 -5.793884 -45.148911 -2.987562 0.240502 -0.379545 1.054626 24.315844 26.448877 -8.999475 46.777725 26.329975 -0.899163 20.277107 27.449997 2.255914 -0.482816 0.254171 -0.031246
+-0.039194 1.644537 0.030353 4.618347 -47.894962 -15.853466 15.937125 -4.265170 -30.084673 -25.190874 14.861521 60.253738 -0.912246 0.125652 -0.456237 1.006235 0.737047 1.116181 -0.879146 5.668768 -5.506497 -4.686450 2.204998 37.523163 -0.653045 0.161770 -0.074532 0.440689 -0.471368 0.322588 -0.624978 4.708740 10.677910 0.049026 4.637609 12.178946 1.260018 5.524060 14.939481 0.318657 13.213214 24.626966 -8.532291 16.065853 -26.863483 -17.165804 -32.795708 -7.951488 -47.850529 -38.542503 4.630060 -4.767030 -50.241539 -3.444657 0.179878 -0.383156 1.032963 22.603704 27.744493 -9.898866 47.679058 28.825258 0.351815 22.340576 29.293272 3.080029 -0.514913 0.238386 -0.062805
+-0.031372 1.653947 0.028506 4.788627 -49.274307 -15.089492 14.558990 -4.433570 -29.314163 -22.124289 14.005825 63.133274 -0.924392 0.175187 -0.438430 0.987270 0.716609 1.096602 -0.808694 5.284151 -5.709283 -5.983040 2.418431 33.917595 -0.626072 0.105059 -0.069825 0.452400 -0.421861 0.330248 0.304352 4.579569 8.491406 0.017570 4.591809 12.866518 1.035248 5.328427 16.938099 0.759341 12.989155 23.195707 -9.210006 16.262569 -25.678915 -14.440363 -33.361832 -8.051211 -47.944576 -41.797501 6.582096 -2.172716 -55.054985 -4.706615 0.125628 -0.361458 0.986659 20.547213 28.646639 -11.131923 49.223793 31.833120 1.986602 23.129206 31.748959 3.673123 -0.540090 0.195796 -0.082153
+-0.024065 1.662104 0.027525 4.892838 -50.037384 -14.225322 12.903289 -4.695079 -28.256201 -18.902647 12.606822 65.083183 -0.925088 0.253884 -0.412462 0.926391 0.644968 1.054169 -1.135631 4.860869 -5.757716 -6.393168 2.246193 30.598225 -0.577139 0.020560 -0.068196 0.435293 -0.348041 0.354351 0.982351 4.503106 6.147602 0.095033 4.374615 13.454057 1.047192 4.932051 18.879015 1.807042 12.452356 21.543949 -10.254242 16.826929 -23.443832 -11.566036 -33.395061 -8.345017 -48.071400 -45.383736 9.172027 0.914795 -58.477112 -6.211321 0.032111 -0.325246 0.915370 17.950436 28.770397 -12.194605 50.850979 34.642761 3.826443 24.424410 36.040520 4.733373 -0.563204 0.142196 -0.103941
+-0.017412 1.669361 0.026867 4.567204 -50.538330 -13.126105 11.204014 -4.747783 -26.838512 -15.149994 10.656993 66.579414 -0.955702 0.338249 -0.397941 0.896324 0.602005 1.037689 -1.304852 4.599656 -5.750942 -6.092016 1.940378 27.872324 -0.541907 -0.065016 -0.068236 0.442993 -0.283998 0.381872 1.818287 4.337660 3.753734 0.135362 4.067211 14.070420 0.972161 4.424769 21.120447 2.898300 12.165617 19.755478 -11.424712 17.272381 -22.140577 -7.813501 -32.500191 -9.049336 -48.975452 -48.780499 11.931283 7.332956 -61.042088 -10.123203 -0.059005 -0.298473 0.863049 14.149646 28.324905 -13.783198 53.313660 38.319782 6.839855 24.272905 40.452888 5.504963 -0.606896 0.087924 -0.130276
+-0.011168 1.675229 0.025576 4.297440 -51.116196 -12.040836 9.675473 -4.519208 -24.997295 -11.616341 8.511946 66.435524 -0.962903 0.379689 -0.370564 0.886650 0.604063 1.012242 -1.389569 4.485321 -5.933987 -5.458545 1.680303 25.809126 -0.510909 -0.126777 -0.052937 0.470299 -0.222756 0.380826 2.431949 4.417589 1.790206 0.288639 4.008914 14.463243 1.102686 4.126750 22.880022 3.484895 12.243679 17.819023 -11.681596 17.269367 -21.005154 -4.042046 -31.650074 -9.746116 -50.608727 -51.772160 14.626603 15.499710 -60.727291 -15.139826 -0.112405 -0.276126 0.800831 11.013492 27.429026 -14.641417 54.557671 41.780724 9.835437 22.937544 46.543819 6.112786 -0.636364 0.035755 -0.149238
+-0.005414 1.678984 0.024539 4.361744 -51.434917 -11.054779 7.878354 -3.735228 -23.162697 -7.941105 6.429951 65.177292 -0.949777 0.437757 -0.329240 0.861100 0.597817 0.944796 -1.804626 4.502451 -6.149775 -4.466592 1.429586 23.820765 -0.463412 -0.216011 -0.034420 0.493983 -0.121902 0.390823 2.997385 4.571626 -0.257583 0.370569 4.035855 14.711700 1.023057 3.951723 24.626509 3.914071 12.578932 15.228978 -11.110199 16.875650 -18.752180 -0.743901 -30.664396 -10.028459 -52.518311 -55.049278 18.219839 24.426231 -60.330238 -20.521482 -0.187869 -0.222364 0.699917 8.055830 26.482649 -14.916796 54.994991 46.488121 13.880345 15.687236 53.654606 3.903935 -0.666761 -0.038188 -0.158363
+-0.000172 1.680230 0.024026 3.871042 -52.003544 -9.528176 6.709861 -2.892868 -20.983067 -4.907027 4.673044 62.769791 -0.954610 0.534384 -0.294666 0.822020 0.562186 0.882944 -1.723489 4.555834 -6.583753 -3.497004 1.180878 22.104990 -0.413836 -0.329201 -0.024414 0.506356 -0.010320 0.427512 3.750002 4.468297 -2.291674 0.330457 3.861936 14.705108 0.769654 3.718451 26.160660 4.599025 13.089343 12.731689 -11.231078 17.006748 -16.437872 2.541770 -28.768927 -10.236218 -55.160057 -57.955772 22.532944 33.399292 -59.995354 -26.060850 -0.301763 -0.163693 0.600793 4.048083 25.138454 -15.242782 57.143761 51.430218 19.309547 2.892658 58.712181 -2.700378 -0.714362 -0.116505 -0.171942
+0.005392 1.680276 0.023413 3.245795 -52.347149 -8.080647 5.777129 -2.232229 -18.337067 -2.540280 3.240963 59.102299 -0.965928 0.613875 -0.258828 0.786637 0.532197 0.849030 -1.567415 4.424007 -6.680613 -2.641161 0.928540 19.995281 -0.369216 -0.409351 -0.008863 0.520865 0.082009 0.440413 4.445382 4.289368 -3.820657 0.398321 3.613709 14.689941 0.682775 3.432298 27.302216 4.940606 13.312265 10.404421 -11.891983 17.157036 -14.969582 5.120941 -26.997736 -10.015025 -56.990723 -60.259449 26.320190 43.209087 -60.279366 -32.511528 -0.399214 -0.149394 0.521621 0.246590 24.085421 -15.501101 58.610477 55.349571 24.087618 -9.708085 61.525383 -10.294286 -0.753909 -0.165854 -0.198434
+0.010149 1.678629 0.022622 2.580691 -52.641598 -6.906631 5.184370 -1.621103 -14.734839 -0.888774 2.226668 54.012791 -0.958989 0.669210 -0.238241 0.763504 0.529607 0.816491 -1.240811 4.195116 -6.455062 -2.224697 0.781500 17.749666 -0.338735 -0.486533 -0.007768 0.538846 0.153963 0.468239 5.080504 4.268611 -5.177485 0.521450 3.463481 14.743793 0.583985 3.059003 28.372547 5.678744 13.514594 8.482979 -12.038959 17.624033 -13.800121 7.956075 -25.593958 -9.929939 -56.198639 -63.232788 29.245718 51.822342 -58.840752 -37.121258 -0.487091 -0.106499 0.436747 -2.841308 22.841391 -15.862072 60.078983 58.608681 28.536282 -20.106514 61.781517 -16.742739 -0.780824 -0.222018 -0.197245
+0.015749 1.675964 0.022060 1.446637 -52.762737 -5.367519 5.059177 -1.391165 -10.710621 0.018047 1.433262 47.472149 -0.977717 0.731497 -0.225167 0.720070 0.485519 0.777411 -0.809864 3.966638 -6.352109 -2.113040 0.665520 15.869721 -0.305485 -0.549534 -0.004019 0.538197 0.215648 0.482522 5.767570 3.989911 -6.267773 0.639618 3.058176 14.700214 0.619620 2.579630 28.883720 6.159400 13.960284 7.362110 -12.458116 18.283043 -12.751431 10.052903 -24.351517 -9.480057 -53.699905 -64.759018 29.512980 58.553856 -56.511219 -40.093899 -0.560956 -0.092764 0.394651 -6.371673 21.826117 -16.047449 60.999523 61.296791 32.375477 -28.739771 61.659569 -22.103241 -0.812228 -0.251972 -0.224097
+0.021230 1.672387 0.021870 0.313755 -52.490204 -3.947927 4.938060 -1.299505 -6.705627 0.775312 0.735472 40.713821 -0.969301 0.772447 -0.194572 0.698240 0.467648 0.746544 -0.394179 3.708625 -6.110442 -1.957030 0.565109 14.122602 -0.279853 -0.608436 0.003066 0.544972 0.274963 0.493684 6.583023 3.607448 -7.297063 0.777250 2.633056 14.704673 0.659450 2.071916 29.388580 6.446123 14.108173 6.241909 -12.469319 18.545872 -11.315546 11.498991 -23.173052 -8.540711 -50.360516 -65.460114 28.249987 66.244225 -53.850945 -43.499607 -0.610585 -0.062093 0.339693 -10.072805 20.962786 -16.156094 60.228111 63.554401 34.681648 -37.216831 61.106831 -27.350290 -0.827337 -0.300907 -0.235957
+0.026940 1.669161 0.022387 -1.309960 -50.965702 -2.402592 5.175356 -1.478482 -2.685783 1.809810 -0.111490 33.517467 -0.961846 0.803516 -0.183226 0.676091 0.450051 0.720657 0.021776 3.442335 -5.737654 -1.272760 0.363422 12.778367 -0.264133 -0.651729 0.003701 0.540997 0.309819 0.515863 7.776382 2.774622 -8.128393 0.951592 1.749423 14.789710 0.656776 1.213658 29.835453 6.426330 14.210180 5.425530 -12.987343 18.695934 -10.650862 11.861858 -22.243177 -7.641180 -47.053417 -65.694344 26.514828 71.933510 -51.484486 -45.556492 -0.654173 -0.038133 0.300737 -12.953259 19.873320 -16.167242 58.951290 65.573540 36.233543 -44.506298 60.223156 -31.614584 -0.837967 -0.328028 -0.232760
+0.033442 1.665166 0.022756 -2.831777 -49.371227 -0.856844 5.602200 -1.604262 0.739984 3.104707 -0.801787 26.816574 -0.944391 0.822720 -0.162772 0.665852 0.444867 0.702334 0.268972 3.304372 -5.801988 -0.497117 0.202136 11.966423 -0.246493 -0.682495 0.009563 0.543759 0.344848 0.522821 8.932507 1.857474 -8.854094 1.053901 0.813424 14.744324 0.536229 0.242072 30.082453 6.469250 14.160932 4.716728 -12.887718 18.627659 -9.715234 11.906597 -21.417625 -6.675105 -44.719986 -65.960693 25.528608 77.199326 -49.268978 -47.273605 -0.682575 -0.014174 0.256794 -15.117030 18.801651 -16.190924 58.871418 67.275948 38.253052 -49.385948 58.973614 -34.156399 -0.840701 -0.358036 -0.229551
+0.040883 1.661356 0.022219 -3.789623 -47.718605 0.243229 5.992908 -1.589058 3.621816 3.787888 -1.090564 20.618830 -0.964842 0.858817 -0.154754 0.645432 0.425519 0.680821 0.050851 3.428034 -6.595347 0.510630 0.033225 12.253393 -0.233086 -0.715098 0.009229 0.550480 0.381367 0.525954 9.625408 0.879968 -9.279586 1.091767 -0.226128 14.730681 0.445644 -0.853653 30.219864 6.392773 14.505769 3.931043 -13.087815 18.835524 -9.332656 12.099916 -20.844944 -6.184596 -40.841709 -66.085686 23.457973 80.984131 -47.533329 -48.129200 -0.718396 -0.016723 0.242627 -16.214434 17.959436 -16.351107 59.169277 69.208435 40.529335 -52.380905 57.442654 -35.167660 -0.861407 -0.370403 -0.252081
+0.048134 1.658715 0.021145 -4.114263 -46.526340 0.768420 6.077905 -1.426612 6.019614 4.207882 -1.172302 15.388182 -0.975140 0.885805 -0.149485 0.645791 0.427648 0.698457 -0.542137 3.532210 -7.431653 1.385947 -0.112376 12.560043 -0.226389 -0.739483 0.003196 0.564623 0.395839 0.535510 9.543374 0.233090 -9.648150 1.246564 -0.986023 14.809028 0.725695 -1.763279 30.628012 6.600634 14.256324 3.307508 -13.710839 18.911345 -9.298841 12.732289 -19.973492 -6.519726 -38.631401 -67.696899 23.152399 80.889015 -45.741447 -46.305912 -0.753440 -0.017552 0.219062 -17.137726 16.946499 -16.522482 59.544132 70.997849 42.608353 -55.432217 55.552082 -36.067253 -0.873225 -0.388853 -0.257990
+0.055340 1.657464 0.020759 -4.566462 -45.609764 1.454927 6.405031 -1.199720 7.733717 4.191383 -1.094135 11.088933 -0.992532 0.917020 -0.145568 0.636329 0.416415 0.697439 -0.942615 3.576872 -8.171201 2.072731 -0.253487 12.510178 -0.216528 -0.763465 0.004822 0.570931 0.418819 0.542791 9.632628 -0.336958 -9.938972 1.325083 -1.658846 14.787740 0.885473 -2.586810 30.807547 6.838702 14.095219 2.803681 -14.081438 18.978403 -9.149955 12.765807 -19.520563 -6.676977 -36.691902 -68.672310 22.575163 80.770302 -44.505062 -44.939026 -0.789069 -0.023248 0.205625 -17.390558 16.595470 -16.580105 61.515057 72.139572 45.213779 -56.794827 53.990479 -36.097549 -0.893428 -0.397582 -0.270697
+0.061823 1.657421 0.020226 -4.448292 -45.172607 1.775614 6.603162 -0.842956 8.960481 3.519059 -0.881249 7.358668 -1.002064 0.928626 -0.132967 0.648525 0.432218 0.700545 -1.366270 3.568439 -8.801847 2.040270 -0.265983 12.231169 -0.217740 -0.772941 0.017745 0.587647 0.440070 0.540895 9.359339 -0.615042 -10.195879 1.330779 -1.990932 14.762650 0.993268 -3.045335 30.958542 7.037008 13.999804 2.575595 -13.990031 18.902618 -9.162629 12.861414 -19.338072 -6.997868 -36.704880 -69.690643 23.087234 79.349464 -43.535240 -43.198849 -0.798091 -0.034187 0.201807 -16.809072 16.337109 -16.476202 63.666771 72.694939 47.586052 -57.554092 53.302601 -36.181171 -0.909447 -0.403617 -0.280776
+0.069315 1.658577 0.020420 -4.524076 -45.471512 2.415572 6.684500 -0.525990 9.548419 2.799656 -0.689551 4.551904 -0.998985 0.917826 -0.125861 0.647533 0.435453 0.706568 -1.552945 3.579619 -9.558947 1.619832 -0.219466 11.813200 -0.221203 -0.750366 0.023462 0.587641 0.438556 0.524521 9.622713 -0.744724 -10.239721 1.259315 -2.083407 14.659130 0.779097 -3.142443 30.788919 7.092689 13.957775 2.779118 -13.979992 18.911421 -9.485190 12.599025 -19.564396 -7.049825 -37.936455 -69.937202 23.966663 78.551476 -43.408169 -42.624744 -0.784627 -0.061749 0.212402 -16.565708 16.180525 -16.328308 65.363434 72.428841 48.807285 -58.076004 53.666645 -36.776566 -0.900515 -0.383453 -0.289668
+0.076758 1.661002 0.020701 -4.128090 -45.772118 2.760961 6.582593 -0.288415 9.202554 1.806580 -0.502180 3.280814 -1.007232 0.934264 -0.125298 0.618597 0.400284 0.699762 -1.928900 3.487741 -10.127186 0.726737 -0.150823 10.941847 -0.214101 -0.738840 0.025129 0.568147 0.448070 0.520274 9.418840 -0.749399 -10.224453 1.178980 -2.105778 14.525285 0.775315 -3.132056 30.578533 7.119805 13.919209 2.932585 -14.344238 19.053808 -9.693613 12.580996 -20.104471 -7.008117 -41.190720 -69.969582 25.981901 78.363060 -43.288658 -42.714020 -0.801493 -0.093635 0.223122 -16.251534 16.404156 -16.139996 67.353638 71.347771 49.360287 -58.352673 54.922142 -37.832985 -0.901637 -0.353418 -0.304566
+0.084481 1.663012 0.022346 -4.153297 -46.296391 3.781082 6.706800 -0.174174 8.164332 0.664245 -0.338887 2.763365 -0.968317 0.904292 -0.121538 0.613074 0.398732 0.685733 -2.018538 3.354179 -10.796198 -0.126673 -0.113046 9.494903 -0.217796 -0.735774 0.029467 0.544810 0.431228 0.531432 9.976312 -0.604007 -10.213030 1.122508 -1.857118 14.020645 0.699111 -2.880503 29.795309 6.919830 13.569256 3.437332 -14.687613 19.020651 -9.391164 12.138350 -20.374187 -6.631380 -48.149910 -69.667625 30.390884 77.630547 -43.134418 -42.613262 -0.782190 -0.067446 0.212994 -15.813344 16.263140 -15.958813 70.225433 69.319916 49.998711 -56.459789 57.044991 -37.963970 -0.879355 -0.360009 -0.274940
+0.092828 1.664948 0.023470 -3.928795 -46.267166 4.502756 6.428177 -0.230351 6.592460 0.199388 -0.289583 3.161477 -0.936374 0.874512 -0.119686 0.626233 0.424233 0.686618 -2.211951 3.086046 -11.023399 -1.190971 -0.081117 7.473042 -0.226323 -0.730708 0.036597 0.541421 0.414474 0.540792 10.648317 -0.454686 -10.119455 1.047008 -1.567978 13.704820 0.487235 -2.615505 29.267078 6.617688 13.330579 3.289179 -15.048615 18.882923 -9.547975 11.276918 -20.780516 -6.425837 -53.815285 -69.043030 33.721661 77.028404 -43.968567 -43.241825 -0.766231 -0.046558 0.197844 -14.653196 16.206802 -15.984611 71.905121 67.237083 49.336391 -53.345303 59.163342 -37.195278 -0.865278 -0.367869 -0.244182
+0.099870 1.666099 0.024730 -3.136998 -46.390316 4.714163 5.770554 -0.289849 4.999285 -0.387645 -0.227076 3.891324 -0.933112 0.862783 -0.114195 0.628699 0.422997 0.684465 -2.971613 2.695870 -11.014588 -1.807122 -0.127723 5.261276 -0.230353 -0.710394 0.043340 0.536817 0.410120 0.528214 10.550545 -0.095100 -10.051905 0.981614 -1.129025 13.418004 0.567488 -2.125025 28.658171 6.289466 13.210185 3.521309 -14.803766 18.554222 -9.669437 10.998502 -21.039623 -6.738458 -60.729252 -67.804482 37.449417 73.295395 -45.765530 -42.805649 -0.743066 -0.061895 0.214802 -12.756871 16.009085 -15.728785 72.112259 64.787239 47.309265 -49.490715 62.374615 -36.256721 -0.857743 -0.352462 -0.248829
+0.106090 1.666301 0.026731 -3.135434 -46.986843 5.377173 5.519662 -0.344492 3.658340 -1.161456 -0.143338 4.655225 -0.925148 0.801436 -0.138361 0.680590 0.482693 0.714220 -3.008521 2.466415 -10.979682 -2.571390 -0.128521 3.314441 -0.258659 -0.674429 0.033636 0.555778 0.347898 0.518019 11.077219 0.304370 -9.943113 0.911144 -0.610080 13.158225 0.347211 -1.585290 28.096113 5.962961 13.161081 4.155705 -14.352313 18.135397 -10.577666 10.876793 -20.990904 -7.267356 -67.501236 -66.295486 41.076885 68.054977 -48.515629 -41.867592 -0.674972 -0.044893 0.243331 -11.143422 15.545979 -15.801326 74.072563 62.349815 46.512150 -42.419422 64.815987 -32.580124 -0.838154 -0.351920 -0.220728
+0.112873 1.665753 0.028751 -3.017461 -47.034439 5.605857 5.282553 -0.456198 2.190993 -2.010683 -0.033410 6.026423 -0.915196 0.757858 -0.156570 0.691256 0.499767 0.715842 -3.337122 2.261250 -10.816745 -2.958837 -0.162566 1.978839 -0.277146 -0.634447 0.021719 0.550111 0.306414 0.506944 11.473438 0.529531 -9.672609 0.867118 -0.299386 13.043264 0.141956 -1.211992 27.429104 5.563430 13.129786 4.750746 -13.919151 17.716015 -11.302094 10.442020 -21.725042 -7.825304 -70.046265 -64.170631 40.751312 61.536026 -51.899170 -40.211170 -0.625531 -0.050168 0.273576 -9.282664 15.843668 -15.935754 73.889618 59.597332 43.284920 -31.042006 66.623177 -25.413580 -0.813509 -0.325952 -0.205116
+0.118637 1.664638 0.030244 -2.495398 -47.147263 5.546171 4.835598 -0.621972 0.556280 -3.121597 0.136987 7.777357 -0.902756 0.724637 -0.162514 0.685891 0.477446 0.721941 -4.096847 2.062710 -10.849076 -3.036463 -0.223883 0.992493 -0.287030 -0.588382 0.025372 0.518753 0.268736 0.493044 10.841722 0.522071 -9.321322 0.820394 -0.269371 12.876479 0.374337 -1.066074 26.485256 5.411653 13.156612 5.820654 -13.811643 17.776464 -11.664165 9.143945 -22.260668 -8.141236 -71.421997 -61.269115 38.767235 52.778831 -55.450920 -36.906933 -0.577676 -0.068979 0.317975 -7.361797 16.529169 -15.911528 73.812050 56.629707 39.688011 -17.302402 66.768982 -16.052586 -0.788626 -0.290607 -0.202831
+0.124011 1.662777 0.031547 -2.037565 -47.591949 5.415448 4.425879 -0.777078 -0.847201 -4.249456 0.337114 9.440880 -0.870760 0.671123 -0.169189 0.701285 0.482105 0.756035 -4.823535 1.944576 -11.127158 -2.877724 -0.268732 0.464964 -0.312754 -0.533135 0.023128 0.490767 0.208162 0.489862 9.686991 0.588235 -8.906542 0.920222 -0.218365 12.797845 1.038319 -0.995882 25.654694 5.434700 13.081088 7.084601 -14.084243 18.010908 -12.444237 8.137945 -22.453556 -8.675416 -72.790688 -58.218048 36.405453 41.390324 -58.006191 -31.138683 -0.518763 -0.078089 0.357650 -5.290864 17.223194 -15.896435 73.718361 53.580341 35.691223 -4.735802 64.801926 -7.590811 -0.749722 -0.261426 -0.177602
+0.130096 1.659657 0.032719 -1.599194 -47.615776 5.253868 3.936767 -1.008868 -2.273592 -5.255167 0.526702 11.173540 -0.851527 0.635296 -0.185302 0.696868 0.462706 0.779299 -5.782530 1.960593 -11.972582 -2.454888 -0.311167 1.149524 -0.338580 -0.489529 0.008743 0.451783 0.151036 0.500010 8.859654 0.416725 -8.360505 0.804848 -0.362835 12.657328 1.248595 -1.040597 24.621264 5.756118 13.107388 8.471386 -14.608809 18.523249 -13.256151 6.587135 -22.331894 -9.380278 -73.134293 -54.735966 33.103741 25.748184 -59.487988 -21.907495 -0.477792 -0.088404 0.405408 -3.620882 17.437044 -15.965688 75.112976 50.245583 32.040432 4.919071 60.777485 -1.837394 -0.716589 -0.226837 -0.157760
+0.136895 1.657153 0.033570 -1.525289 -47.352985 5.126395 3.498406 -1.336019 -3.517449 -5.589904 0.605295 12.880898 -0.828691 0.581504 -0.203737 0.686710 0.438279 0.810218 -6.341760 2.069883 -12.976401 -2.222594 -0.323506 2.569576 -0.357989 -0.428830 -0.001878 0.407752 0.076783 0.490936 8.293534 0.167247 -7.535941 0.813224 -0.585301 12.614116 1.447310 -1.184873 23.521425 6.062837 12.816745 10.041477 -15.351942 19.024492 -14.077400 4.619469 -23.113411 -10.017073 -71.529678 -51.379025 28.599667 9.291545 -58.586708 -11.682631 -0.422995 -0.112413 0.456453 -1.405983 18.109829 -15.732746 75.129906 46.434978 26.554586 11.080467 55.365620 0.890533 -0.672955 -0.181828 -0.142557
+0.143409 1.654045 0.035122 -1.447079 -46.619080 4.938597 3.089744 -1.707319 -4.562463 -5.856625 0.634827 14.411160 -0.803689 0.507842 -0.225091 0.696737 0.439189 0.852775 -6.788385 2.186548 -14.049139 -2.263346 -0.310509 4.552628 -0.389089 -0.356415 -0.008081 0.373815 -0.013550 0.478248 7.550427 -0.055913 -6.542283 1.055175 -0.835115 12.460199 2.099762 -1.391689 22.169083 6.373212 12.262589 11.831697 -16.036974 19.438776 -15.308483 3.124183 -23.787521 -10.731968 -70.668320 -48.315071 24.936066 -4.240743 -54.479362 -3.715521 -0.347205 -0.138050 0.518078 0.825440 18.053167 -15.458365 73.993095 42.185501 20.460098 15.609978 49.038227 2.242805 -0.627372 -0.135274 -0.121289
+0.149504 1.650182 0.037975 -1.462948 -45.454746 4.639722 2.957660 -2.082984 -5.279097 -6.165030 0.662631 15.945303 -0.782841 0.452228 -0.240743 0.694971 0.431214 0.870824 -7.284422 2.383875 -15.323796 -2.195810 -0.283828 7.683669 -0.409062 -0.299442 -0.011424 0.340246 -0.074252 0.466708 7.297747 -0.380790 -5.377279 1.294026 -1.106823 12.253443 2.448102 -1.498439 20.760929 6.308159 12.052160 13.019371 -16.238274 19.555813 -16.028206 0.244249 -25.022518 -10.924192 -68.617348 -45.258114 20.819571 -12.157901 -48.528503 0.207338 -0.290110 -0.160529 0.565281 3.037800 18.043905 -15.088104 71.273048 38.630581 15.268636 18.606468 43.471981 2.859676 -0.591329 -0.092149 -0.105031
+0.155486 1.646147 0.040603 -0.822508 -44.121681 3.669883 2.339354 -2.453251 -5.646589 -6.323235 0.658684 17.178185 -0.759197 0.389478 -0.259234 0.707116 0.443091 0.906007 -8.247067 2.518270 -16.659801 -2.202044 -0.232734 11.352078 -0.438053 -0.231460 -0.017038 0.314520 -0.143345 0.456366 6.283695 -0.651374 -4.055777 1.563119 -1.439776 12.040371 3.027382 -1.720565 19.457281 6.342428 11.837945 14.719854 -16.451115 19.658819 -17.063297 -3.105852 -25.975866 -10.878946 -66.261627 -42.296741 17.122465 -15.560457 -41.139008 1.300100 -0.230875 -0.190231 0.612396 5.240134 18.377724 -15.069351 68.336533 35.998730 11.358818 17.344297 35.477619 1.663156 -0.552998 -0.042976 -0.080218
+0.162589 1.641218 0.043963 -0.526689 -42.156631 3.096961 2.019501 -2.971795 -6.533850 -6.615857 0.680378 19.104445 -0.717315 0.334283 -0.259876 0.722446 0.454819 0.922395 -9.328238 2.684754 -18.373388 -1.465240 -0.298387 15.719181 -0.465424 -0.184207 -0.020246 0.289746 -0.193480 0.456953 5.969747 -0.987428 -2.639379 1.985360 -1.768169 11.528676 3.659006 -1.982298 17.828646 6.043072 11.164267 15.978730 -16.159763 19.152830 -17.022165 -6.791176 -26.318186 -10.280845 -64.828995 -39.297459 14.182349 -15.830262 -34.086334 0.930048 -0.168277 -0.189893 0.641259 7.056951 18.279985 -14.689896 65.005257 33.120468 7.947034 15.165175 28.456213 0.616273 -0.511617 -0.022493 -0.048137
+0.171212 1.636750 0.047639 -0.405854 -39.236660 2.653123 1.838215 -3.724790 -7.803119 -6.759108 0.645287 21.660698 -0.686228 0.278868 -0.257977 0.739851 0.471171 0.930936 -10.780169 2.609465 -19.950228 0.197283 -0.670253 20.128645 -0.483128 -0.129328 -0.012439 0.273504 -0.231067 0.437368 6.007480 -1.486705 -1.083374 2.573779 -2.254842 10.880698 4.430285 -2.424507 16.082211 5.199182 10.519214 17.099606 -15.341762 18.158955 -16.820065 -9.979325 -26.385277 -9.282495 -63.947819 -36.175777 11.363956 -13.223333 -28.615065 -0.279286 -0.102524 -0.205485 0.670263 8.847895 18.030476 -14.134006 61.200119 30.162346 5.056910 12.578066 21.769110 -0.101112 -0.478289 0.007417 -0.027782
+0.179873 1.631587 0.051656 -0.280909 -36.441559 2.200913 1.793572 -4.434504 -9.069856 -7.343200 0.723441 24.051542 -0.681959 0.247340 -0.263224 0.749371 0.470826 0.936671 -11.802122 2.483657 -21.586304 1.182879 -1.073035 24.508240 -0.496593 -0.087906 -0.011062 0.262516 -0.263968 0.420173 6.108651 -1.907411 0.472202 3.176996 -2.695463 10.254608 5.211618 -2.795543 14.492119 4.370212 10.061915 17.801533 -14.890090 17.281948 -16.884142 -12.154376 -25.205059 -8.618223 -63.741871 -33.114552 9.065126 -10.763738 -24.465286 -1.145176 -0.049799 -0.226170 0.710272 9.630290 16.706665 -13.765465 58.390163 27.449877 2.976409 9.903769 16.152252 -0.518547 -0.459651 0.035538 -0.026320
+0.188174 1.624521 0.056985 -0.430604 -34.172382 2.031970 2.178449 -4.988667 -10.145332 -8.686339 1.057935 26.239075 -0.649058 0.222042 -0.264935 0.732481 0.443080 0.932907 -12.446044 2.401036 -24.001551 1.969040 -1.600069 29.910732 -0.497606 -0.064112 -0.015886 0.224122 -0.293268 0.423610 6.627773 -2.420562 1.985492 3.635797 -3.087609 9.539906 5.610117 -3.091744 12.832644 3.872123 9.503442 17.847464 -15.232028 16.768122 -16.546968 -14.318172 -23.482506 -8.115184 -62.692909 -30.076515 7.002473 -9.019322 -20.322674 -1.478949 -0.023655 -0.218934 0.717353 9.636743 14.672241 -13.277026 57.031883 24.705708 1.119607 6.524127 12.321244 -0.924001 -0.427650 0.049968 -0.003955
+0.195609 1.617922 0.061400 -0.294029 -32.319698 1.308927 2.233769 -5.468419 -10.732575 -9.758977 1.383542 28.208796 -0.639850 0.192414 -0.275345 0.729107 0.431405 0.932727 -12.930139 2.362654 -26.414808 2.450257 -2.076389 35.690922 -0.501605 -0.029591 -0.020603 0.205311 -0.326625 0.409433 6.761763 -2.790942 3.965942 4.064402 -3.414850 8.906984 5.857875 -3.305818 11.231076 3.319335 9.235732 18.173372 -14.940285 16.087576 -16.600031 -16.075827 -22.279053 -7.568247 -60.280659 -26.863106 4.939161 -7.828651 -16.717510 -1.536998 0.017585 -0.228632 0.744063 9.730667 13.081980 -12.630844 55.004684 22.089293 -0.635053 3.349969 9.671106 -1.134834 -0.404504 0.074015 0.002507
+0.202246 1.612545 0.065991 -0.332635 -31.351137 0.433412 2.455002 -5.541077 -10.571746 -11.059589 1.861845 29.440784 -0.622424 0.139985 -0.273872 0.751526 0.465420 0.928432 -12.774965 2.737276 -28.874720 2.585881 -2.354895 41.719025 -0.516569 0.016297 -0.012289 0.210724 -0.352087 0.380525 7.165047 -2.848556 6.114282 4.568718 -3.356800 8.417006 6.010482 -3.167976 9.858669 2.086951 9.485168 18.477165 -14.131598 15.180103 -17.124079 -16.677940 -20.562317 -7.400714 -58.572071 -24.247978 3.575681 -6.228309 -13.320272 -1.565023 0.081132 -0.242995 0.767215 9.835015 10.827761 -12.255850 52.176533 19.710264 -1.849759 1.285018 6.732428 -1.015553 -0.381530 0.097441 0.012278
+0.208729 1.609017 0.070348 -0.464211 -30.660666 -0.433510 2.673152 -5.482160 -10.041775 -12.319407 2.337566 30.229118 -0.607982 0.110005 -0.265406 0.757847 0.476723 0.913260 -12.021896 3.301222 -31.189882 2.236186 -2.369417 46.975021 -0.521024 0.044332 -0.001557 0.210049 -0.359058 0.357662 7.702997 -2.979056 8.228499 5.045257 -3.318313 8.036686 6.023520 -3.031139 8.680167 1.071115 9.656452 18.589230 -13.518010 14.430027 -17.097666 -17.382322 -19.095917 -7.240079 -56.243767 -21.826435 2.470163 -4.387517 -9.405055 -1.462072 0.124652 -0.254522 0.780898 9.550178 8.885822 -11.754519 49.023010 17.470602 -2.685491 -0.111989 4.112675 -0.775527 -0.365014 0.112732 0.012349
+0.216400 1.608298 0.074810 -0.622758 -29.786985 -1.884700 2.283099 -5.567119 -8.806602 -12.604412 2.436697 31.018452 -0.603511 0.087460 -0.276855 0.772165 0.482783 0.923314 -10.980488 3.771713 -32.316219 2.067063 -2.423262 50.997051 -0.540236 0.074081 -0.005267 0.198972 -0.389428 0.360868 8.342907 -3.351641 10.840002 5.625210 -3.525408 7.821380 5.869770 -3.069598 7.649729 0.650808 9.776376 19.321848 -13.334396 14.028391 -17.694664 -18.402843 -18.589746 -6.502235 -52.590324 -18.987827 1.140892 -3.023208 -6.905797 -1.348025 0.161266 -0.261033 0.815077 8.239124 8.055065 -10.758518 46.048599 15.254581 -3.208683 -1.091520 1.592966 -0.432053 -0.351876 0.134838 0.025966
+0.224246 1.609083 0.079252 -0.490471 -28.952196 -3.469056 1.336498 -5.674159 -7.503947 -12.487623 2.377238 31.576254 -0.596319 0.073967 -0.277076 0.758839 0.470597 0.898235 -9.953231 4.158872 -33.392475 2.160884 -2.563747 54.342800 -0.536870 0.094891 -0.000763 0.185013 -0.389990 0.347134 9.092764 -3.841287 13.144320 5.987845 -3.720496 7.830401 5.483124 -3.105277 6.963216 -0.112324 9.898744 19.384218 -12.884274 13.345969 -17.692638 -18.561357 -17.824627 -5.743066 -49.085014 -16.278885 0.096327 -2.032188 -5.323343 -1.237794 0.181732 -0.273470 0.825958 6.876943 7.121930 -9.678952 43.083279 13.109707 -3.523948 -1.373094 -0.261948 -0.142213 -0.341089 0.158238 0.026091
+0.230682 1.609353 0.085431 -0.436278 -28.071491 -4.969201 0.564327 -5.590859 -5.618447 -12.296007 2.287382 31.611900 -0.565054 0.050457 -0.265725 0.755624 0.464298 0.898159 -8.714998 4.598945 -34.485455 2.890420 -3.011736 57.040359 -0.541519 0.113503 0.004481 0.163393 -0.405349 0.346940 9.493400 -4.334207 14.952873 6.371686 -4.018046 8.027009 5.421814 -3.286953 6.647909 -0.553955 9.605702 19.111580 -13.468595 12.933849 -17.908739 -18.282885 -16.424681 -5.016461 -46.259041 -13.834525 -0.800706 -0.769497 -4.524465 -1.174586 0.207089 -0.271248 0.826546 4.821727 5.719222 -8.709655 40.986530 11.095417 -3.899732 -1.788374 -0.786228 -0.011765 -0.316219 0.165213 0.043130
+0.237127 1.609427 0.093231 -0.599318 -26.723270 -6.319501 -0.155460 -5.561653 -3.512523 -11.891955 2.065704 31.452616 -0.538269 0.041541 -0.243085 0.716924 0.426200 0.867524 -7.456089 4.688745 -35.087532 3.938494 -3.794292 58.905201 -0.526702 0.127627 0.022362 0.131843 -0.390833 0.330828 10.296645 -5.149209 16.233130 6.656473 -4.409945 8.239621 5.156730 -3.526691 6.387286 -0.570579 9.342257 18.528896 -13.786405 12.824283 -17.583708 -17.849489 -15.090571 -4.014165 -43.565063 -11.130394 -1.708556 0.092901 -5.203298 -1.189002 0.212801 -0.291262 0.820949 2.206859 4.128012 -7.481816 39.591293 8.789874 -4.320118 -2.130549 -1.229685 0.122741 -0.297240 0.185543 0.034605
+0.242440 1.610427 0.101389 -0.562326 -25.331175 -7.786211 -0.613432 -5.551534 -1.416547 -12.094377 2.014982 31.220966 -0.499184 0.023347 -0.223791 0.705707 0.412276 0.854163 -6.194920 4.618425 -34.851822 5.294713 -4.694408 59.146061 -0.520166 0.133804 0.034584 0.107697 -0.391482 0.329902 10.691087 -5.883470 17.202353 6.916006 -4.840452 8.608887 5.060363 -3.826022 6.436947 -0.904841 8.898948 17.676657 -14.208172 12.424594 -17.389872 -17.126730 -13.202976 -3.379419 -41.052414 -8.985575 -2.369873 0.805703 -6.117474 -1.214441 0.228904 -0.273964 0.804441 -0.019672 2.095010 -6.690527 37.759525 6.905876 -4.687798 -2.427107 -1.176888 0.173994 -0.274443 0.179563 0.050153
+0.247474 1.608704 0.111796 -0.578539 -24.154449 -8.219872 -0.936901 -5.625724 -0.386215 -12.527210 2.088716 31.182953 -0.476140 0.074208 -0.178591 0.613041 0.305861 0.767077 -4.966709 4.493724 -35.246143 6.582835 -5.580624 58.713428 -0.466109 0.098409 0.059476 0.054857 -0.307502 0.320888 11.781857 -6.691152 16.796028 6.743843 -4.985833 8.706001 4.526690 -3.830220 6.383439 -0.946302 8.488519 16.003040 -14.010287 12.272089 -15.017850 -15.380864 -10.442210 -3.030805 -39.234646 -7.211109 -2.810589 0.887141 -7.536844 -1.274202 0.177573 -0.277170 0.763268 -2.506689 -0.986564 -6.003316 36.653732 4.884170 -5.199180 -2.806210 -0.854854 0.191117 -0.273786 0.178352 0.015746
+0.252133 1.607020 0.121936 -0.845942 -23.051422 -8.161213 -0.904110 -5.684957 0.332777 -12.910088 2.163808 30.980381 -0.438464 0.122539 -0.125445 0.528355 0.206529 0.692907 -3.388099 4.560627 -35.916801 7.811176 -6.331916 57.676292 -0.407796 0.055356 0.081446 0.005881 -0.220031 0.312005 13.469209 -7.611569 15.729387 6.333099 -4.948132 8.774063 3.580273 -3.743841 6.513893 -0.684379 8.281332 14.177424 -13.361083 12.441552 -12.034737 -13.373982 -7.861249 -2.796458 -37.001450 -5.968611 -2.966073 0.532695 -8.605954 -1.245934 0.122792 -0.260270 0.702529 -4.601079 -4.041925 -5.429029 34.989899 3.055854 -5.526484 -2.762016 -0.647165 0.180077 -0.265609 0.155190 -0.012598
+0.256329 1.607496 0.130513 -0.492865 -21.974169 -8.878628 -1.755484 -5.656342 1.673065 -13.018961 2.060964 30.379522 -0.421478 0.130250 -0.113707 0.496773 0.176204 0.653664 -1.826518 4.584180 -35.582439 8.616173 -6.525876 55.293709 -0.388612 0.034379 0.086310 -0.012125 -0.196096 0.314364 14.121047 -8.179625 15.231941 5.962939 -5.075099 9.090343 2.881322 -3.822383 6.937631 -0.516674 7.900000 13.028169 -13.183979 12.294391 -11.394678 -11.631428 -5.815143 -2.591468 -34.481136 -4.834396 -3.098848 0.822594 -9.827442 -1.268793 0.107955 -0.237085 0.678499 -6.267289 -6.337465 -4.952190 33.279041 1.446446 -5.851942 -3.306091 -0.368326 0.194454 -0.262062 0.141217 -0.013978
+0.261050 1.608964 0.139651 -0.057939 -21.055170 -9.571999 -2.886122 -5.544180 3.153148 -12.934644 1.891727 29.578020 -0.412060 0.138143 -0.101730 0.454554 0.137933 0.606298 -0.317278 4.589125 -34.905312 9.536028 -6.574341 51.857410 -0.360851 0.023379 0.094021 -0.029845 -0.165000 0.298523 14.652732 -8.598117 14.889610 5.710014 -5.161633 9.303292 2.307444 -3.819375 7.148376 -0.597643 7.818739 11.919141 -12.729535 12.113002 -10.746063 -10.211658 -3.756370 -2.287253 -32.548527 -3.450843 -3.383921 1.534482 -12.660777 -1.446682 0.093359 -0.232053 0.657011 -7.820265 -8.597324 -4.433678 31.078848 -0.233092 -6.131640 -4.103442 0.337223 0.192112 -0.258543 0.141679 -0.028994
+0.265390 1.610737 0.149358 0.547250 -20.791794 -10.104798 -4.250825 -5.331938 4.437512 -12.598433 1.676266 28.740479 -0.377824 0.138285 -0.083122 0.451326 0.134770 0.595281 1.284515 4.800222 -34.150448 9.944191 -6.175338 47.906193 -0.350290 0.013477 0.100568 -0.039561 -0.146735 0.306231 14.986228 -8.768910 13.744876 5.339252 -5.169948 9.657063 1.799087 -3.818850 7.960788 -0.735208 7.466435 11.453094 -12.274807 11.689947 -9.908114 -8.972543 -1.668569 -2.024903 -30.922911 -2.089892 -3.690157 2.569504 -16.170771 -1.742185 0.086264 -0.203547 0.623112 -8.537683 -10.219733 -3.942464 27.958426 -1.691526 -6.028136 -4.649889 1.120939 0.162565 -0.246776 0.121130 -0.011473
+0.269427 1.613449 0.158963 1.111168 -20.721712 -10.597591 -5.323337 -5.051171 5.654825 -12.650623 1.602666 27.833784 -0.373337 0.137735 -0.080101 0.450876 0.145043 0.576128 2.927732 5.076637 -33.048817 10.019190 -5.563826 43.482086 -0.343068 -0.006288 0.106813 -0.031474 -0.133714 0.308576 15.360828 -8.868272 12.346582 4.943704 -5.174675 10.111707 1.264514 -3.810249 9.094934 -0.790980 7.210672 11.101158 -12.318106 11.479405 -9.616968 -8.512142 0.020960 -1.910882 -28.919224 -0.699997 -3.910028 4.508354 -19.858299 -2.224001 0.078637 -0.184834 0.602361 -8.636541 -11.399323 -3.504835 24.468323 -2.963563 -5.644667 -4.946243 2.094256 0.113133 -0.253664 0.103060 -0.007111
+0.273239 1.614856 0.168223 1.940500 -20.586254 -11.312677 -6.426261 -4.807467 6.713341 -12.886385 1.595654 27.183458 -0.388482 0.137314 -0.097859 0.474284 0.167181 0.592241 4.363337 5.281616 -31.531485 9.498982 -4.702773 38.913509 -0.354493 -0.015034 0.097754 -0.017952 -0.153497 0.324411 14.890881 -8.579691 11.180299 4.772084 -5.225480 10.589808 1.320994 -3.811161 10.285958 -0.719606 6.772636 10.976127 -12.714890 11.198711 -10.499669 -7.627407 1.131515 -1.896130 -26.921474 0.094818 -3.812617 4.908077 -21.464312 -2.376128 0.080281 -0.166699 0.609572 -8.907653 -12.397421 -2.952041 21.458557 -4.484044 -5.297880 -5.691669 3.622358 0.060142 -0.265758 0.091516 0.005371
+0.277331 1.616617 0.176720 2.936355 -20.234690 -12.423692 -7.440042 -4.702025 7.723317 -13.639215 1.719158 27.088367 -0.347704 0.095099 -0.102163 0.512793 0.227143 0.597607 5.347136 5.092773 -29.293089 8.973684 -3.921381 33.949802 -0.381797 -0.017672 0.087484 -0.006805 -0.180232 0.351552 14.379848 -8.491043 10.683340 4.562894 -5.332934 11.013088 1.112489 -3.937561 11.036722 -1.037757 6.677705 10.967283 -12.649622 10.835899 -11.103036 -6.987932 1.553965 -1.552788 -24.450628 0.967897 -3.622825 5.621494 -22.384287 -2.451061 0.110502 -0.113252 0.592223 -8.923377 -12.963563 -2.366295 19.036575 -6.060053 -4.968187 -7.080666 5.788030 -0.049882 -0.244997 0.062701 0.057483
+0.281990 1.618314 0.185649 3.935950 -19.975906 -13.470344 -8.446548 -4.634501 8.534697 -14.544182 1.914137 27.118479 -0.368330 0.102974 -0.109190 0.522461 0.231264 0.610248 6.132268 4.886489 -27.054514 8.707843 -3.309890 29.131111 -0.385830 -0.015570 0.085881 0.002317 -0.186278 0.350654 13.767070 -8.363973 10.410259 4.456423 -5.503448 11.377352 1.066760 -4.043948 11.606845 -1.019220 6.530421 11.126109 -12.893304 10.702193 -11.680414 -6.545040 2.362676 -1.647606 -22.355587 1.570636 -3.376001 6.361985 -23.312319 -2.589114 0.111270 -0.124805 0.607171 -9.219361 -13.867187 -2.314639 17.515804 -6.807990 -4.825239 -9.570528 8.131412 -0.262355 -0.255550 0.068049 0.049185
+0.285416 1.617938 0.195422 4.836384 -19.584846 -13.983491 -9.181258 -4.602145 8.742255 -15.764236 2.256252 27.317549 -0.364263 0.098973 -0.114080 0.524402 0.241963 0.611414 7.115177 4.784397 -25.051985 8.157728 -2.640811 24.247156 -0.369422 -0.034754 0.080515 0.016462 -0.188609 0.343461 13.577951 -8.360355 9.505466 4.039819 -5.571687 11.464503 0.603761 -4.196056 12.063858 -0.785430 6.469944 11.022763 -12.940493 10.854214 -10.923961 -6.049020 3.724783 -2.050037 -19.880770 1.785222 -2.904534 6.634498 -23.258251 -2.454856 0.101281 -0.099871 0.574187 -9.214355 -15.139215 -2.807207 16.357065 -6.641982 -4.546820 -12.262469 11.375118 -0.758635 -0.254536 0.038821 0.053301
+0.288199 1.614552 0.205828 5.501999 -18.983150 -14.439883 -9.526916 -4.619923 9.075487 -17.114166 2.643763 27.612015 -0.383382 0.118425 -0.118071 0.527359 0.237103 0.620422 8.220951 4.635503 -22.843214 7.086633 -2.011553 19.550230 -0.373084 -0.041167 0.068217 0.023988 -0.185947 0.347996 13.764063 -8.303839 8.249594 3.652055 -5.576661 11.515009 0.061631 -4.181875 12.611379 -0.784308 6.331825 11.355735 -12.952488 10.665792 -10.932509 -5.263043 4.214811 -2.277065 -18.085043 1.730072 -2.537141 7.269808 -21.614712 -2.338888 0.094018 -0.105807 0.583146 -9.826147 -15.958713 -2.538904 14.973099 -7.633942 -4.311548 -13.660276 13.513130 -1.072121 -0.261758 0.037211 0.043573
+0.289813 1.610123 0.215935 6.283154 -18.216482 -14.890548 -9.775269 -4.668155 9.329054 -18.781454 3.175642 28.114075 -0.426747 0.158274 -0.117378 0.497460 0.195447 0.604459 8.982586 4.369207 -20.865597 5.802435 -1.512558 15.464101 -0.351822 -0.051487 0.070512 0.026505 -0.155678 0.326259 13.721465 -8.177870 7.020720 3.148574 -5.588692 11.484209 -0.528861 -4.155729 13.007775 -0.489836 6.371715 11.586772 -12.680111 10.763273 -10.295225 -4.610948 4.227846 -2.313578 -15.632827 1.728900 -1.975727 6.438355 -19.454004 -1.931612 0.067972 -0.143481 0.595944 -10.162242 -16.445547 -2.153110 13.438474 -8.816807 -4.008043 -14.461402 15.041906 -1.281716 -0.284887 0.052048 -0.004271
+0.290917 1.604496 0.226965 7.097708 -17.129730 -15.166535 -10.192272 -4.887434 9.344821 -20.191957 3.651021 29.180933 -0.438641 0.166236 -0.121271 0.502955 0.200876 0.605682 9.208413 3.916777 -19.096424 4.485482 -1.156900 11.882534 -0.351820 -0.058591 0.067507 0.036081 -0.151244 0.327244 13.243532 -7.911162 5.611916 2.762941 -5.614503 11.341988 -0.716813 -4.195790 13.419870 -0.310467 6.105711 11.929506 -12.333774 10.504126 -10.120347 -3.597796 4.366728 -2.416790 -14.227681 1.358350 -1.645980 5.930559 -17.445934 -1.661576 0.062807 -0.143912 0.596843 -10.614534 -16.990391 -1.703792 11.887816 -10.143188 -3.630639 -14.913715 16.414345 -1.447615 -0.293806 0.047669 -0.008381
+0.292072 1.598377 0.236661 7.712016 -16.004322 -15.367332 -9.978834 -5.258921 9.100378 -22.357061 4.474709 30.670122 -0.439226 0.163222 -0.127360 0.515837 0.220157 0.614076 9.433933 3.647732 -17.869516 2.987871 -0.884409 9.502289 -0.353731 -0.059620 0.066595 0.046321 -0.153594 0.330872 12.700594 -7.501065 4.181870 2.463449 -5.492935 11.347079 -0.698926 -4.101866 14.127007 0.180278 5.501620 12.209055 -11.815372 10.111182 -10.181724 -2.991740 3.895281 -2.436967 -12.062210 0.768945 -1.183762 5.186978 -15.957305 -1.402746 0.056840 -0.137682 0.587971 -10.285512 -17.062813 -0.946763 9.662179 -12.565763 -3.073917 -15.108890 17.430792 -1.512434 -0.299916 0.043413 0.001689
+0.294261 1.592098 0.246146 7.928586 -15.323689 -15.600723 -9.507494 -5.520351 9.085938 -24.409924 5.326041 31.885763 -0.418748 0.143598 -0.127389 0.544133 0.253459 0.623313 9.687757 3.499894 -16.785881 2.257941 -0.765191 8.231608 -0.366577 -0.068417 0.066878 0.053198 -0.165974 0.348757 12.889355 -7.166479 3.435863 2.314208 -5.161880 11.258159 -0.949478 -3.813627 14.326201 0.423360 4.832512 12.311110 -11.469893 9.620566 -10.045501 -2.816773 3.208280 -2.462684 -9.606656 -0.033824 -0.692229 4.037469 -14.369112 -1.091164 0.071214 -0.102609 0.576917 -10.229304 -16.947464 -0.260571 8.100140 -14.890740 -2.723325 -16.018366 16.948727 -1.421360 -0.295525 0.017982 0.031033
+0.297662 1.586325 0.254756 7.621066 -15.152352 -15.471346 -8.689743 -5.592311 8.784302 -26.091894 6.167400 32.777973 -0.413294 0.138755 -0.130253 0.537719 0.240441 0.636119 10.162057 3.676581 -16.570953 2.048931 -0.724808 8.049330 -0.360401 -0.073173 0.065454 0.042731 -0.185027 0.350596 13.919428 -6.928784 2.970354 2.330016 -4.719016 11.087609 -1.257635 -3.377333 14.288998 0.737286 3.976812 12.213526 -12.488499 9.621214 -9.735530 -3.279724 2.527533 -2.471359 -7.528010 -0.460287 -0.368102 3.751970 -13.351898 -0.926309 0.069560 -0.097729 0.569748 -10.915757 -16.559240 0.632193 7.309143 -16.583776 -2.514902 -15.946010 17.225903 -1.356128 -0.289680 0.009369 0.036431
+0.300499 1.581624 0.261898 6.962699 -14.989684 -15.508135 -7.497336 -5.706891 8.641949 -27.402998 6.910899 33.689133 -0.371358 0.115395 -0.110283 0.528690 0.237223 0.632792 10.841223 3.934454 -16.363766 1.802631 -0.675330 8.332833 -0.363488 -0.062381 0.074922 0.023858 -0.188796 0.350292 15.025036 -6.939703 3.109402 2.469576 -4.399085 10.865653 -1.578356 -3.061251 13.812459 1.058936 3.283553 12.595739 -12.710034 9.574748 -8.929901 -3.764917 1.589422 -2.094889 -6.462386 -0.273595 -0.331282 4.513516 -12.293045 -0.873566 0.084254 -0.096655 0.556048 -11.841180 -15.513090 1.390567 6.818652 -17.584158 -2.514080 -16.155731 15.101115 -0.978127 -0.263828 0.008948 0.051259
+0.302486 1.577613 0.267286 6.491487 -14.829825 -15.835049 -6.552793 -5.816516 8.458082 -28.358418 7.657000 34.973011 -0.372915 0.121387 -0.104146 0.503471 0.201766 0.629694 11.110970 4.290791 -16.501444 1.960814 -0.686886 9.932629 -0.355366 -0.061649 0.072800 0.005496 -0.190679 0.341966 15.290575 -6.979932 4.057720 2.806231 -4.295909 10.784944 -1.417856 -2.904050 13.238360 1.057600 3.013744 12.242680 -13.551327 9.753486 -8.635592 -4.509789 1.248641 -1.870017 -5.954648 0.346884 -0.322251 5.093081 -11.903625 -0.869440 0.083562 -0.109898 0.561624 -12.391376 -14.856591 1.550921 6.546456 -17.175508 -2.510331 -16.208431 13.476451 -0.717783 -0.255446 0.015310 0.036292
+0.303575 1.575660 0.270390 6.154626 -14.599262 -16.164690 -5.958722 -5.901393 8.157969 -28.582342 8.159281 36.367596 -0.385356 0.134096 -0.104726 0.494068 0.179139 0.632590 10.955996 4.573403 -16.777098 2.467204 -0.752147 11.476562 -0.352358 -0.062766 0.071203 -0.003092 -0.192168 0.342820 15.016627 -6.974363 5.258854 3.107051 -4.267134 10.837863 -1.130919 -2.852273 12.783979 1.048166 3.013133 11.610617 -13.959876 9.839225 -8.953155 -4.933079 1.305092 -1.641796 -5.789730 1.094720 -0.259236 4.756566 -11.887771 -0.829942 0.080110 -0.117927 0.575303 -12.431162 -14.316791 1.169260 7.166310 -15.805634 -2.762475 -16.535994 11.977156 -0.559312 -0.259227 0.020501 0.024483
+0.303996 1.575284 0.271468 5.956519 -14.886772 -16.370821 -5.440198 -5.703247 7.768578 -28.623344 8.622466 37.349514 -0.410951 0.141939 -0.105330 0.489458 0.171869 0.643956 10.699032 4.937881 -17.269531 3.223947 -0.833589 13.029739 -0.350202 -0.052367 0.074949 0.001684 -0.192338 0.326486 14.411567 -6.811465 6.490636 3.398232 -4.189300 11.032430 -0.706475 -2.769015 12.572057 0.983689 3.052675 10.958662 -14.582217 9.929221 -9.911330 -4.982390 2.009190 -1.749779 -6.529676 1.506366 -0.310794 4.260210 -11.822192 -0.800182 0.076715 -0.151632 0.592214 -12.734470 -14.029135 0.336070 8.472392 -13.112258 -3.091164 -16.294659 10.798756 -0.490094 -0.269127 0.040172 0.001546
+0.303396 1.574762 0.272427 5.944113 -14.881106 -15.928043 -5.248219 -5.503496 6.842326 -28.397404 8.842651 37.998096 -0.386869 0.138983 -0.101362 0.497581 0.189815 0.641138 10.461244 5.163394 -17.760872 3.605201 -0.835165 13.315157 -0.353035 -0.068152 0.079048 0.004424 -0.189802 0.348745 13.244697 -6.595880 6.948554 3.549035 -4.264536 10.971817 -0.019895 -2.948967 12.360863 1.202444 3.200784 10.330711 -14.881687 10.273718 -9.909054 -4.671034 3.270213 -1.564747 -8.216969 2.574778 -0.524523 3.975395 -13.123779 -0.834314 0.064245 -0.120932 0.565888 -12.930950 -13.512887 -0.862791 9.544818 -9.209775 -3.201771 -15.541133 8.565932 -0.340103 -0.268386 0.018952 0.025468
+0.301992 1.575547 0.272247 6.295666 -14.709862 -15.478904 -5.393034 -5.279015 5.930209 -28.091183 8.973037 38.481190 -0.383452 0.135332 -0.109572 0.490587 0.191550 0.638214 9.881211 5.181289 -18.090767 3.817168 -0.805951 12.824518 -0.354522 -0.069717 0.073610 0.000104 -0.193546 0.356008 11.499378 -6.062536 7.379834 3.723889 -4.253629 10.827986 0.934491 -2.997172 12.078241 1.451505 3.407788 10.225019 -15.201970 10.712162 -10.262547 -4.238020 4.296362 -1.496332 -10.667542 3.197327 -0.954672 3.816173 -14.553652 -0.948335 0.053289 -0.116241 0.559897 -13.048090 -13.251823 -1.829619 11.397662 -6.363200 -3.516469 -14.907276 7.384171 -0.305597 -0.267199 0.023045 0.034216
+0.301313 1.578676 0.271271 6.350891 -14.928918 -14.890300 -5.289638 -4.937490 4.974705 -27.805422 9.049233 38.566460 -0.395173 0.131492 -0.104987 0.500339 0.210715 0.627306 9.820393 5.269256 -18.177876 3.643326 -0.692824 11.978544 -0.353413 -0.058997 0.084513 0.018721 -0.179827 0.335639 10.804163 -5.714648 8.023380 3.906886 -4.057765 10.685299 1.375394 -2.820498 11.649542 0.551024 3.947881 10.107016 -14.591199 10.248961 -10.587710 -3.657234 5.385692 -1.954279 -14.252076 2.915236 -1.586665 3.151838 -13.583187 -0.965609 0.064907 -0.135342 0.565787 -12.736875 -13.191368 -2.810116 12.884055 -3.735859 -3.611952 -13.356699 6.262575 -0.253936 -0.275227 0.034386 0.020984
+0.301116 1.582978 0.270810 6.327734 -14.585902 -14.206551 -5.359306 -4.794890 4.228354 -27.446735 8.884121 38.345341 -0.403796 0.144675 -0.093543 0.486335 0.189070 0.613359 10.063691 5.184845 -18.003691 2.677558 -0.536818 10.488398 -0.347102 -0.037714 0.091176 0.011008 -0.155228 0.316317 10.574171 -5.597697 8.234426 3.888579 -3.978340 10.390518 1.420014 -2.722083 11.111599 -0.030063 4.150172 10.545103 -13.475779 9.625774 -10.296573 -3.357089 5.341727 -1.886962 -17.447842 2.909647 -2.170531 2.385792 -12.101093 -0.976106 0.066998 -0.171386 0.581421 -12.303658 -12.327489 -3.045515 14.666038 -2.607507 -3.861895 -11.567373 5.306784 -0.176175 -0.276049 0.064763 0.000144
+0.300101 1.586024 0.270895 6.282655 -14.564713 -13.151332 -5.057266 -4.493742 3.361610 -27.331770 8.838996 37.856174 -0.413529 0.153356 -0.086789 0.453945 0.159569 0.570760 10.547114 5.120882 -18.025686 1.767877 -0.429431 8.589332 -0.330096 -0.012344 0.101893 0.001757 -0.124825 0.281967 11.215186 -5.700174 7.833645 3.469628 -3.804246 9.886544 0.704192 -2.530436 10.496570 -1.342581 4.722218 11.383420 -12.442162 8.906964 -9.631481 -2.977246 5.110019 -1.654178 -21.442612 3.115887 -2.945143 2.993537 -9.796471 -1.034400 0.070500 -0.217050 0.591587 -11.741857 -11.240360 -3.277771 17.235374 -1.572505 -4.281914 -10.480584 4.944125 -0.185634 -0.275471 0.107696 -0.027396
+0.298989 1.589173 0.269950 6.213161 -14.444826 -12.582776 -4.839992 -4.117995 3.175196 -27.255589 8.754518 37.051910 -0.472215 0.194381 -0.104352 0.446712 0.125084 0.562555 11.089897 4.981045 -17.551100 0.873825 -0.375243 6.679551 -0.315954 0.003167 0.096090 0.006840 -0.108247 0.260152 11.683347 -5.722230 7.984309 3.210825 -3.657197 9.711916 0.065912 -2.289042 10.172665 -2.822268 5.572945 11.675797 -11.301063 8.050905 -10.012334 -3.549395 5.153346 -2.059089 -24.214298 2.908840 -3.370008 3.081029 -8.124423 -1.090686 0.067837 -0.254246 0.632770 -9.875575 -10.795519 -3.909389 18.611870 -0.562996 -4.423255 -9.127356 5.554174 -0.269495 -0.299385 0.142715 -0.067743
+0.297921 1.591083 0.268559 6.409310 -13.855268 -12.294105 -4.982192 -3.781625 3.255327 -27.215187 8.680679 36.401089 -0.515911 0.209961 -0.111730 0.475191 0.140582 0.584925 11.139560 4.701042 -17.125233 0.073008 -0.352894 5.117799 -0.324100 0.020746 0.090645 0.033808 -0.110041 0.243884 11.655437 -5.774844 7.993254 2.855658 -3.654006 9.720996 -0.471523 -2.266027 10.218013 -4.123295 6.122288 11.581326 -10.851723 7.319858 -11.291009 -5.106292 5.339411 -2.666782 -26.000406 2.945770 -3.682779 2.770024 -7.275377 -1.128248 0.085451 -0.283398 0.668822 -6.994681 -10.419511 -4.952926 19.434055 0.639557 -4.452319 -8.093126 6.758753 -0.434333 -0.315212 0.159177 -0.091834
+0.296676 1.592181 0.266441 6.329707 -13.470401 -12.048507 -4.515739 -3.270645 3.596764 -27.524151 8.762982 35.453831 -0.482355 0.159128 -0.118366 0.513468 0.180934 0.590725 11.479113 4.616019 -16.836380 -0.586822 -0.319920 4.161694 -0.344747 0.046808 0.079332 0.038520 -0.148962 0.242711 11.915384 -5.918492 9.243279 2.744793 -3.463031 9.117044 -1.051242 -2.122634 8.834666 -5.584988 6.756280 12.108064 -9.778239 6.594338 -11.531184 -6.142281 5.580660 -2.667313 -28.813879 3.299719 -4.303535 2.492845 -7.248882 -1.153578 0.151138 -0.242555 0.678934 -5.830135 -9.849174 -5.400896 21.912331 1.298590 -4.866356 -7.401746 7.767945 -0.556075 -0.282320 0.145909 -0.056910
+0.295693 1.591726 0.264469 6.269451 -13.174543 -11.172928 -4.097548 -2.774816 3.139869 -27.923309 8.971105 34.833061 -0.462497 0.123015 -0.113173 0.538420 0.218090 0.573582 11.572903 4.729729 -17.521500 -0.722051 -0.308501 3.688889 -0.351855 0.061679 0.088878 0.052708 -0.153924 0.226940 12.591079 -6.001792 9.605393 2.324220 -3.094104 8.426630 -1.950168 -1.864691 7.694792 -6.730220 7.192993 12.420354 -8.505079 5.825611 -11.389704 -7.119482 5.745963 -2.872986 -31.719219 3.185961 -4.805126 3.304205 -6.259524 -1.127030 0.195245 -0.224212 0.678660 -4.336369 -8.992954 -6.098037 24.572191 2.225322 -5.245615 -6.866198 7.011560 -0.562297 -0.271229 0.138055 -0.044087
+0.294774 1.590077 0.261428 6.223991 -12.498484 -10.298424 -3.738692 -2.387608 2.456785 -28.422720 9.300655 34.640659 -0.471048 0.133093 -0.104764 0.543157 0.204161 0.576009 11.427178 4.886093 -18.521704 -0.923525 -0.307686 3.365987 -0.350125 0.073081 0.088644 0.051002 -0.146948 0.214861 12.750919 -5.924517 9.764084 2.100662 -2.863102 7.873507 -2.296029 -1.662908 6.843264 -7.721919 7.261347 12.530271 -7.858998 5.049589 -11.184621 -8.389657 5.700026 -2.899172 -34.569199 3.367752 -5.315777 2.861494 -6.232089 -1.186186 0.213304 -0.233081 0.695718 -2.617242 -7.829601 -6.629254 26.567329 3.030761 -5.472888 -5.868387 6.065035 -0.509718 -0.268240 0.143429 -0.058422
+0.294259 1.587220 0.257322 6.169494 -11.490079 -9.553868 -3.625664 -2.133241 1.639908 -28.428530 9.564796 35.108116 -0.456315 0.112977 -0.110660 0.556463 0.213259 0.581558 10.931311 5.013136 -19.565132 -0.640476 -0.326723 3.132351 -0.359460 0.081784 0.081901 0.044623 -0.169771 0.221769 12.416652 -5.718983 10.065161 2.071599 -2.686715 7.382537 -2.161041 -1.538011 6.068128 -8.210696 7.058396 12.376423 -7.746030 4.617691 -11.547297 -10.153327 5.422749 -2.495363 -37.313187 4.306108 -6.149563 2.542232 -8.065474 -1.385875 0.238332 -0.209056 0.701367 -0.960675 -6.334895 -6.846285 28.344519 3.512999 -5.644332 -4.588552 5.497368 -0.463012 -0.254603 0.136931 -0.038455
+0.292719 1.583540 0.251854 6.346716 -10.079624 -9.171851 -3.698564 -1.993315 1.098098 -28.446646 9.876289 35.914600 -0.451207 0.100593 -0.122999 0.576708 0.231789 0.586925 10.336311 5.082289 -20.482149 -0.636109 -0.323668 3.094872 -0.370836 0.080858 0.070322 0.048905 -0.189061 0.235718 11.830220 -5.489142 10.382275 1.836290 -2.523545 7.158545 -2.233234 -1.432093 5.679388 -8.465545 7.060418 11.915367 -7.303729 4.333837 -12.238037 -12.344754 4.444545 -2.186519 -38.594967 4.894594 -6.635296 0.700253 -10.057399 -1.546314 0.254377 -0.174870 0.705543 1.993550 -4.773497 -7.243268 29.595652 3.768939 -5.750490 -3.320504 4.763573 -0.407473 -0.251150 0.122811 -0.018115
+0.291410 1.580408 0.245864 6.097801 -8.084673 -8.961074 -3.645773 -2.112123 0.746925 -27.999199 9.978824 37.101139 -0.461625 0.093452 -0.134490 0.584979 0.242272 0.595047 9.974692 5.021971 -20.964664 -0.988532 -0.342287 2.615807 -0.374972 0.097665 0.065072 0.055438 -0.202383 0.229859 11.922394 -5.433435 10.880869 1.674691 -2.309173 6.927113 -2.558054 -1.230235 5.207182 -8.500327 6.316292 11.783564 -6.782297 3.529876 -13.271473 -14.868720 2.971324 -2.428028 -39.410912 4.396306 -6.682635 -0.771670 -10.591772 -1.579446 0.264748 -0.185712 0.718039 4.568351 -3.170446 -7.274943 31.154720 3.604027 -5.880287 -2.058068 3.598397 -0.301977 -0.251484 0.138456 -0.016976
+0.290132 1.577297 0.240958 5.655987 -5.207283 -8.880144 -3.534804 -2.506983 0.745981 -27.057346 9.708907 38.250732 -0.457436 0.065780 -0.130228 0.627910 0.292682 0.609451 9.162701 4.725035 -21.163876 -0.882665 -0.368821 1.779833 -0.391600 0.103372 0.069681 0.084727 -0.219092 0.221234 12.332123 -5.633175 11.093179 1.611233 -2.237217 6.666456 -2.870291 -1.225025 4.803767 -8.673305 5.568934 11.918119 -6.087243 2.604244 -13.612399 -17.395287 1.384362 -2.891054 -40.121067 3.354253 -6.523072 -2.168480 -10.411863 -1.529809 0.302995 -0.169408 0.721786 7.278218 -1.809242 -7.262040 32.195698 3.394795 -5.820215 -0.176333 2.703054 -0.238702 -0.251986 0.117321 -0.007714
+0.288126 1.573907 0.236018 5.071200 -1.310085 -8.979477 -3.462275 -3.336172 0.716446 -25.579695 9.125874 39.875916 -0.492643 0.087285 -0.137740 0.617298 0.272974 0.604863 8.105640 4.269726 -21.185204 -0.702254 -0.442023 0.841704 -0.384840 0.106259 0.069463 0.087386 -0.209265 0.208792 12.515598 -6.103667 11.171701 1.573356 -2.628595 6.241263 -3.018596 -1.586869 4.192698 -8.397943 4.472079 12.649495 -5.669162 1.668499 -13.462651 -19.601292 0.114812 -3.444099 -40.997837 2.215185 -6.293734 -3.315649 -10.089608 -1.519195 0.295370 -0.202706 0.742351 9.265132 -0.571831 -7.364284 34.286995 3.681692 -5.850706 1.306664 1.601235 -0.169276 -0.269453 0.138047 -0.033514
+0.286089 1.570423 0.229779 4.519161 2.013033 -8.804413 -3.394229 -3.978602 0.373990 -23.799622 8.386347 41.092442 -0.514966 0.115132 -0.143671 0.596098 0.245459 0.579663 7.000577 4.003871 -21.745338 -0.159948 -0.485320 0.280459 -0.372178 0.103611 0.066446 0.083532 -0.184906 0.202915 12.647942 -6.286822 11.069590 1.561930 -2.801963 5.771015 -3.063146 -1.741449 3.537047 -8.382360 3.646526 13.512518 -4.685461 0.533655 -12.818738 -21.337523 -0.555319 -4.372241 -42.785118 0.400613 -6.014304 -3.957402 -9.570695 -1.536533 0.278947 -0.221616 0.748259 11.084444 0.315532 -7.665232 36.468132 4.319850 -5.811065 2.618415 0.804768 -0.126575 -0.282495 0.155875 -0.051592
+0.282698 1.567471 0.220860 4.339755 5.296126 -8.639063 -3.617352 -4.591505 -0.341889 -21.957815 7.643816 42.464226 -0.505066 0.107336 -0.159795 0.610407 0.263906 0.591155 5.706355 3.739227 -22.587250 -0.090952 -0.500829 0.227994 -0.385572 0.111254 0.050840 0.083885 -0.204308 0.223617 11.834533 -6.071802 11.287779 1.570490 -2.841987 5.399930 -2.697854 -1.820980 3.000845 -8.001896 2.335232 14.489170 -4.157847 -0.487822 -13.120970 -23.117996 -1.308810 -5.490103 -44.473148 -1.976666 -5.616940 -4.536611 -9.536870 -1.556270 0.281131 -0.208150 0.746406 12.868900 1.404231 -8.020859 39.191956 5.215048 -5.776736 3.076337 0.101030 -0.083253 -0.276038 0.158793 -0.022358
+0.279066 1.563656 0.209631 4.410641 8.778469 -8.338996 -4.177017 -5.352042 -1.658212 -20.224306 6.942038 44.196724 -0.535718 0.119804 -0.180802 0.624613 0.269391 0.609464 3.839717 3.319544 -23.641001 0.223997 -0.524266 0.164661 -0.397049 0.108205 0.042280 0.094038 -0.221937 0.235733 10.139997 -5.523827 11.436276 1.734672 -2.940818 5.203216 -1.683958 -1.921312 2.758838 -7.059371 0.565439 15.375489 -4.164672 -1.303845 -13.411613 -24.844503 -2.740470 -6.342815 -46.644436 -4.423630 -5.258162 -4.806755 -10.321457 -1.675398 0.277285 -0.214437 0.768935 14.550628 3.274301 -8.091605 41.522835 6.248281 -5.643144 3.137065 -0.153997 -0.054676 -0.296286 0.163144 -0.024494
+0.275951 1.560912 0.196651 4.221858 12.222312 -7.969398 -4.574879 -6.088915 -3.173878 -18.257891 6.093777 45.741943 -0.570213 0.118552 -0.205769 0.633910 0.272650 0.639866 1.913334 3.026387 -25.046480 0.575317 -0.519392 0.811232 -0.405243 0.130598 0.030969 0.102196 -0.251892 0.227176 9.002395 -5.115981 11.744984 1.919923 -2.989323 5.034914 -0.848791 -1.953063 2.456093 -6.277222 -1.312865 16.256500 -3.939985 -2.269178 -14.331126 -26.406481 -4.466504 -6.793521 -49.275414 -6.716758 -5.002645 -5.024380 -12.097875 -1.867526 0.285072 -0.248475 0.802474 15.311470 5.812951 -7.629855 43.943398 7.164374 -5.528250 3.167697 0.660597 -0.068037 -0.305083 0.190886 -0.035135
+0.271166 1.559062 0.186046 4.329813 15.240598 -7.697303 -4.911915 -6.451137 -4.112158 -16.486551 5.374850 46.628201 -0.605056 0.123380 -0.212928 0.647117 0.281501 0.666244 0.013548 2.800500 -26.351377 0.832223 -0.486264 2.147160 -0.419245 0.161164 0.023121 0.119243 -0.262878 0.206694 7.971820 -4.710463 11.501247 1.787841 -3.014975 5.102662 -0.466259 -1.969558 2.622693 -6.092480 -2.862349 17.486681 -3.411625 -3.446512 -15.150769 -27.364672 -6.139272 -7.003966 -51.347263 -8.929889 -4.592390 -5.766596 -14.325867 -2.017407 0.300741 -0.300162 0.839764 16.131170 8.795153 -7.216225 46.506470 8.447229 -5.371361 2.538527 1.778814 -0.133308 -0.312699 0.224473 -0.058877
+0.266357 1.558170 0.176763 4.469336 18.438759 -7.554540 -5.331704 -6.904976 -4.792204 -14.642678 4.535426 47.446972 -0.618371 0.113436 -0.214892 0.687401 0.323274 0.695304 -2.268661 2.399260 -27.167358 1.772370 -0.456835 3.508718 -0.437950 0.185195 0.020500 0.147397 -0.273279 0.195719 6.751513 -4.332043 11.024366 1.817539 -3.168061 5.341701 0.210218 -2.161468 3.137522 -6.325934 -3.960777 18.357395 -2.367594 -4.660659 -16.102848 -27.928358 -7.870063 -7.119432 -53.491894 -11.318644 -4.021638 -6.836498 -16.664190 -2.095754 0.327490 -0.317331 0.859239 17.375175 11.792508 -6.971258 47.440346 10.014883 -4.880489 2.702505 2.605687 -0.191300 -0.316295 0.233355 -0.059265
+0.262518 1.558551 0.168883 4.535508 21.535776 -7.519525 -5.677888 -7.207882 -5.377047 -12.677802 3.673854 48.068851 -0.656320 0.115019 -0.226504 0.716271 0.359364 0.704910 -4.807043 2.063550 -27.888044 3.103678 -0.505970 5.918813 -0.447647 0.195726 0.025226 0.181959 -0.272186 0.180820 6.133019 -4.163436 9.891955 1.622010 -3.363647 5.872842 0.427960 -2.368970 4.249702 -6.390102 -4.814962 19.150347 -1.610486 -5.565776 -17.028254 -27.707073 -9.734378 -6.959610 -55.536041 -13.697385 -3.317946 -8.666479 -19.988319 -2.044225 0.337919 -0.347150 0.882842 17.414997 14.978840 -6.749334 49.280174 11.872175 -4.524707 2.254881 4.816284 -0.423550 -0.340940 0.248493 -0.074888
+0.257643 1.561281 0.159073 4.696322 23.829775 -7.570925 -5.907414 -7.131886 -5.943677 -11.098533 3.144655 48.323887 -0.666339 0.097057 -0.239882 0.761246 0.430180 0.699197 -7.295033 1.968094 -28.689085 4.835948 -0.610713 8.912459 -0.461944 0.194954 0.024439 0.226890 -0.271691 0.178677 5.566652 -3.804609 9.249895 1.419187 -3.276936 6.583102 0.480642 -2.359561 5.542003 -6.753961 -5.431414 19.576117 -0.345162 -6.672997 -18.085983 -27.361067 -12.277717 -6.614029 -56.936787 -16.366074 -2.489535 -10.271459 -24.236067 -1.913069 0.353874 -0.331155 0.875917 17.754854 18.857485 -6.875865 49.469421 14.636652 -3.550971 2.458959 6.047445 -0.543968 -0.357518 0.237408 -0.057832
+0.251669 1.566445 0.148197 4.844276 25.722618 -7.818984 -6.154426 -6.876193 -6.353540 -9.450631 2.650651 48.336094 -0.672981 0.080640 -0.254259 0.803702 0.502213 0.693764 -9.802073 2.152521 -29.723602 7.316015 -0.910602 13.033252 -0.474850 0.199401 0.024266 0.269082 -0.266669 0.179246 5.129659 -3.366827 9.029748 1.284563 -3.084219 7.361532 0.465062 -2.239733 6.852462 -7.239060 -6.050381 20.090130 0.949662 -7.809561 -19.400423 -26.716757 -15.319329 -6.205644 -57.701885 -19.241638 -1.414664 -12.323476 -28.820805 -1.485177 0.363551 -0.324045 0.865740 17.591602 22.878622 -7.020157 48.983776 17.483776 -2.602768 3.094691 8.183731 -0.684511 -0.371071 0.236891 -0.036156
+0.245121 1.572719 0.139849 4.441242 27.460194 -8.137640 -5.571211 -6.410706 -6.516873 -8.092252 2.286307 47.531002 -0.675214 0.087608 -0.253799 0.827782 0.543276 0.683586 -11.715779 2.656454 -30.708874 9.936842 -1.456143 17.554523 -0.485444 0.183860 0.019519 0.297041 -0.247476 0.193378 5.164411 -3.186732 8.474540 1.143474 -2.992933 8.102832 0.268836 -2.193507 8.180728 -7.285074 -6.809966 20.031612 1.621186 -8.668216 -19.973759 -25.850964 -17.966930 -5.773623 -58.102531 -22.097084 -0.165981 -14.916681 -33.913589 -0.617247 0.356965 -0.308319 0.850025 16.538921 25.997391 -7.274403 48.629860 20.112856 -1.926184 3.994140 12.185192 -0.943659 -0.383326 0.222024 -0.022433
+0.238145 1.581995 0.132948 3.256044 29.063789 -9.155458 -4.263346 -5.738843 -5.939646 -6.523683 1.809567 45.968437 -0.671084 0.064617 -0.262712 0.855866 0.595954 0.669672 -12.887477 3.567952 -30.921839 13.017015 -2.249657 21.916311 -0.492669 0.184214 0.021121 0.325015 -0.246415 0.191221 5.819688 -3.089695 8.592896 1.310256 -2.822544 8.745311 0.045570 -2.052399 9.162944 -7.495933 -7.501566 20.265594 2.902846 -9.537364 -20.967094 -25.429478 -20.671041 -5.166546 -57.896339 -25.034472 1.128080 -16.931236 -39.738041 0.470246 0.371573 -0.289137 0.837893 15.678104 28.474581 -7.579505 47.163280 22.666531 -1.377524 5.270758 16.495649 -1.041277 -0.389334 0.213223 -0.003287
+0.230402 1.592869 0.127271 2.085419 30.759121 -10.160823 -3.242544 -5.104708 -5.097264 -4.353311 1.037138 44.016834 -0.671207 0.061167 -0.265493 0.869985 0.620600 0.648996 -13.886631 4.521673 -30.881811 16.438240 -3.338301 26.047087 -0.487922 0.175094 0.022171 0.344452 -0.230953 0.186936 6.452976 -3.046989 8.438512 1.410854 -2.733289 9.483829 -0.280487 -1.988145 10.343064 -7.657225 -7.926242 20.310543 4.373731 -10.259583 -21.355604 -24.526140 -23.240887 -4.442122 -57.102985 -28.010933 2.449670 -18.336750 -46.795601 1.761278 0.376816 -0.265207 0.823757 14.769696 30.711937 -7.982075 45.514183 25.363480 -0.828398 5.838742 20.116573 -1.104372 -0.396609 0.197824 0.001988
+0.222074 1.604715 0.121840 1.061291 32.598038 -10.967278 -2.461814 -4.708122 -4.387957 -2.097421 0.138652 41.779812 -0.668624 0.066232 -0.263059 0.890615 0.651212 0.635969 -14.800729 5.151631 -30.539011 19.701668 -4.647790 29.593250 -0.493659 0.152623 0.025192 0.365140 -0.213416 0.201603 6.798256 -3.182018 8.022310 1.412541 -2.873770 10.164309 -0.609947 -2.162307 11.538822 -7.301456 -8.453079 20.477814 5.060830 -10.631055 -21.281103 -23.219326 -26.046133 -4.101646 -55.558712 -30.929806 3.858132 -18.512182 -51.258770 2.607941 0.371746 -0.237674 0.807912 13.230483 32.914146 -8.366644 44.366531 27.835798 -0.350682 5.837532 23.977058 -1.295515 -0.410005 0.172704 0.013661
+0.214386 1.617263 0.116738 -0.040830 34.313217 -11.628920 -1.673478 -4.303185 -3.717794 -0.272738 -0.541548 39.043907 -0.685965 0.086447 -0.266125 0.904197 0.670933 0.625360 -15.100551 5.763575 -30.338890 22.089275 -6.028378 33.239742 -0.490705 0.133836 0.024913 0.388916 -0.189638 0.207924 7.654266 -3.481496 7.124373 1.258029 -3.029691 10.991680 -1.254539 -2.294507 13.125048 -7.143106 -8.871862 19.970989 5.773728 -11.021746 -21.883251 -20.821547 -28.345280 -4.319683 -54.832836 -34.347569 5.611211 -15.797197 -55.249847 1.883756 0.356126 -0.227107 0.797248 10.472245 34.357101 -9.389892 44.083149 30.640524 0.378157 5.566575 28.412239 -1.608877 -0.430060 0.160694 0.010856
+0.207233 1.630323 0.111912 -0.926990 35.945194 -12.042765 -1.089631 -4.046011 -3.182861 1.154779 -1.059013 36.375290 -0.726320 0.131717 -0.266789 0.882876 0.653905 0.585654 -15.328492 6.021835 -29.709166 24.265753 -7.479314 36.149906 -0.466941 0.111024 0.029957 0.404861 -0.137648 0.197424 8.484181 -3.707858 6.060759 1.080041 -3.164773 11.800040 -1.876318 -2.343385 14.762287 -7.194626 -9.298961 19.137547 6.506810 -11.665500 -22.415083 -17.928062 -30.181505 -4.954783 -54.551098 -38.053963 7.641475 -9.352050 -57.531986 -1.280784 0.319570 -0.247312 0.788946 7.571458 35.000576 -10.470747 43.392273 33.488678 1.136706 5.233444 33.810329 -1.940118 -0.461675 0.169901 -0.022040
+0.199417 1.642588 0.107683 -1.523354 37.582172 -12.106589 -0.611570 -3.879785 -2.685056 2.126771 -1.410940 33.377792 -0.733239 0.182211 -0.239170 0.870619 0.641316 0.548350 -15.162399 6.003363 -28.972998 25.431137 -8.677767 38.719017 -0.444807 0.074815 0.037785 0.421033 -0.068291 0.197358 8.695419 -3.708487 4.763141 0.921431 -3.203096 12.574789 -2.140428 -2.400179 16.520481 -6.731329 -9.662606 17.750376 7.522861 -12.259892 -22.043783 -14.683785 -31.439707 -6.016951 -53.927593 -41.983082 9.688093 -0.180859 -57.220863 -6.157604 0.282603 -0.235744 0.753213 5.366356 34.975170 -11.412416 41.867855 36.594833 2.093506 4.509552 38.822159 -2.274927 -0.481455 0.145630 -0.043949
+0.192301 1.653763 0.103754 -1.902600 38.971424 -11.598115 -0.258452 -3.666492 -2.409913 2.587248 -1.527363 30.199461 -0.736054 0.227359 -0.212117 0.860992 0.633863 0.510839 -15.075758 5.809106 -28.478971 26.066092 -9.787413 41.197960 -0.418194 0.027713 0.051263 0.435082 -0.002006 0.202367 8.911913 -3.606342 3.203442 0.729307 -3.134586 13.084082 -2.291216 -2.388950 18.104635 -6.328229 -10.260142 16.036341 7.892051 -13.038393 -21.588837 -10.477677 -31.491276 -7.363132 -54.548618 -45.883717 12.365843 8.642369 -56.008240 -10.829762 0.241057 -0.213507 0.704999 2.357427 34.070740 -12.345271 41.152473 39.719810 3.448417 2.151344 44.600342 -3.408776 -0.504541 0.110998 -0.054951
+0.186871 1.663475 0.099743 -2.310689 40.279587 -11.006674 0.100357 -3.499732 -2.295786 2.487200 -1.474953 27.307718 -0.744386 0.272430 -0.183019 0.840567 0.626667 0.461808 -14.897219 5.382519 -27.718615 26.136374 -10.742693 43.419033 -0.377804 -0.030645 0.068254 0.460318 0.069421 0.190501 9.313206 -3.503044 1.506375 0.548280 -2.994091 13.425483 -2.409700 -2.314191 19.640181 -5.704848 -10.987378 14.186208 7.560336 -13.808394 -20.347181 -6.513134 -31.244968 -8.634365 -54.938385 -49.560467 14.906215 16.944607 -53.622711 -14.881430 0.191178 -0.196107 0.638077 -0.985180 33.011467 -12.947491 39.825062 42.177673 4.524916 -2.254645 50.302353 -5.802182 -0.532254 0.067030 -0.077917
+0.180609 1.672342 0.095746 -2.503239 41.375919 -10.348382 0.313622 -3.236461 -2.151685 2.520932 -1.417373 24.281450 -0.759291 0.314480 -0.153257 0.836363 0.640097 0.422754 -14.572427 5.147749 -26.804932 25.770674 -11.338579 45.355209 -0.348792 -0.076431 0.083798 0.497903 0.142219 0.175041 9.530257 -3.335175 0.092881 0.380000 -2.821460 13.801282 -2.498828 -2.203831 21.189375 -5.234855 -11.602422 12.219041 7.642187 -14.588822 -19.976063 -2.457355 -30.242067 -10.026138 -55.791397 -53.192753 17.921051 23.789381 -52.122158 -18.169596 0.150129 -0.190574 0.582111 -3.918231 31.523756 -13.670365 38.664120 44.947613 5.792022 -8.619454 54.821968 -9.548865 -0.561699 0.033013 -0.102164
+0.175228 1.678619 0.092318 -2.534388 41.928226 -9.327371 0.399138 -2.895864 -2.123811 2.440695 -1.301455 21.389631 -0.742432 0.333099 -0.120285 0.845508 0.682946 0.365261 -14.100406 5.117535 -25.721895 24.800455 -11.346853 46.610592 -0.315162 -0.157269 0.101760 0.545211 0.209812 0.171700 9.921843 -2.921320 -1.544459 0.157356 -2.319041 13.918758 -2.748673 -1.888437 22.535528 -4.519524 -12.665752 10.148438 7.236514 -15.656990 -18.376480 1.733468 -28.637024 -11.167365 -57.143940 -57.041912 22.006670 29.470840 -50.953091 -20.705275 0.114865 -0.121885 0.481518 -6.999198 29.707127 -14.125741 38.072811 47.070999 7.218060 -16.802546 57.681587 -14.751307 -0.585693 -0.054971 -0.094647
+0.170380 1.682550 0.089506 -2.648692 42.096210 -8.263953 0.629836 -2.525081 -2.022045 1.749012 -1.041924 18.632061 -0.732197 0.378130 -0.074694 0.830158 0.691727 0.306290 -13.192470 5.209767 -24.292976 23.231970 -10.726810 46.869068 -0.269955 -0.238711 0.123302 0.580649 0.298648 0.163671 10.110391 -2.472841 -3.038821 -0.014700 -1.840771 13.869283 -2.902485 -1.543239 23.565681 -3.540960 -13.477184 7.882901 6.449614 -16.431211 -16.352365 5.223634 -26.780432 -11.762089 -58.829777 -60.872795 26.695683 35.853588 -49.717781 -23.559652 0.057281 -0.078550 0.380397 -9.650103 27.694958 -14.293766 36.838371 49.284142 8.743846 -25.710646 59.587105 -20.479643 -0.611490 -0.129753 -0.108443
+0.165620 1.684861 0.087163 -2.360321 42.547981 -6.863999 0.466906 -2.172605 -1.829564 1.126465 -0.839530 15.524995 -0.769601 0.453560 -0.048732 0.807118 0.675704 0.257755 -12.430118 5.072149 -22.558023 21.572147 -9.887450 46.221214 -0.222039 -0.324161 0.142270 0.614630 0.386305 0.158941 9.576869 -2.186552 -4.422950 -0.180364 -1.668776 13.638829 -2.730791 -1.370388 24.293818 -2.587760 -13.965160 5.836884 5.085770 -16.803114 -14.604775 7.846695 -24.405348 -12.159298 -61.781494 -64.193207 32.301254 40.748821 -47.924335 -25.388180 -0.020840 -0.064476 0.311044 -11.862582 25.530787 -14.400235 35.648048 51.772503 10.497199 -33.838905 59.846287 -25.374178 -0.664033 -0.183772 -0.146645
+0.160099 1.686340 0.085493 -1.814955 42.953789 -5.568084 0.031287 -1.872860 -1.411179 0.596582 -0.703577 12.976329 -0.777980 0.485012 -0.023631 0.792603 0.676827 0.222472 -11.626057 4.741498 -20.150265 19.584585 -8.669704 44.430088 -0.187022 -0.375358 0.157717 0.641319 0.443979 0.142626 8.949219 -1.913196 -5.546807 -0.470347 -1.443075 13.487349 -2.863154 -1.153778 24.905415 -1.644998 -14.329818 4.590631 4.553100 -17.053093 -13.341921 10.106936 -22.558868 -12.292032 -63.396645 -67.226295 37.006577 44.856899 -45.988918 -26.510292 -0.060908 -0.050900 0.252072 -13.562342 23.763559 -13.936574 34.601311 53.841854 11.711248 -43.928200 58.926441 -31.312250 -0.686214 -0.225371 -0.169588
+0.155369 1.687054 0.084405 -1.038251 42.629860 -4.394301 -0.633712 -1.500186 -0.438065 -0.022119 -0.585793 10.348891 -0.752269 0.488227 -0.005131 0.799392 0.688347 0.212396 -10.569515 4.390658 -16.915546 16.835037 -6.841002 41.077587 -0.179123 -0.406784 0.154293 0.650265 0.459344 0.152208 8.221095 -1.580770 -6.471900 -0.710672 -1.146535 13.495934 -3.064167 -0.794146 25.429632 -1.303423 -14.681625 3.763892 4.386237 -17.530979 -12.686896 11.745230 -21.478956 -12.116253 -62.285782 -69.919273 39.350536 48.310139 -44.224766 -27.180784 -0.064499 -0.003519 0.209089 -14.427497 22.758970 -13.160471 31.205866 55.644516 11.563784 -52.172802 57.433857 -35.489258 -0.676917 -0.272461 -0.154745
+0.150705 1.685748 0.084312 -0.290038 42.273487 -3.314117 -1.346378 -1.121383 0.574778 -0.007437 -0.550819 7.692607 -0.771068 0.530366 0.009406 0.789224 0.678371 0.178775 -9.502197 3.825621 -12.976598 14.075216 -4.958249 35.806370 -0.152059 -0.453248 0.161913 0.669011 0.512138 0.148402 7.181945 -1.177414 -7.538620 -0.857186 -0.869071 13.623814 -2.982444 -0.418474 26.178905 -0.767168 -14.661461 2.656714 4.355723 -17.809359 -11.948652 13.751911 -19.806362 -12.209868 -61.211620 -72.682259 41.933270 51.195114 -42.515987 -27.577179 -0.099852 0.016591 0.172632 -14.988359 21.376059 -12.565054 26.983641 57.292175 10.934783 -58.241360 55.737331 -37.933319 -0.702727 -0.306188 -0.176072
+0.145082 1.682891 0.084957 0.605823 41.100864 -2.069208 -1.978783 -0.650863 1.547334 0.012345 -0.480817 4.796735 -0.765250 0.549686 0.017632 0.776435 0.671852 0.139625 -8.139223 3.516699 -9.253458 10.278966 -2.867769 30.162609 -0.136097 -0.492970 0.163875 0.672279 0.544928 0.159414 5.811234 -0.347855 -8.556785 -0.860641 -0.195246 13.614306 -2.621492 0.313664 26.581839 -0.233719 -14.977542 2.000534 4.382761 -18.226637 -11.305650 15.210334 -18.234890 -12.115201 -60.617699 -75.596184 45.058079 53.098255 -40.487617 -27.222111 -0.122294 0.053563 0.137074 -15.074025 20.344606 -11.782967 22.344997 58.349854 9.735992 -62.368271 53.936634 -38.846844 -0.712225 -0.337819 -0.172621
+0.140055 1.678188 0.085436 1.570004 40.213821 -0.763812 -2.444937 -0.305819 1.997408 -0.202848 -0.384317 2.556235 -0.763432 0.599497 0.028844 0.734299 0.617382 0.102421 -7.262449 2.989761 -5.700957 6.758444 -1.382336 24.437973 -0.110707 -0.531431 0.161715 0.649859 0.588326 0.179662 4.196081 0.331002 -9.528341 -0.864063 0.316018 13.452916 -2.092408 0.920868 26.720657 0.351708 -15.286449 1.648702 4.003334 -18.496925 -10.152276 16.044497 -16.629969 -11.759386 -60.653557 -77.979538 48.357933 54.962593 -39.052269 -27.124033 -0.172080 0.071233 0.106281 -14.951234 19.369461 -10.925515 18.468014 59.050404 8.662132 -65.705521 52.258087 -39.281223 -0.721355 -0.351674 -0.179873
+0.134792 1.673906 0.085948 2.543075 38.417313 0.188307 -2.849252 0.078763 2.639567 -0.597739 -0.263363 0.481669 -0.782891 0.644232 0.040970 0.683540 0.554225 0.070443 -6.856147 2.406003 -2.312422 3.704601 -0.399372 18.905346 -0.081107 -0.537342 0.166768 0.630584 0.633238 0.163858 2.970963 1.115824 -10.271321 -1.008731 1.037758 13.559465 -2.018279 1.844362 27.053228 0.690664 -15.294487 1.604647 4.228273 -18.658215 -9.583572 16.504675 -15.130298 -11.630474 -58.156033 -79.718330 48.832214 56.228195 -38.777798 -27.207626 -0.209274 0.036202 0.102754 -14.689356 18.322502 -10.099127 14.392219 59.350132 7.294395 -70.056129 51.601223 -41.053566 -0.731632 -0.328415 -0.218878
+0.129590 1.670679 0.083496 2.702205 36.701839 0.486348 -2.678700 0.306702 2.864173 -1.107628 -0.172925 -0.808694 -0.828277 0.705107 0.035266 0.654131 0.523373 0.043678 -6.154392 1.836419 0.406537 1.431441 0.115053 13.854359 -0.060211 -0.564655 0.165787 0.639485 0.679597 0.167526 3.005822 1.667304 -10.683477 -1.114153 1.600607 13.901406 -2.317943 2.675538 27.748314 0.799350 -15.130547 0.893629 3.781889 -18.618504 -9.551449 16.266733 -13.564447 -11.777896 -54.775467 -81.217941 47.960983 58.047916 -38.559799 -27.637945 -0.266995 0.008268 0.095511 -14.631280 17.046846 -9.877468 10.202535 59.665512 5.718135 -74.244888 51.105705 -42.939346 -0.767504 -0.315106 -0.251355
+0.124521 1.670099 0.080770 2.461706 35.263344 0.139519 -2.206611 0.438580 3.187374 -1.335386 -0.128689 -1.583616 -0.816248 0.700272 0.045012 0.634431 0.509062 0.017517 -5.480972 1.246305 2.747751 0.018858 0.324239 9.648031 -0.051052 -0.548562 0.174625 0.628151 0.697241 0.151840 4.024122 2.058709 -10.749973 -1.356176 2.137061 14.453202 -3.210816 3.475378 28.347219 0.293650 -14.566850 0.815414 4.702866 -18.753145 -9.856362 16.209381 -13.630665 -11.716234 -43.786751 -81.348572 38.521572 59.631126 -39.055981 -28.324064 -0.262782 -0.005497 0.093871 -14.263066 16.940414 -9.636518 5.357641 59.554520 3.299359 -76.598694 50.618366 -43.652618 -0.758523 -0.294897 -0.258568
+0.119559 1.670415 0.078153 2.200115 34.074883 0.206242 -1.639331 0.305574 2.427539 -1.750045 -0.101623 -1.330747 -0.835996 0.736500 0.046488 0.597050 0.454322 -0.014514 -4.746152 0.807878 3.998532 -1.084824 0.383308 6.127007 -0.037535 -0.547111 0.178894 0.603604 0.729274 0.152477 5.311884 2.517585 -10.576951 -1.705931 2.709427 14.624536 -4.301122 4.300492 28.432043 -0.188175 -14.214143 0.843948 5.385569 -19.039980 -10.034118 16.288984 -13.570398 -11.571184 -37.661831 -81.309227 33.572430 61.485229 -39.728085 -29.360188 -0.282154 -0.033810 0.115317 -13.979778 16.668598 -9.179684 3.202501 59.799908 2.375279 -80.272774 50.243973 -45.521988 -0.768399 -0.263099 -0.284966
+0.114635 1.671754 0.076153 1.644520 33.440304 0.253261 -0.925995 0.126036 1.482330 -1.911165 -0.098357 -0.955948 -0.813821 0.729590 0.060691 0.579135 0.431806 -0.022549 -3.619632 0.554533 4.396863 -2.148628 0.452830 4.018525 -0.033604 -0.539301 0.188081 0.580839 0.732228 0.150398 6.368691 2.689648 -10.363791 -1.849836 3.009660 14.549895 -4.934672 4.726927 28.222124 -0.745950 -13.666760 1.106444 5.366399 -18.867844 -9.584204 16.453615 -13.829520 -10.843252 -34.535763 -80.701866 30.749111 64.715393 -40.373333 -31.275719 -0.278773 -0.037142 0.113378 -14.035901 16.653095 -8.824483 2.001298 60.208763 1.997700 -82.096458 49.898731 -46.284203 -0.755234 -0.256565 -0.283784
+0.109932 1.672376 0.075400 1.295010 33.481121 0.521082 -0.324293 -0.038454 0.457881 -2.060845 -0.079292 -0.507485 -0.823459 0.768823 0.068638 0.528464 0.364369 -0.034665 -2.861637 0.395406 4.423781 -2.633402 0.431289 2.594620 -0.007050 -0.549561 0.188721 0.551500 0.755267 0.147824 6.933473 2.812271 -10.289229 -1.887934 3.156713 14.240685 -5.206841 5.012040 27.864391 -1.051928 -13.655925 1.466474 4.331422 -18.791845 -8.415689 16.597418 -13.252803 -10.271108 -36.878922 -80.977745 33.450073 67.122765 -40.310059 -32.465187 -0.319352 -0.065203 0.105016 -14.540864 15.856384 -8.482399 1.997767 60.547745 2.622039 -84.576508 50.054199 -47.953842 -0.757898 -0.240801 -0.308830
+0.104924 1.673126 0.074508 1.196500 33.919628 0.617233 -0.041295 -0.115466 -0.034266 -1.928445 -0.085836 -0.449756 -0.815569 0.776384 0.075136 0.506014 0.325132 -0.026379 -2.398987 0.297562 4.517623 -2.742403 0.401983 1.924661 -0.000041 -0.552527 0.185534 0.525945 0.747547 0.150814 6.901422 2.838551 -10.187568 -1.849278 3.180538 14.128212 -5.088349 5.059543 27.636864 -1.227593 -13.682513 1.796692 3.468035 -18.599436 -7.448743 16.908384 -13.486770 -9.805251 -34.709290 -80.651840 31.541033 68.689369 -40.359444 -33.268707 -0.326670 -0.066251 0.104823 -14.917236 16.137800 -8.020524 1.573260 60.114002 2.577746 -86.773041 50.163651 -49.522564 -0.747943 -0.242738 -0.313466
+0.100428 1.673629 0.074096 1.103975 33.979431 0.673347 0.195685 -0.075464 -0.116285 -1.825712 -0.088740 -0.806052 -0.795450 0.758017 0.076582 0.511727 0.330893 -0.024579 -2.086533 0.226044 4.401073 -2.553589 0.370667 1.487296 -0.000196 -0.561265 0.183746 0.522715 0.731606 0.154432 6.877834 2.899671 -10.189466 -1.852989 3.277582 14.061892 -5.094145 5.133415 27.595903 -1.399282 -13.522391 2.257778 3.224619 -18.447943 -6.748367 17.225178 -13.233134 -9.625971 -33.884827 -80.705353 30.981220 69.179573 -40.153439 -33.357933 -0.313078 -0.034787 0.092228 -15.017733 15.959023 -7.926957 1.357403 60.508221 2.697932 -86.840057 49.996147 -49.352970 -0.736011 -0.267721 -0.298900
+0.096165 1.673139 0.073836 1.220538 34.230259 0.622406 0.230571 -0.035240 0.042251 -1.527127 -0.106024 -1.134634 -0.765902 0.743211 0.082363 0.514276 0.332998 -0.027963 -1.871850 0.210533 4.445139 -2.460114 0.367419 1.524452 -0.002708 -0.561681 0.185297 0.510960 0.726979 0.164340 6.260054 2.925602 -10.205591 -1.795749 3.273537 14.131217 -4.743575 5.062759 27.673952 -1.304189 -13.308847 2.781027 3.625407 -18.327415 -6.301701 17.540573 -13.057667 -9.729997 -32.780350 -80.868057 30.153566 68.420479 -40.181412 -32.936153 -0.304163 -0.007525 0.081055 -14.618386 15.834386 -7.807631 0.826287 60.684471 2.683280 -87.390205 50.462826 -49.997082 -0.721362 -0.280565 -0.279007
+0.093030 1.672524 0.072938 1.232568 34.683178 0.474910 0.197040 0.031295 0.286883 -1.105584 -0.130820 -1.724337 -0.765560 0.739267 0.068986 0.527362 0.341931 -0.025617 -1.684064 0.248492 4.421625 -2.434174 0.372566 1.769688 -0.012652 -0.569362 0.175961 0.510942 0.715045 0.182324 6.066134 3.041371 -10.214946 -1.693856 3.302436 14.209458 -4.501903 4.971045 27.795202 -0.937755 -13.256901 3.121925 4.101356 -18.195124 -6.394556 17.595268 -12.839832 -10.075691 -32.341721 -81.118774 30.098087 66.990913 -40.758858 -32.447964 -0.298262 0.020416 0.088509 -14.229906 15.612314 -7.828662 1.962926 60.533081 3.365970 -87.789757 51.222736 -51.005302 -0.722772 -0.292685 -0.264332
+0.089688 1.671678 0.071462 1.381949 35.429028 0.456838 0.101620 -0.048881 -0.040603 -0.736985 -0.156048 -1.544584 -0.793290 0.752019 0.058949 0.528688 0.355558 -0.030494 -1.696548 0.294932 4.278858 -2.187216 0.360208 2.102972 -0.005214 -0.580239 0.180581 0.531575 0.727852 0.176124 5.681755 2.900441 -10.148498 -1.625783 3.125547 14.292733 -4.171819 4.772327 27.971828 -0.580064 -13.277518 2.819175 3.827273 -17.951632 -6.656736 17.428659 -12.139396 -10.612112 -33.844524 -81.430832 31.669037 65.749184 -41.053211 -31.974920 -0.320453 0.003271 0.083534 -14.394090 15.145332 -8.302116 2.260664 60.721401 3.668245 -87.505417 51.913006 -51.477657 -0.746406 -0.287915 -0.276745
+0.086220 1.671613 0.070496 1.227778 35.940018 0.274685 0.277435 -0.104088 -0.343710 -0.576743 -0.170138 -1.399605 -0.782639 0.758410 0.069566 0.529441 0.360471 -0.029341 -1.543954 0.341663 4.001868 -1.694946 0.336475 2.631681 -0.005726 -0.586717 0.179225 0.534760 0.738722 0.181909 5.735066 2.737397 -10.073421 -1.626089 2.980023 14.322968 -4.132045 4.560612 28.067850 -0.313836 -13.435310 2.610354 3.639260 -17.946075 -6.464343 16.964933 -11.933111 -10.706272 -33.992123 -81.388275 31.762932 65.606773 -41.154209 -31.904236 -0.330163 0.008020 0.067724 -14.477422 15.319427 -8.529713 3.296667 61.269142 4.177522 -86.655357 52.028927 -51.133362 -0.743367 -0.296438 -0.271924
+0.083358 1.671630 0.070172 1.158154 36.069458 0.093816 0.513630 -0.193180 -0.561071 -0.648085 -0.186324 -0.857826 -0.779334 0.772135 0.064984 0.526734 0.352295 -0.048018 -1.332691 0.443916 3.686069 -1.597836 0.357166 3.322105 0.001045 -0.610278 0.169021 0.533197 0.747095 0.197772 5.877307 2.649546 -9.987617 -1.680527 2.935882 14.354516 -4.257368 4.573883 28.132406 -0.442568 -13.521820 2.401300 3.808778 -18.333462 -6.183328 16.780916 -11.715172 -10.835422 -36.299534 -81.285095 33.569817 65.331917 -41.141613 -31.840427 -0.337470 0.045761 0.052242 -14.366479 15.261948 -8.724748 3.244602 61.631279 4.224452 -86.064445 52.312061 -50.930725 -0.743962 -0.319765 -0.262094
+0.080865 1.671293 0.069830 1.113014 35.763039 -0.015015 0.814213 -0.252904 -0.811763 -0.882264 -0.178316 -0.323731 -0.801724 0.781831 0.061039 0.534687 0.365296 -0.038287 -1.249285 0.510152 3.380480 -1.596195 0.376963 3.619185 0.003416 -0.608723 0.170022 0.551901 0.752567 0.187476 6.077522 2.623214 -9.942127 -1.757048 2.956401 14.379050 -4.439812 4.661711 28.299021 -0.524828 -13.601445 2.232626 3.532584 -18.334280 -6.584974 16.462692 -11.155466 -11.009156 -39.048531 -81.328979 35.997299 65.407547 -41.064457 -31.893126 -0.346292 0.024123 0.053837 -14.809453 15.152475 -9.095040 4.015037 62.585377 4.619361 -84.772469 51.845974 -49.768559 -0.757174 -0.312478 -0.274791
+0.078690 1.670357 0.069908 1.035165 35.784931 -0.072413 1.169224 -0.303131 -1.179914 -1.241332 -0.151096 0.144948 -0.827531 0.814158 0.063549 0.515023 0.336201 -0.048745 -1.291338 0.467849 3.380780 -1.227285 0.321366 3.479705 0.015436 -0.609704 0.169722 0.550829 0.777534 0.177506 6.103163 2.602976 -9.974830 -1.767186 2.912050 14.291284 -4.404027 4.685915 28.254179 -0.580914 -13.557173 2.167021 3.609180 -18.448467 -6.602057 16.366638 -10.872387 -11.038634 -42.523594 -81.260468 39.032402 65.375038 -41.072159 -31.990337 -0.365088 -0.004118 0.062877 -14.803628 15.112213 -9.251678 4.461949 63.274105 4.883279 -83.603905 51.586010 -48.733044 -0.769223 -0.295170 -0.303822
+0.076597 1.670331 0.069960 1.019570 35.861710 -0.323491 1.378375 -0.296127 -1.050976 -1.409914 -0.137103 0.309856 -0.849876 0.825475 0.051710 0.497071 0.303940 -0.056004 -1.207573 0.404454 3.636643 -1.188517 0.290747 3.324433 0.014400 -0.585710 0.164942 0.536098 0.777194 0.168158 6.526380 2.624433 -9.908018 -1.922981 2.937468 14.376523 -4.823515 4.865574 28.263691 -0.827681 -13.281828 2.781018 4.499244 -18.501703 -7.196418 16.445639 -11.247074 -10.955324 -42.509098 -80.754425 38.650330 65.633942 -41.618572 -32.495312 -0.358345 -0.034984 0.102318 -14.914519 15.093378 -9.169952 4.819797 63.196419 5.021386 -83.927582 51.857780 -49.187798 -0.770721 -0.257144 -0.326413
+0.075258 1.670444 0.070336 0.892192 36.112305 -0.709661 1.466823 -0.315579 -0.802789 -1.149170 -0.168846 0.428178 -0.862697 0.831569 0.042041 0.514791 0.319339 -0.053213 -0.961615 0.308838 4.067444 -1.298715 0.294904 3.020282 0.008734 -0.587183 0.163641 0.548243 0.778089 0.175176 6.870462 2.528930 -9.953801 -2.003535 2.856042 14.568444 -5.071709 4.837686 28.592924 -0.905478 -13.178675 2.813828 5.026232 -18.606459 -7.765009 16.548752 -10.892982 -11.240913 -44.721809 -80.758339 40.602085 65.293053 -42.058964 -32.641357 -0.355695 -0.028242 0.111601 -14.898005 14.609347 -9.376429 5.651835 63.393562 5.647392 -84.616806 52.549801 -50.345825 -0.781149 -0.258240 -0.324040
+0.073552 1.670284 0.071099 1.045829 36.404373 -0.765478 1.356241 -0.303848 -0.610719 -0.870652 -0.185159 0.220932 -0.871081 0.860843 0.043275 0.501896 0.300764 -0.062406 -0.957733 0.327540 4.148426 -1.354308 0.304025 3.120034 0.019672 -0.606451 0.157234 0.547485 0.798355 0.184665 6.597807 2.458812 -10.071966 -1.989085 2.752110 14.623957 -4.922241 4.768068 28.763779 -0.914021 -13.144807 2.635721 4.778679 -18.637754 -7.378561 16.391348 -10.428543 -11.464166 -49.561325 -80.737061 44.902363 64.547562 -42.483311 -32.581692 -0.381163 -0.023364 0.098980 -14.561620 14.190603 -9.497291 6.366853 63.573101 6.401924 -85.399155 53.637516 -51.821232 -0.787840 -0.265775 -0.331001
+0.071551 1.670172 0.071729 1.389389 36.439602 -0.654162 1.092596 -0.235716 -0.311941 -0.698065 -0.190512 -0.220540 -0.883363 0.865037 0.036902 0.508159 0.307619 -0.059471 -1.263333 0.380055 4.059262 -1.196603 0.290519 3.359639 0.016204 -0.607453 0.155426 0.555536 0.797220 0.186080 6.260530 2.504630 -10.129204 -2.022061 2.785383 14.680104 -4.863013 4.834050 28.861631 -0.962676 -13.147769 2.711264 4.801445 -18.622095 -7.634530 16.361652 -10.223455 -11.741094 -52.711117 -80.662842 47.482277 63.326042 -42.414639 -32.001530 -0.382022 -0.028120 0.106533 -14.466109 13.873824 -9.583220 7.144923 63.394001 7.011439 -86.213013 54.561375 -53.267361 -0.795329 -0.263296 -0.334569
+0.070316 1.670144 0.071984 1.057742 36.872124 -0.849215 1.523878 -0.208912 -0.391857 -0.722919 -0.182614 -0.286065 -0.873812 0.863877 0.044145 0.496634 0.301524 -0.085036 -0.937315 0.340427 4.041193 -1.041760 0.278305 3.466509 0.027129 -0.615768 0.163659 0.552071 0.811878 0.181179 6.918967 2.404315 -10.114307 -2.097667 2.754581 14.613281 -5.223070 4.845906 28.733524 -1.109023 -13.184677 2.744221 4.970967 -18.905294 -7.277417 16.089365 -10.393722 -12.050610 -55.173679 -80.644966 49.547867 61.083500 -42.415867 -30.813631 -0.384747 -0.020208 0.091057 -14.075385 13.639119 -9.614275 7.362137 63.367119 7.293767 -85.902428 55.099770 -53.431530 -0.795216 -0.269020 -0.334109
+0.068695 1.669814 0.072107 1.172682 36.980831 -0.748471 1.497608 -0.218089 -0.551707 -0.788285 -0.180495 -0.270307 -0.859250 0.865159 0.053512 0.485923 0.297021 -0.120271 -0.976377 0.337658 3.924813 -0.868291 0.261145 3.467600 0.035086 -0.630295 0.168213 0.547971 0.834601 0.183655 7.011422 2.395876 -10.147407 -2.193405 2.795569 14.540473 -5.430142 4.909186 28.631712 -1.231446 -13.098920 2.779909 5.486808 -19.247047 -6.950037 16.275200 -10.264022 -12.216107 -57.851528 -80.525887 51.688046 59.947651 -42.182903 -30.191647 -0.386563 0.000455 0.073449 -13.784278 13.369806 -9.735926 7.633672 63.621166 7.532999 -84.590286 55.149101 -52.444565 -0.792893 -0.280839 -0.329248
+0.066801 1.670029 0.072177 1.187125 36.931793 -0.828285 1.584544 -0.211414 -0.574275 -0.874610 -0.168310 -0.137720 -0.853878 0.852943 0.057319 0.481894 0.305317 -0.117365 -0.924843 0.306214 3.943217 -0.710594 0.244724 3.424115 0.036048 -0.617330 0.172972 0.549581 0.834253 0.171210 6.938194 2.424942 -10.129640 -2.162041 2.830045 14.563975 -5.362299 4.945365 28.630226 -1.108801 -13.269798 2.883466 5.393882 -19.189121 -7.077047 16.167507 -10.224322 -12.440940 -58.815575 -80.563515 52.533798 58.769753 -42.223835 -29.591715 -0.386777 -0.020734 0.068889 -13.920820 13.326815 -9.742256 7.921180 63.209751 7.597058 -84.553902 55.298958 -52.618496 -0.788153 -0.267142 -0.330272
+0.065039 1.670066 0.072590 1.223659 36.710667 -0.789219 1.667362 -0.248274 -0.710682 -0.994127 -0.166245 0.114754 -0.844824 0.857779 0.061901 0.484431 0.299339 -0.114939 -0.919867 0.351613 3.776792 -0.658970 0.249494 3.601349 0.038687 -0.628574 0.170801 0.545470 0.832809 0.179662 6.920116 2.451582 -10.147552 -2.190137 2.873035 14.485276 -5.432727 4.983889 28.563953 -1.250659 -13.474602 3.059166 5.110630 -19.398945 -6.588612 16.064640 -9.891124 -12.523528 -60.746830 -80.527710 54.340054 58.082737 -42.285530 -29.261112 -0.387535 0.000330 0.058164 -13.849615 13.132182 -9.793068 8.730017 63.434021 8.228467 -84.133987 55.605637 -52.583416 -0.784933 -0.285533 -0.322633
+0.063767 1.670415 0.073052 1.097854 36.949028 -1.073196 1.935652 -0.254477 -0.687994 -1.066603 -0.164356 0.418212 -0.846568 0.833776 0.059838 0.499092 0.324248 -0.098737 -0.653753 0.299158 4.005669 -0.798804 0.268196 3.566319 0.028284 -0.605173 0.180354 0.553496 0.817310 0.166575 6.957397 2.375856 -10.142779 -2.110652 2.777897 14.540224 -5.311823 4.900160 28.637188 -1.358882 -13.677279 3.537927 5.161724 -19.382687 -7.172004 16.039686 -9.890258 -12.559263 -62.288631 -80.590691 55.694286 57.895103 -42.014481 -29.074713 -0.370295 -0.026997 0.073214 -14.062440 12.942348 -9.874907 9.264707 63.198250 8.559819 -84.200516 56.096909 -53.085690 -0.784523 -0.266521 -0.321773
+0.062867 1.670879 0.073103 0.856923 37.076107 -1.401306 2.204793 -0.269972 -0.682690 -1.208705 -0.157978 0.722451 -0.819156 0.813195 0.075473 0.499385 0.331879 -0.106948 -0.370564 0.220591 4.209398 -0.763063 0.271545 3.486713 0.027777 -0.596422 0.191148 0.547748 0.820315 0.159305 7.602540 2.296217 -10.084869 -2.208013 2.782577 14.598593 -5.738420 4.895529 28.646461 -1.458791 -13.595873 3.768286 5.554889 -19.492493 -6.980786 15.811882 -10.120440 -12.544173 -60.683052 -80.523209 54.150425 57.557728 -42.240051 -28.906698 -0.355791 -0.021915 0.062710 -13.799865 12.832455 -9.814207 9.383290 63.073311 8.679627 -84.512550 56.422298 -53.589619 -0.770975 -0.269176 -0.312642
+0.061152 1.670984 0.073207 0.915454 36.887005 -1.495124 2.163584 -0.294224 -0.655080 -1.098931 -0.164317 0.883671 -0.822154 0.822404 0.078934 0.479937 0.311945 -0.116933 -0.395738 0.198469 4.286450 -0.770784 0.266390 3.384946 0.033702 -0.591953 0.188015 0.540053 0.830461 0.152296 7.629976 2.325459 -10.029790 -2.260748 2.816364 14.666842 -5.828328 4.940321 28.679174 -1.617284 -13.597672 3.823709 5.571311 -19.589762 -6.911629 15.848895 -10.112772 -12.685377 -58.973038 -80.526443 52.560822 56.984753 -42.154224 -28.534901 -0.362758 -0.038457 0.064263 -13.486145 12.873084 -9.720198 8.992170 63.030647 8.511137 -85.463753 56.685261 -54.475582 -0.767245 -0.255791 -0.324681
+0.059513 1.670827 0.073122 0.898624 36.792915 -1.566548 2.177181 -0.309065 -0.656299 -0.995318 -0.175929 0.869200 -0.821420 0.834609 0.085102 0.483429 0.312668 -0.119532 -0.231750 0.240905 4.208457 -0.952491 0.301475 3.524331 0.038061 -0.607260 0.189477 0.544582 0.842580 0.159046 7.742310 2.302027 -10.014476 -2.261708 2.819495 14.726674 -5.895653 4.955140 28.775240 -1.700639 -13.496553 3.524153 5.385921 -19.618820 -6.649409 16.105032 -9.935603 -12.813622 -59.379627 -80.614807 52.898712 56.905380 -41.867214 -28.420603 -0.372220 -0.025643 0.051789 -13.497173 12.731162 -9.910016 8.515057 63.158932 8.275264 -84.925995 56.664631 -54.020771 -0.772165 -0.271268 -0.323466
+0.057871 1.671050 0.073288 1.126751 36.559666 -1.530483 1.942476 -0.329947 -0.553987 -0.672108 -0.202705 0.771892 -0.819245 0.842687 0.087930 0.482253 0.310788 -0.133697 -0.259554 0.278675 4.184200 -1.113613 0.332702 3.575195 0.047463 -0.619326 0.192033 0.546772 0.857767 0.160685 7.666715 2.351444 -10.005503 -2.330774 2.896169 14.843453 -6.022315 5.038610 28.951664 -1.752549 -13.266644 3.246964 5.749434 -19.731901 -6.518391 16.306450 -9.816788 -12.936370 -60.008442 -80.803070 53.505280 56.958443 -41.518337 -28.327360 -0.378644 -0.010050 0.038805 -13.001019 12.570029 -10.020170 7.993204 63.421856 8.054744 -84.885376 56.727764 -53.963055 -0.775347 -0.282678 -0.322482
+0.057133 1.671363 0.073799 1.089275 36.820839 -1.680030 1.896983 -0.338186 -0.444317 -0.473926 -0.211391 0.864332 -0.836497 0.856064 0.084708 0.464715 0.302566 -0.150371 -0.205178 0.272041 4.247215 -0.895749 0.311699 3.761143 0.059852 -0.619337 0.194467 0.552581 0.876872 0.147437 7.720521 2.269701 -10.036958 -2.314242 2.781862 14.922002 -5.981796 4.932163 29.135073 -1.760437 -13.156147 3.171250 5.786662 -19.680607 -6.652070 16.406183 -9.372772 -13.173079 -62.759819 -80.830498 56.232899 56.567490 -42.057896 -28.402193 -0.397282 -0.035242 0.034899 -12.765620 12.238463 -10.174098 8.385249 63.879204 8.415292 -84.971672 56.765835 -54.053337 -0.785596 -0.265522 -0.340198
+0.056120 1.671097 0.073820 1.057566 36.839554 -1.708119 1.992047 -0.353471 -0.576395 -0.589557 -0.214589 1.058342 -0.830550 0.836904 0.079233 0.494333 0.339559 -0.128948 -0.151834 0.284356 4.141333 -0.733491 0.300815 3.890992 0.041374 -0.610454 0.193442 0.565054 0.857366 0.155737 7.766678 2.265913 -10.021156 -2.293046 2.781116 14.873036 -5.962947 4.886598 29.127880 -1.726299 -13.386919 3.219218 5.820737 -19.718887 -7.258751 16.647438 -9.126202 -13.258051 -64.780159 -80.926186 58.244099 56.603374 -42.187405 -28.507826 -0.382001 -0.028421 0.040070 -13.030258 12.015736 -10.095535 9.413108 63.820103 8.994855 -86.126396 56.546379 -54.906349 -0.784324 -0.268824 -0.321024
+0.054985 1.670647 0.074399 1.095821 36.936230 -1.626120 2.081196 -0.376115 -0.797146 -0.753682 -0.202171 1.318451 -0.830802 0.855129 0.078751 0.473904 0.316363 -0.149132 -0.096882 0.295974 4.095630 -0.600843 0.270566 3.950432 0.052518 -0.629416 0.195166 0.553035 0.873600 0.168353 7.622669 2.275712 -10.091393 -2.312842 2.739209 14.712197 -5.903061 4.789038 29.013309 -1.531460 -13.429269 3.188437 5.562817 -19.705956 -6.695267 16.943766 -9.080315 -13.126895 -66.239227 -80.963356 59.685429 56.783913 -41.970383 -28.534273 -0.405423 -0.021944 0.029246 -12.976559 12.104907 -9.672997 10.847079 63.962929 9.861280 -87.721085 55.954205 -55.755169 -0.790723 -0.271924 -0.321337
+0.053966 1.670726 0.075040 1.060585 36.744377 -1.612108 2.328160 -0.316564 -0.709558 -0.951060 -0.175432 1.123986 -0.825951 0.868628 0.088873 0.462262 0.292059 -0.145241 0.095296 0.348313 4.001882 -0.871837 0.307826 4.099064 0.054479 -0.636562 0.192980 0.539283 0.877314 0.175364 7.630804 2.331413 -10.184217 -2.285271 2.759179 14.583076 -5.893759 4.797372 28.882467 -1.563660 -13.698160 3.390576 4.988390 -19.782946 -6.043611 16.978907 -9.295167 -12.923512 -67.691887 -80.955971 61.014683 56.770271 -41.682426 -28.429176 -0.413190 -0.021347 0.027558 -13.128291 12.364478 -9.378719 12.004086 63.792343 10.464619 -87.981667 55.823048 -55.968956 -0.786953 -0.277355 -0.324959
+0.053305 1.670554 0.075935 1.084530 36.542492 -1.560997 2.391451 -0.276362 -0.517755 -0.900840 -0.170862 0.852253 -0.850873 0.883273 0.073986 0.460937 0.277907 -0.129016 0.102797 0.402642 3.941768 -1.012981 0.332478 4.281877 0.054240 -0.633409 0.177198 0.541782 0.864085 0.173437 7.529418 2.366551 -10.308225 -2.244161 2.731062 14.495906 -5.788133 4.816861 28.893471 -1.780086 -13.734798 3.643216 4.703999 -19.747282 -6.172123 17.010826 -9.118904 -12.845424 -70.347260 -80.890465 63.501747 56.906372 -41.477272 -28.476862 -0.414377 -0.030452 0.045398 -13.140022 12.343482 -9.428499 12.651466 64.249504 10.785138 -86.288033 55.231815 -54.155842 -0.790055 -0.271061 -0.338819
+0.052890 1.670377 0.076310 1.070597 36.562958 -1.568699 2.367473 -0.243477 -0.378260 -0.757215 -0.173081 0.530254 -0.875511 0.909284 0.066754 0.455079 0.262711 -0.127630 0.183376 0.430434 3.949102 -1.107244 0.339805 4.372824 0.062129 -0.639185 0.176848 0.543574 0.875643 0.175485 7.617464 2.371757 -10.377048 -2.217575 2.688620 14.498006 -5.797486 4.825945 28.977270 -1.787121 -13.713302 3.565958 4.595257 -19.731100 -6.276907 17.116297 -8.909925 -12.919465 -73.537117 -80.882309 66.541573 56.928295 -41.421242 -28.557047 -0.433093 -0.045721 0.053374 -13.166192 12.073348 -9.508842 13.134483 64.340355 11.059110 -86.042732 55.085392 -53.870678 -0.805012 -0.261652 -0.353532
+0.052506 1.670582 0.076301 1.050691 36.366405 -1.686339 2.308505 -0.219475 -0.241682 -0.665622 -0.175459 0.381430 -0.864898 0.896839 0.068571 0.454871 0.268891 -0.132367 0.196316 0.410073 4.032111 -1.123985 0.348553 4.327813 0.062662 -0.631083 0.178655 0.543306 0.873466 0.169125 7.852811 2.438426 -10.328544 -2.239943 2.779359 14.602224 -5.973296 4.897834 29.070875 -1.781101 -13.696284 3.615752 4.969555 -19.811272 -6.400131 17.020857 -8.956825 -12.976069 -73.120125 -81.007019 66.391487 56.920227 -41.878071 -28.678911 -0.424972 -0.044541 0.049154 -12.895415 11.947515 -9.503976 12.969222 64.111511 10.956419 -86.773422 55.403698 -54.676723 -0.797579 -0.259023 -0.349095
+0.051841 1.670753 0.076057 0.857725 36.516743 -1.842267 2.555790 -0.277433 -0.526348 -0.772827 -0.176450 0.846080 -0.853735 0.886909 0.075604 0.456990 0.284103 -0.143938 0.607954 0.418726 4.006513 -1.348587 0.395014 4.454660 0.065181 -0.641743 0.185531 0.549451 0.880516 0.167548 8.026899 2.320533 -10.259238 -2.213379 2.703124 14.615870 -5.970800 4.802303 29.088760 -1.663761 -13.756658 3.296550 4.789773 -19.824558 -6.180539 16.798262 -8.714105 -13.031642 -73.482353 -80.841736 66.679405 57.019016 -42.485992 -28.974310 -0.427150 -0.032243 0.029398 -12.835209 11.825673 -9.514554 13.026668 64.010742 11.019248 -87.478996 55.434261 -55.282013 -0.799002 -0.272638 -0.341057
+0.051004 1.671050 0.076468 0.909297 36.567875 -1.958430 2.633620 -0.287639 -0.500175 -0.774964 -0.180695 1.045633 -0.844505 0.867536 0.079648 0.466620 0.307101 -0.146916 0.729203 0.416522 4.087817 -1.360196 0.418396 4.595594 0.059764 -0.636714 0.189720 0.559686 0.877513 0.159117 7.900171 2.290816 -10.256913 -2.228443 2.700352 14.701031 -5.944954 4.787866 29.196516 -1.451353 -13.782760 3.302187 5.056968 -19.771875 -6.331472 16.759624 -8.520159 -13.153247 -73.468071 -80.593155 66.478653 56.769646 -43.214493 -29.168270 -0.414012 -0.029168 0.024672 -13.015759 11.857333 -9.551817 13.687625 63.791054 11.190667 -87.213409 55.267269 -55.100910 -0.795388 -0.276697 -0.336466
+0.050081 1.671293 0.077276 0.949260 36.551426 -2.099984 2.755935 -0.211639 -0.234606 -0.858205 -0.168052 0.749324 -0.821951 0.851078 0.086562 0.470697 0.312558 -0.141774 0.853582 0.384105 4.256401 -1.569275 0.443839 4.469748 0.052056 -0.631911 0.190364 0.550966 0.866567 0.165551 7.737350 2.326644 -10.258555 -2.170702 2.735248 14.777138 -5.840622 4.827994 29.184546 -1.352467 -14.159698 3.434502 5.002151 -19.944111 -6.215186 16.190968 -8.656936 -13.161228 -71.993462 -80.493362 65.159561 56.390408 -44.036282 -29.210642 -0.402254 -0.018424 0.020585 -12.901986 12.032985 -9.377705 13.275103 62.911510 10.781097 -88.324135 55.850304 -56.473270 -0.782287 -0.282232 -0.320535
+0.049632 1.671538 0.077821 1.156298 36.496826 -2.127665 2.684453 -0.202155 -0.029091 -1.015884 -0.156476 0.745028 -0.816619 0.858987 0.085898 0.466582 0.286126 -0.131894 0.685491 0.372260 4.402023 -1.554614 0.433864 4.465656 0.053300 -0.627919 0.181654 0.532659 0.857004 0.173818 7.523893 2.357582 -10.241952 -2.174749 2.750012 14.820229 -5.793070 4.891691 29.099798 -1.390217 -14.534770 3.597457 5.218561 -20.355474 -6.080217 15.678180 -8.750938 -13.203680 -70.032333 -80.191971 63.259220 55.750103 -45.160484 -29.285482 -0.394580 -0.007406 0.030446 -12.664586 12.244982 -9.192148 12.718975 62.245361 10.403840 -89.635719 56.598236 -58.100262 -0.770649 -0.283998 -0.318057
+0.049804 1.671597 0.077977 1.068909 36.452381 -2.292628 2.786405 -0.194068 0.088780 -1.040707 -0.159036 0.791008 -0.794324 0.836809 0.085342 0.471809 0.296360 -0.137958 0.690796 0.308528 4.547214 -1.425836 0.417952 4.356831 0.049718 -0.629332 0.177862 0.528284 0.841884 0.177942 7.671723 2.291188 -10.284655 -2.126873 2.697577 14.807689 -5.759335 4.825286 29.017426 -1.689996 -14.738440 3.816248 5.212533 -20.664696 -5.943554 15.470534 -8.747698 -13.173607 -67.873299 -79.820023 60.973171 55.292614 -45.843788 -29.305782 -0.377227 0.020678 0.019434 -12.643470 12.525416 -9.440774 12.348681 62.323391 10.104821 -86.888382 56.897175 -56.129887 -0.756567 -0.299153 -0.297647
+0.049810 1.671876 0.078037 1.036540 36.473839 -2.403700 2.869146 -0.218954 0.107048 -1.164012 -0.153588 1.022332 -0.810535 0.848083 0.079926 0.480192 0.298212 -0.130302 0.591946 0.283084 4.629778 -1.127481 0.386642 4.424829 0.050783 -0.631893 0.172184 0.539211 0.841630 0.175131 7.591506 2.166855 -10.345649 -2.116177 2.561084 14.849139 -5.657648 4.719121 29.160421 -1.722937 -14.731774 3.772313 5.259337 -20.706451 -6.118005 15.504788 -8.423912 -13.311617 -69.624321 -79.666473 62.410542 55.051956 -45.851707 -29.262722 -0.376854 0.021951 0.024918 -12.895359 12.491542 -9.791109 12.708981 62.914509 10.320333 -84.744164 56.727249 -54.365055 -0.763020 -0.303410 -0.306532
+0.050471 1.671754 0.078483 0.927761 36.355148 -2.514930 2.989300 -0.208507 0.209768 -1.243284 -0.145459 1.088630 -0.813972 0.846211 0.074915 0.475472 0.287151 -0.127648 0.562768 0.228185 4.751265 -0.937316 0.346548 4.300982 0.048979 -0.621827 0.170499 0.531201 0.833410 0.173062 7.916453 2.212790 -10.395432 -2.127248 2.581004 14.778918 -5.808135 4.749259 29.043978 -1.876827 -14.680673 4.247573 5.418719 -20.692797 -6.174877 15.551222 -8.749429 -13.174081 -69.696617 -79.436378 62.229210 54.839966 -45.956326 -29.232710 -0.370016 0.013319 0.039735 -13.044841 12.520248 -9.799725 13.724273 62.795391 10.911464 -83.937027 57.317081 -54.302471 -0.759751 -0.291841 -0.310656
+0.050731 1.671491 0.079320 1.019595 36.256138 -2.364868 3.020548 -0.219561 0.056040 -1.336325 -0.133799 1.291663 -0.806025 0.844771 0.078581 0.464329 0.279056 -0.143216 0.384230 0.204050 4.766475 -0.801158 0.316622 4.146415 0.055712 -0.623473 0.177572 0.522809 0.843311 0.171823 7.919977 2.294420 -10.449600 -2.192153 2.649531 14.630041 -5.946094 4.770162 28.854000 -1.825394 -14.622427 4.413842 5.640388 -20.734272 -5.948671 15.440033 -8.603888 -13.137852 -71.107758 -79.295456 63.622021 54.508213 -46.429142 -29.209726 -0.375385 0.013650 0.032447 -12.644485 12.153852 -9.721261 15.248572 62.817627 12.082417 -84.642303 58.248035 -55.663387 -0.759379 -0.288531 -0.308910
+0.050435 1.671064 0.079546 1.093215 35.983459 -2.139066 3.017900 -0.250176 -0.255423 -1.383556 -0.129376 1.515809 -0.794921 0.823673 0.083695 0.471557 0.297074 -0.132545 0.314686 0.233642 4.578667 -0.858146 0.326619 4.114213 0.048409 -0.611996 0.183948 0.525512 0.833354 0.165164 7.850098 2.343861 -10.441935 -2.204339 2.701849 14.437363 -5.960052 4.738928 28.567453 -1.639070 -14.669295 4.467441 5.509173 -20.516508 -6.020821 14.951685 -8.429297 -12.996246 -70.795593 -78.828667 63.283733 54.822636 -47.833076 -29.893827 -0.366324 0.003588 0.031600 -12.526380 11.950170 -9.649835 17.124981 62.494274 13.262240 -85.263184 59.198933 -57.114037 -0.753988 -0.284215 -0.302799
+0.050955 1.670428 0.079848 0.903158 35.543045 -1.939275 3.079081 -0.293003 -0.540169 -1.283830 -0.139132 1.667989 -0.795821 0.818165 0.080269 0.471831 0.294149 -0.125795 0.489588 0.330247 4.126373 -1.003137 0.351619 4.303168 0.044581 -0.608511 0.181540 0.522403 0.820994 0.165066 8.181985 2.516271 -10.479298 -2.143429 2.831703 14.074541 -6.034562 4.811388 28.102791 -1.696857 -14.713048 4.768616 5.358076 -20.452990 -5.914348 14.838585 -7.849155 -12.572924 -72.965355 -77.797638 64.954498 56.478954 -50.188789 -31.986877 -0.359510 0.002851 0.039693 -12.703396 11.240368 -9.529000 20.194355 62.019615 15.377612 -87.118935 60.853245 -60.236732 -0.751565 -0.283514 -0.303227
+0.051321 1.669998 0.079917 1.022229 35.086838 -1.626138 2.948421 -0.322659 -0.831135 -1.264407 -0.140674 1.856723 -0.796688 0.810701 0.082596 0.475948 0.311898 -0.127076 0.412929 0.397859 3.872775 -1.250527 0.384538 4.270426 0.041650 -0.608461 0.189424 0.531868 0.824619 0.161722 8.220167 2.702409 -10.531656 -2.141010 3.001126 13.857776 -6.078801 4.907050 27.848139 -1.641022 -14.649521 4.750578 5.182422 -20.250347 -6.039337 14.636772 -6.951462 -12.545179 -75.166626 -76.673332 66.450600 56.915081 -52.600636 -33.442177 -0.363343 -0.009322 0.035841 -12.700704 10.473583 -9.627508 23.532307 61.605652 17.570370 -88.667953 62.650448 -63.399887 -0.758002 -0.279826 -0.302796
+0.051547 1.670034 0.079845 1.036968 34.697113 -1.492106 2.995063 -0.297665 -0.923387 -1.468930 -0.119321 1.882283 -0.787942 0.789721 0.080650 0.490478 0.331958 -0.105053 0.234910 0.420462 3.689543 -1.084834 0.359384 4.282561 0.027391 -0.588176 0.189629 0.532239 0.806153 0.161732 8.268809 2.753097 -10.519224 -2.155419 3.042879 13.714745 -6.065427 4.868672 27.539133 -1.832153 -14.313983 4.804371 5.274069 -19.927355 -6.604616 14.134051 -6.738642 -12.510820 -72.773087 -75.162277 63.252644 56.797169 -55.870495 -34.973621 -0.349820 -0.020095 0.046768 -12.291365 10.540211 -9.847257 25.971272 61.472614 19.155691 -88.934135 64.794701 -65.699059 -0.749635 -0.267912 -0.291611
+0.052380 1.670164 0.079837 0.978339 34.382439 -1.314850 2.958524 -0.296860 -1.043319 -1.372988 -0.126424 1.751303 -0.788802 0.779242 0.081538 0.486128 0.316137 -0.096265 0.256089 0.509649 3.326399 -1.243640 0.371080 4.495334 0.021474 -0.574345 0.195847 0.517525 0.789076 0.156921 8.456328 2.824600 -10.427766 -2.197144 3.090913 13.442000 -6.104652 4.799969 26.881725 -2.025975 -14.078970 4.973618 5.167322 -19.706944 -6.532036 13.719447 -7.396658 -12.326555 -68.442574 -73.521545 58.304405 55.976265 -59.391674 -36.169315 -0.333219 -0.034025 0.071983 -11.928431 11.437916 -9.687008 28.298519 60.954433 20.578396 -91.278008 67.431305 -70.375175 -0.746105 -0.256012 -0.298774
+0.052779 1.670293 0.079838 0.734260 34.114620 -1.308561 3.067275 -0.290465 -1.089488 -1.144143 -0.142079 1.516601 -0.783965 0.766228 0.082450 0.481462 0.302668 -0.076673 0.502374 0.499101 3.231309 -1.524966 0.390596 4.300476 0.012977 -0.549226 0.192679 0.502417 0.767043 0.150275 8.639610 2.859595 -10.354753 -2.162956 3.098950 13.273678 -6.004428 4.741036 26.379974 -2.116080 -14.129115 5.023512 5.099277 -19.614777 -6.763466 13.084592 -8.266971 -12.069324 -65.687752 -71.994507 54.787903 55.585758 -62.411465 -37.480400 -0.315546 -0.055010 0.094974 -11.848722 12.670813 -9.602012 29.958427 60.440739 21.379108 -92.888710 69.645279 -74.122681 -0.731303 -0.236541 -0.302483
+0.052813 1.670141 0.080230 0.908277 34.129711 -1.086763 2.783380 -0.339127 -1.196940 -0.761818 -0.176862 1.459013 -0.793272 0.768730 0.078292 0.487429 0.289737 -0.039022 0.292326 0.510687 3.113835 -1.202313 0.324853 4.215816 0.005018 -0.543315 0.190945 0.491474 0.741639 0.157884 8.235631 2.799057 -10.290317 -2.148050 2.984715 13.102726 -5.759658 4.549164 25.860296 -2.044061 -14.232334 4.869754 4.154621 -19.183256 -6.609097 12.373513 -9.045307 -12.040943 -63.317570 -70.749008 52.089851 54.330452 -65.406319 -38.066517 -0.314546 -0.066757 0.115838 -11.768380 13.679309 -9.734341 31.489487 59.440304 21.969141 -94.808510 72.765526 -79.156494 -0.732769 -0.232882 -0.304400
diff --git a/visualization/joints2bvh.py b/visualization/joints2bvh.py
new file mode 100644
index 0000000000000000000000000000000000000000..f95895565867002cd6e16134f144b8617f82a545
--- /dev/null
+++ b/visualization/joints2bvh.py
@@ -0,0 +1,139 @@
+import visualization.Animation as Animation
+
+from visualization.InverseKinematics import BasicInverseKinematics, BasicJacobianIK, InverseKinematics
+from visualization.Quaternions import Quaternions
+import visualization.BVH_mod as BVH
+from visualization.remove_fs import *
+
+from utils.plot_script import plot_3d_motion
+from utils import paramUtil
+from common.skeleton import Skeleton
+import torch
+
+from torch import nn
+from visualization.utils.quat import ik_rot, between, fk, ik
+from tqdm import tqdm
+
+
+def get_grot(glb, parent, offset):
+ root_quat = np.array([[1.0, 0.0, 0.0, 0.0]]).repeat(glb.shape[0], axis=0)[:, None]
+ local_pos = glb[:, 1:] - glb[:, parent[1:]]
+ norm_offset = offset[1:] / np.linalg.norm(offset[1:], axis=-1, keepdims=True)
+ norm_lpos = local_pos / np.linalg.norm(local_pos, axis=-1, keepdims=True)
+ grot = between(norm_offset, norm_lpos)
+ grot = np.concatenate((root_quat, grot), axis=1)
+ grot /= np.linalg.norm(grot, axis=-1, keepdims=True)
+ return grot
+
+
+class Joint2BVHConvertor:
+ def __init__(self):
+ self.template = BVH.load('./visualization/data/template.bvh', need_quater=True)
+ self.re_order = [0, 1, 4, 7, 10, 2, 5, 8, 11, 3, 6, 9, 12, 15, 13, 16, 18, 20, 14, 17, 19, 21]
+
+ self.re_order_inv = [0, 1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12, 14, 18, 13, 15, 19, 16, 20, 17, 21]
+ self.end_points = [4, 8, 13, 17, 21]
+
+ self.template_offset = self.template.offsets.copy()
+ self.parents = [-1, 0, 1, 2, 3, 0, 5, 6, 7, 0, 9, 10, 11, 12, 11, 14, 15, 16, 11, 18, 19, 20]
+
+ def convert(self, positions, filename, iterations=10, foot_ik=True):
+ '''
+ Convert the SMPL joint positions to Mocap BVH
+ :param positions: (N, 22, 3)
+ :param filename: Save path for resulting BVH
+ :param iterations: iterations for optimizing rotations, 10 is usually enough
+ :param foot_ik: whether to enfore foot inverse kinematics, removing foot slide issue.
+ :return:
+ '''
+ positions = positions[:, self.re_order]
+ new_anim = self.template.copy()
+ new_anim.rotations = Quaternions.id(positions.shape[:-1])
+ new_anim.positions = new_anim.positions[0:1].repeat(positions.shape[0], axis=-0)
+ new_anim.positions[:, 0] = positions[:, 0]
+
+ if foot_ik:
+ positions = remove_fs(positions, None, fid_l=(3, 4), fid_r=(7, 8), interp_length=5,
+ force_on_floor=True)
+ ik_solver = BasicInverseKinematics(new_anim, positions, iterations=iterations, silent=True)
+ new_anim = ik_solver()
+
+ # BVH.save(filename, new_anim, names=new_anim.names, frametime=1 / 20, order='zyx', quater=True)
+ glb = Animation.positions_global(new_anim)[:, self.re_order_inv]
+ if filename is not None:
+ BVH.save(filename, new_anim, names=new_anim.names, frametime=1 / 20, order='zyx', quater=True)
+ return new_anim, glb
+
+ def convert_sgd(self, positions, filename, iterations=100, foot_ik=True):
+ '''
+ Convert the SMPL joint positions to Mocap BVH
+
+ :param positions: (N, 22, 3)
+ :param filename: Save path for resulting BVH
+ :param iterations: iterations for optimizing rotations, 10 is usually enough
+ :param foot_ik: whether to enfore foot inverse kinematics, removing foot slide issue.
+ :return:
+ '''
+
+ ## Positional Foot locking ##
+ glb = positions[:, self.re_order]
+
+ if foot_ik:
+ glb = remove_fs(glb, None, fid_l=(3, 4), fid_r=(7, 8), interp_length=2,
+ force_on_floor=True)
+
+ ## Fit BVH ##
+ new_anim = self.template.copy()
+ new_anim.rotations = Quaternions.id(glb.shape[:-1])
+ new_anim.positions = new_anim.positions[0:1].repeat(glb.shape[0], axis=-0)
+ new_anim.positions[:, 0] = glb[:, 0]
+ anim = new_anim.copy()
+
+ rot = torch.tensor(anim.rotations.qs, dtype=torch.float)
+ pos = torch.tensor(anim.positions[:, 0, :], dtype=torch.float)
+ offset = torch.tensor(anim.offsets, dtype=torch.float)
+
+ glb = torch.tensor(glb, dtype=torch.float)
+ ik_solver = InverseKinematics(rot, pos, offset, anim.parents, glb)
+ print('Fixing foot contact using IK...')
+ for i in tqdm(range(iterations)):
+ mse = ik_solver.step()
+ # print(i, mse)
+
+ rotations = ik_solver.rotations.detach().cpu()
+ norm = torch.norm(rotations, dim=-1, keepdim=True)
+ rotations /= norm
+
+ anim.rotations = Quaternions(rotations.numpy())
+ anim.rotations[:, self.end_points] = Quaternions.id((anim.rotations.shape[0], len(self.end_points)))
+ anim.positions[:, 0, :] = ik_solver.position.detach().cpu().numpy()
+ if filename is not None:
+ BVH.save(filename, anim, names=new_anim.names, frametime=1 / 20, order='zyx', quater=True)
+ # BVH.save(filename[:-3] + 'bvh', anim, names=new_anim.names, frametime=1 / 20, order='zyx', quater=True)
+ glb = Animation.positions_global(anim)[:, self.re_order_inv]
+ return anim, glb
+
+
+
+if __name__ == "__main__":
+ # file = 'batch0_sample13_repeat0_len196.npy'
+ # file = 'batch2_sample10_repeat0_len156.npy'
+ # file = 'batch2_sample13_repeat0_len196.npy' #line #57 new_anim.positions = lpos #new_anim.positions[0:1].repeat(positions.shape[0], axis=-0) #TODO, figure out why it's important
+ # file = 'batch1_sample12_repeat0_len196.npy' #hard case karate
+ # file = 'batch1_sample14_repeat0_len180.npy'
+ # file = 'batch0_sample3_repeat0_len192.npy'
+ # file = 'batch1_sample4_repeat0_len136.npy'
+
+ # file = 'batch0_sample0_repeat0_len152.npy'
+ # path = f'/Users/yuxuanmu/project/MaskMIT/demo/cond4_topkr0.9_ts18_tau1.0_s1009/joints/{file}'
+ # joints = np.load(path)
+ # converter = Joint2BVHConvertor()
+ # new_anim = converter.convert(joints, './gen_L196.mp4', foot_ik=True)
+
+ folder = '/Users/yuxuanmu/project/MaskMIT/demo/cond4_topkr0.9_ts18_tau1.0_s1009'
+ files = os.listdir(os.path.join(folder, 'joints'))
+ files = [f for f in files if 'repeat' in f]
+ converter = Joint2BVHConvertor()
+ for f in tqdm(files):
+ joints = np.load(os.path.join(folder, 'joints', f))
+ converter.convert(joints, os.path.join(folder, 'ik_animations', f'ik_{f}'.replace('npy', 'mp4')), foot_ik=True)
\ No newline at end of file
diff --git a/visualization/remove_fs.py b/visualization/remove_fs.py
new file mode 100644
index 0000000000000000000000000000000000000000..5dc0743a79093f19703c2e1cb86d573271501f48
--- /dev/null
+++ b/visualization/remove_fs.py
@@ -0,0 +1,329 @@
+import os
+import sys
+import numpy as np
+import torch
+import argparse
+
+from os.path import join as pjoin
+
+
+# from visualization import BVH
+from visualization.InverseKinematics import JacobianInverseKinematics, BasicInverseKinematics
+# from scripts.motion_process_bvh import *
+# from visualization.Animation import *
+
+
+def softmax(x, **kw):
+ softness = kw.pop("softness", 1.0)
+ maxi, mini = np.max(x, **kw), np.min(x, **kw)
+ return maxi + np.log(softness + np.exp(mini - maxi))
+
+
+def softmin(x, **kw):
+ return -softmax(-x, **kw)
+
+
+def alpha(t):
+ return 2.0 * t * t * t - 3.0 * t * t + 1
+
+
+def lerp(a, l, r):
+ return (1 - a) * l + a * r
+
+def remove_fs_old(anim, glb, foot_contact, fid_l=(3, 4), fid_r=(7, 8), interp_length=5, force_on_floor=True):
+ # glb_height = 2.06820832 Not the case, may be use upper leg length
+ scale = 1. #glb_height / 1.65 #scale to meter
+ # fps = 20 #
+ # velocity_thres = 10. # m/s
+ height_thres = [0.06, 0.03] #[ankle, toe] meter
+ if foot_contact is None:
+ def foot_detect(positions, velfactor, heightfactor):
+ feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2
+ feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2
+ feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2
+ feet_l_h = positions[:-1, fid_l, 1]
+ feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float)
+
+ feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2
+ feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2
+ feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2
+ feet_r_h = positions[:-1, fid_r, 1]
+
+ feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float)
+
+ return feet_l, feet_r
+
+ # feet_thre = 0.002
+ # feet_vel_thre = np.array([velocity_thres**2, velocity_thres**2]) * scale**2 / fps**2
+ feet_vel_thre = np.array([0.05, 0.2])
+ # height_thre = np.array([0.06, 0.04]) * scale
+ feet_h_thre = np.array(height_thres) * scale
+ feet_l, feet_r = foot_detect(glb, velfactor=feet_vel_thre, heightfactor=feet_h_thre)
+ foot = np.concatenate([feet_l, feet_r], axis=-1).transpose(1, 0) # [4, T-1]
+ foot = np.concatenate([foot, foot[:, -1:]], axis=-1)
+ else:
+ foot = foot_contact.transpose(1, 0)
+
+ T = len(glb)
+
+ fid = list(fid_l) + list(fid_r)
+ fid_l, fid_r = np.array(fid_l), np.array(fid_r)
+ foot_heights = np.minimum(glb[:, fid_l, 1],
+ glb[:, fid_r, 1]).min(axis=1) # [T, 2] -> [T]
+ # print(foot_heights)
+ # floor_height = softmin(foot_heights, softness=0.03, axis=0)
+ sort_height = np.sort(foot_heights)
+ temp_len = len(sort_height)
+ floor_height = np.mean(sort_height[int(0.25*temp_len):int(0.5*temp_len)])
+ if floor_height > 0.5: # for motion like swim
+ floor_height = 0
+ # print(floor_height)
+ # floor_height = foot_heights.min()
+ # print(floor_height)
+ # print(foot)
+ # print(foot_heights.min())
+ # print(floor_height)
+ glb[:, :, 1] -= floor_height
+ anim.positions[:, 0, 1] -= floor_height
+ for i, fidx in enumerate(fid):
+ fixed = foot[i] # [T]
+
+ """
+ for t in range(T):
+ glb[t, fidx][1] = max(glb[t, fidx][1], 0.25)
+ """
+
+ s = 0
+ while s < T:
+ while s < T and fixed[s] == 0:
+ s += 1
+ if s >= T:
+ break
+ t = s
+ avg = glb[t, fidx].copy()
+ while t + 1 < T and fixed[t + 1] == 1:
+ t += 1
+ avg += glb[t, fidx].copy()
+ avg /= (t - s + 1)
+
+ if force_on_floor:
+ avg[1] = 0.0
+
+ for j in range(s, t + 1):
+ glb[j, fidx] = avg.copy()
+
+ s = t + 1
+
+ for s in range(T):
+ if fixed[s] == 1:
+ continue
+ l, r = None, None
+ consl, consr = False, False
+ for k in range(interp_length):
+ if s - k - 1 < 0:
+ break
+ if fixed[s - k - 1]:
+ l = s - k - 1
+ consl = True
+ break
+ for k in range(interp_length):
+ if s + k + 1 >= T:
+ break
+ if fixed[s + k + 1]:
+ r = s + k + 1
+ consr = True
+ break
+
+ if not consl and not consr:
+ continue
+ if consl and consr:
+ litp = lerp(alpha(1.0 * (s - l + 1) / (interp_length + 1)),
+ glb[s, fidx], glb[l, fidx])
+ ritp = lerp(alpha(1.0 * (r - s + 1) / (interp_length + 1)),
+ glb[s, fidx], glb[r, fidx])
+ itp = lerp(alpha(1.0 * (s - l + 1) / (r - l + 1)),
+ ritp, litp)
+ glb[s, fidx] = itp.copy()
+ continue
+ if consl:
+ litp = lerp(alpha(1.0 * (s - l + 1) / (interp_length + 1)),
+ glb[s, fidx], glb[l, fidx])
+ glb[s, fidx] = litp.copy()
+ continue
+ if consr:
+ ritp = lerp(alpha(1.0 * (r - s + 1) / (interp_length + 1)),
+ glb[s, fidx], glb[r, fidx])
+ glb[s, fidx] = ritp.copy()
+
+ targetmap = {}
+ for j in range(glb.shape[1]):
+ targetmap[j] = glb[:, j]
+
+ # ik = BasicInverseKinematics(anim, glb, iterations=5,
+ # silent=True)
+
+ # slightly larger loss, but better visual
+ ik = JacobianInverseKinematics(anim, targetmap, iterations=30, damping=5, recalculate=False, silent=True)
+
+ anim = ik()
+ return anim
+
+
+
+def remove_fs(glb, foot_contact, fid_l=(3, 4), fid_r=(7, 8), interp_length=5, force_on_floor=True):
+ # glb_height = 2.06820832 Not the case, may be use upper leg length
+ scale = 1. #glb_height / 1.65 #scale to meter
+ # fps = 20 #
+ # velocity_thres = 10. # m/s
+ height_thres = [0.06, 0.03] #[ankle, toe] meter
+ if foot_contact is None:
+ def foot_detect(positions, velfactor, heightfactor):
+ feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2
+ feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2
+ feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2
+ feet_l_h = positions[:-1, fid_l, 1]
+ feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float)
+
+ feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2
+ feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2
+ feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2
+ feet_r_h = positions[:-1, fid_r, 1]
+
+ feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float)
+
+ return feet_l, feet_r
+
+ # feet_thre = 0.002
+ # feet_vel_thre = np.array([velocity_thres**2, velocity_thres**2]) * scale**2 / fps**2
+ feet_vel_thre = np.array([0.05, 0.2])
+ # height_thre = np.array([0.06, 0.04]) * scale
+ feet_h_thre = np.array(height_thres) * scale
+ feet_l, feet_r = foot_detect(glb, velfactor=feet_vel_thre, heightfactor=feet_h_thre)
+ foot = np.concatenate([feet_l, feet_r], axis=-1).transpose(1, 0) # [4, T-1]
+ foot = np.concatenate([foot, foot[:, -1:]], axis=-1)
+ else:
+ foot = foot_contact.transpose(1, 0)
+
+ T = len(glb)
+
+ fid = list(fid_l) + list(fid_r)
+ fid_l, fid_r = np.array(fid_l), np.array(fid_r)
+ foot_heights = np.minimum(glb[:, fid_l, 1],
+ glb[:, fid_r, 1]).min(axis=1) # [T, 2] -> [T]
+ # print(foot_heights)
+ # floor_height = softmin(foot_heights, softness=0.03, axis=0)
+ sort_height = np.sort(foot_heights)
+ temp_len = len(sort_height)
+ floor_height = np.mean(sort_height[int(0.25*temp_len):int(0.5*temp_len)])
+ if floor_height > 0.5: # for motion like swim
+ floor_height = 0
+ # print(floor_height)
+ # floor_height = foot_heights.min()
+ # print(floor_height)
+ # print(foot)
+ # print(foot_heights.min())
+ # print(floor_height)
+ glb[:, :, 1] -= floor_height
+ # anim.positions[:, 0, 1] -= floor_height
+ for i, fidx in enumerate(fid):
+ fixed = foot[i] # [T]
+
+ """
+ for t in range(T):
+ glb[t, fidx][1] = max(glb[t, fidx][1], 0.25)
+ """
+
+ s = 0
+ while s < T:
+ while s < T and fixed[s] == 0:
+ s += 1
+ if s >= T:
+ break
+ t = s
+ avg = glb[t, fidx].copy()
+ while t + 1 < T and fixed[t + 1] == 1:
+ t += 1
+ avg += glb[t, fidx].copy()
+ avg /= (t - s + 1)
+
+ if force_on_floor:
+ avg[1] = 0.0
+
+ for j in range(s, t + 1):
+ glb[j, fidx] = avg.copy()
+
+ s = t + 1
+
+ for s in range(T):
+ if fixed[s] == 1:
+ continue
+ l, r = None, None
+ consl, consr = False, False
+ for k in range(interp_length):
+ if s - k - 1 < 0:
+ break
+ if fixed[s - k - 1]:
+ l = s - k - 1
+ consl = True
+ break
+ for k in range(interp_length):
+ if s + k + 1 >= T:
+ break
+ if fixed[s + k + 1]:
+ r = s + k + 1
+ consr = True
+ break
+
+ if not consl and not consr:
+ continue
+ if consl and consr:
+ litp = lerp(alpha(1.0 * (s - l + 1) / (interp_length + 1)),
+ glb[s, fidx], glb[l, fidx])
+ ritp = lerp(alpha(1.0 * (r - s + 1) / (interp_length + 1)),
+ glb[s, fidx], glb[r, fidx])
+ itp = lerp(alpha(1.0 * (s - l + 1) / (r - l + 1)),
+ ritp, litp)
+ glb[s, fidx] = itp.copy()
+ continue
+ if consl:
+ litp = lerp(alpha(1.0 * (s - l + 1) / (interp_length + 1)),
+ glb[s, fidx], glb[l, fidx])
+ glb[s, fidx] = litp.copy()
+ continue
+ if consr:
+ ritp = lerp(alpha(1.0 * (r - s + 1) / (interp_length + 1)),
+ glb[s, fidx], glb[r, fidx])
+ glb[s, fidx] = ritp.copy()
+
+ targetmap = {}
+ for j in range(glb.shape[1]):
+ targetmap[j] = glb[:, j]
+
+ # ik = BasicInverseKinematics(anim, glb, iterations=5,
+ # silent=True)
+
+ # slightly larger loss, but better visual
+ # ik = JacobianInverseKinematics(anim, targetmap, iterations=30, damping=5, recalculate=False, silent=True)
+
+ # anim = ik()
+ return glb
+
+
+def compute_foot_sliding(foot_data, traj_qpos, offseth):
+ foot = np.array(foot_data).copy()
+ offseth = np.mean(foot[:10, 1])
+ foot[:, 1] -= offseth # Grounding it
+ foot_disp = np.linalg.norm(foot[1:, [0, 2]] - foot[:-1, [0, 2]], axis=1)
+ traj_qpos[:, 1] -= offseth
+ seq_len = len(traj_qpos)
+ H = 0.05
+ y_threshold = 0.65 # yup system
+ y = traj_qpos[1:, 1]
+
+ foot_avg = (foot[:-1, 1] + foot[1:, 1]) / 2
+ subset = np.logical_and(foot_avg < H, y > y_threshold)
+ # import pdb; pdb.set_trace()
+
+ sliding_stats = np.abs(foot_disp * (2 - 2 ** (foot_avg / H)))[subset]
+ sliding = np.sum(sliding_stats) / seq_len * 1000
+ return sliding, sliding_stats
\ No newline at end of file
diff --git a/visualization/smpl2bvh.py b/visualization/smpl2bvh.py
new file mode 100644
index 0000000000000000000000000000000000000000..1d582a558454457826518ddf2e89c46891a95a20
--- /dev/null
+++ b/visualization/smpl2bvh.py
@@ -0,0 +1,205 @@
+import torch
+import numpy as np
+import argparse
+import pickle
+import smplx
+
+from utils import bvh, quat
+
+
+def parse_args():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--model_path", type=str, default="./visualization/data/smpl/")
+ parser.add_argument("--model_type", type=str, default="smpl", choices=["smpl", "smplx"])
+ parser.add_argument("--gender", type=str, default="MALE", choices=["MALE", "FEMALE", "NEUTRAL"])
+ parser.add_argument("--num_betas", type=int, default=10, choices=[10, 300])
+ parser.add_argument("--poses", type=str, default="data/gWA_sFM_cAll_d27_mWA5_ch20.pkl")
+ parser.add_argument("--fps", type=int, default=60)
+ parser.add_argument("--output", type=str, default="data/gWA_sFM_cAll_d27_mWA5_ch20.bvh")
+ parser.add_argument("--mirror", action="store_true")
+ return parser.parse_args()
+
+def mirror_rot_trans(lrot, trans, names, parents):
+ joints_mirror = np.array([(
+ names.index("Left"+n[5:]) if n.startswith("Right") else (
+ names.index("Right"+n[4:]) if n.startswith("Left") else
+ names.index(n))) for n in names])
+
+ mirror_pos = np.array([-1, 1, 1])
+ mirror_rot = np.array([1, 1, -1, -1])
+ grot = quat.fk_rot(lrot, parents)
+ trans_mirror = mirror_pos * trans
+ grot_mirror = mirror_rot * grot[:,joints_mirror]
+
+ return quat.ik_rot(grot_mirror, parents), trans_mirror
+
+def smpl2bvh(model_path:str, poses:str, output:str, mirror:bool,
+ model_type="smpl", gender="MALE",
+ num_betas=10, fps=60) -> None:
+ """Save bvh file created by smpl parameters.
+
+ Args:
+ model_path (str): Path to smpl models.
+ poses (str): Path to npz or pkl file.
+ output (str): Where to save bvh.
+ mirror (bool): Whether save mirror motion or not.
+ model_type (str, optional): I prepared "smpl" only. Defaults to "smpl".
+ gender (str, optional): Gender Information. Defaults to "MALE".
+ num_betas (int, optional): How many pca parameters to use in SMPL. Defaults to 10.
+ fps (int, optional): Frame per second. Defaults to 30.
+ """
+
+ # names = [
+ # "Pelvis",
+ # "Left_hip",
+ # "Right_hip",
+ # "Spine1",
+ # "Left_knee",
+ # "Right_knee",
+ # "Spine2",
+ # "Left_ankle",
+ # "Right_ankle",
+ # "Spine3",
+ # "Left_foot",
+ # "Right_foot",
+ # "Neck",
+ # "Left_collar",
+ # "Right_collar",
+ # "Head",
+ # "Left_shoulder",
+ # "Right_shoulder",
+ # "Left_elbow",
+ # "Right_elbow",
+ # "Left_wrist",
+ # "Right_wrist",
+ # "Left_palm",
+ # "Right_palm",
+ # ]
+
+ names = [
+ "Hips",
+ "LeftUpLeg",
+ "RightUpLeg",
+ "Spine",
+ "LeftLeg",
+ "RightLeg",
+ "Spine1",
+ "LeftFoot",
+ "RightFoot",
+ "Spine2",
+ "LeftToe",
+ "RightToe",
+ "Neck",
+ "LeftShoulder",
+ "RightShoulder",
+ "Head",
+ "LeftArm",
+ "RightArm",
+ "LeftForeArm",
+ "RightForeArm",
+ "LeftHand",
+ "RightHand",
+ "LeftThumb",
+ "RightThumb",
+ ]
+
+ # I prepared smpl models only,
+ # but I will release for smplx models recently.
+ model = smplx.create(model_path=model_path,
+ model_type=model_type,
+ gender=gender,
+ batch_size=1)
+
+ parents = model.parents.detach().cpu().numpy()
+
+ # You can define betas like this.(default betas are 0 at all.)
+ rest = model(
+ # betas = torch.randn([1, num_betas], dtype=torch.float32)
+ )
+ rest_pose = rest.joints.detach().cpu().numpy().squeeze()[:24,:]
+
+ root_offset = rest_pose[0]
+ offsets = rest_pose - rest_pose[parents]
+ offsets[0] = root_offset
+ offsets *= 1
+
+ scaling = None
+
+ # Pose setting.
+ if poses.endswith(".npz"):
+ poses = np.load(poses)
+ rots = np.squeeze(poses["poses"], axis=0) # (N, 24, 3)
+ trans = np.squeeze(poses["trans"], axis=0) # (N, 3)
+
+ elif poses.endswith(".pkl"):
+ with open(poses, "rb") as f:
+ poses = pickle.load(f)
+ rots = poses["smpl_poses"] # (N, 72)
+ rots = rots.reshape(rots.shape[0], -1, 3) # (N, 24, 3)
+ scaling = poses["smpl_scaling"] # (1,)
+ trans = poses["smpl_trans"] # (N, 3)
+
+ else:
+ raise Exception("This file type is not supported!")
+
+ if scaling is not None:
+ trans /= scaling
+
+ # to quaternion
+ rots = quat.from_axis_angle(rots)
+
+ order = "zyx"
+ pos = offsets[None].repeat(len(rots), axis=0)
+ positions = pos.copy()
+ # positions[:,0] += trans * 10
+ positions[:, 0] += trans
+ rotations = np.degrees(quat.to_euler(rots, order=order))
+
+ bvh_data ={
+ "rotations": rotations[:, :22],
+ "positions": positions[:, :22],
+ "offsets": offsets[:22],
+ "parents": parents[:22],
+ "names": names[:22],
+ "order": order,
+ "frametime": 1 / fps,
+ }
+
+ if not output.endswith(".bvh"):
+ output = output + ".bvh"
+
+ bvh.save(output, bvh_data)
+
+ if mirror:
+ rots_mirror, trans_mirror = mirror_rot_trans(
+ rots, trans, names, parents)
+ positions_mirror = pos.copy()
+ positions_mirror[:,0] += trans_mirror
+ rotations_mirror = np.degrees(
+ quat.to_euler(rots_mirror, order=order))
+
+ bvh_data ={
+ "rotations": rotations_mirror,
+ "positions": positions_mirror,
+ "offsets": offsets,
+ "parents": parents,
+ "names": names,
+ "order": order,
+ "frametime": 1 / fps,
+ }
+
+ output_mirror = output.split(".")[0] + "_mirror.bvh"
+ bvh.save(output_mirror, bvh_data)
+
+
+def joints2bvh()
+
+if __name__ == "__main__":
+ args = parse_args()
+
+ smpl2bvh(model_path=args.model_path, model_type=args.model_type,
+ mirror = args.mirror, gender=args.gender,
+ poses=args.poses, num_betas=args.num_betas,
+ fps=args.fps, output=args.output)
+
+ print("finished!")
\ No newline at end of file
diff --git a/visualization/utils/bvh.py b/visualization/utils/bvh.py
new file mode 100644
index 0000000000000000000000000000000000000000..a36402d9999cbc29eff95c9e9dc2e5fcdee27bda
--- /dev/null
+++ b/visualization/utils/bvh.py
@@ -0,0 +1,242 @@
+import re
+import numpy as np
+
+channelmap = {
+ 'Xrotation': 'x',
+ 'Yrotation': 'y',
+ 'Zrotation': 'z'
+}
+
+channelmap_inv = {
+ 'x': 'Xrotation',
+ 'y': 'Yrotation',
+ 'z': 'Zrotation',
+}
+
+ordermap = {
+ 'x': 0,
+ 'y': 1,
+ 'z': 2,
+}
+
+def load(filename:str, order:str=None) -> dict:
+ """Loads a BVH file.
+
+ Args:
+ filename (str): Path to the BVH file.
+ order (str): The order of the rotation channels. (i.e."xyz")
+
+ Returns:
+ dict: A dictionary containing the following keys:
+ * names (list)(jnum): The names of the joints.
+ * parents (list)(jnum): The parent indices.
+ * offsets (np.ndarray)(jnum, 3): The offsets of the joints.
+ * rotations (np.ndarray)(fnum, jnum, 3) : The local coordinates of rotations of the joints.
+ * positions (np.ndarray)(fnum, jnum, 3) : The positions of the joints.
+ * order (str): The order of the channels.
+ * frametime (float): The time between two frames.
+ """
+
+ f = open(filename, "r")
+
+ i = 0
+ active = -1
+ end_site = False
+
+ # Create empty lists for saving parameters
+ names = []
+ offsets = np.array([]).reshape((0, 3))
+ parents = np.array([], dtype=int)
+
+ # Parse the file, line by line
+ for line in f:
+
+ if "HIERARCHY" in line: continue
+ if "MOTION" in line: continue
+
+ rmatch = re.match(r"ROOT (\w+)", line)
+ if rmatch:
+ names.append(rmatch.group(1))
+ offsets = np.append(offsets, np.array([[0, 0, 0]]), axis=0)
+ parents = np.append(parents, active)
+ active = (len(parents) - 1)
+ continue
+
+ if "{" in line: continue
+
+ if "}" in line:
+ if end_site:
+ end_site = False
+ else:
+ active = parents[active]
+ continue
+
+ offmatch = re.match(r"\s*OFFSET\s+([\-\d\.e]+)\s+([\-\d\.e]+)\s+([\-\d\.e]+)", line)
+ if offmatch:
+ if not end_site:
+ offsets[active] = np.array([list(map(float, offmatch.groups()))])
+ continue
+
+ chanmatch = re.match(r"\s*CHANNELS\s+(\d+)", line)
+ if chanmatch:
+ channels = int(chanmatch.group(1))
+ if order is None:
+ channelis = 0 if channels == 3 else 3
+ channelie = 3 if channels == 3 else 6
+ parts = line.split()[2 + channelis:2 + channelie]
+ if any([p not in channelmap for p in parts]):
+ continue
+ order = "".join([channelmap[p] for p in parts])
+ continue
+
+ jmatch = re.match("\s*JOINT\s+(\w+)", line)
+ if jmatch:
+ names.append(jmatch.group(1))
+ offsets = np.append(offsets, np.array([[0, 0, 0]]), axis=0)
+ parents = np.append(parents, active)
+ active = (len(parents) - 1)
+ continue
+
+ if "End Site" in line:
+ end_site = True
+ continue
+
+ fmatch = re.match("\s*Frames:\s+(\d+)", line)
+ if fmatch:
+ fnum = int(fmatch.group(1))
+ positions = offsets[None].repeat(fnum, axis=0)
+ rotations = np.zeros((fnum, len(offsets), 3))
+ continue
+
+ fmatch = re.match("\s*Frame Time:\s+([\d\.]+)", line)
+ if fmatch:
+ frametime = float(fmatch.group(1))
+ continue
+
+ dmatch = line.strip().split(' ')
+ if dmatch:
+ data_block = np.array(list(map(float, dmatch)))
+ N = len(parents)
+ fi = i
+ if channels == 3:
+ positions[fi, 0:1] = data_block[0:3]
+ rotations[fi, :] = data_block[3:].reshape(N, 3)
+ elif channels == 6:
+ data_block = data_block.reshape(N, 6)
+ positions[fi, :] = data_block[:, 0:3]
+ rotations[fi, :] = data_block[:, 3:6]
+ elif channels == 9:
+ positions[fi, 0] = data_block[0:3]
+ data_block = data_block[3:].reshape(N - 1, 9)
+ rotations[fi, 1:] = data_block[:, 3:6]
+ positions[fi, 1:] += data_block[:, 0:3] * data_block[:, 6:9]
+ else:
+ raise Exception("Too many channels! %i" % channels)
+
+ i += 1
+
+ f.close()
+
+ return {
+ 'rotations': rotations,
+ 'positions': positions,
+ 'offsets': offsets,
+ 'parents': parents,
+ 'names': names,
+ 'order': order,
+ 'frametime': frametime
+ }
+
+
+def save_joint(f, data, t, i, save_order, order='zyx', save_positions=False):
+
+ save_order.append(i)
+
+ f.write("%sJOINT %s\n" % (t, data['names'][i]))
+ f.write("%s{\n" % t)
+ t += '\t'
+
+ f.write("%sOFFSET %f %f %f\n" % (t, data['offsets'][i,0], data['offsets'][i,1], data['offsets'][i,2]))
+
+ if save_positions:
+ f.write("%sCHANNELS 6 Xposition Yposition Zposition %s %s %s \n" % (t,
+ channelmap_inv[order[0]], channelmap_inv[order[1]], channelmap_inv[order[2]]))
+ else:
+ f.write("%sCHANNELS 3 %s %s %s\n" % (t,
+ channelmap_inv[order[0]], channelmap_inv[order[1]], channelmap_inv[order[2]]))
+
+ end_site = True
+
+ for j in range(len(data['parents'])):
+ if data['parents'][j] == i:
+ t = save_joint(f, data, t, j, save_order, order=order, save_positions=save_positions)
+ end_site = False
+
+ if end_site:
+ f.write("%sEnd Site\n" % t)
+ f.write("%s{\n" % t)
+ t += '\t'
+ f.write("%sOFFSET %f %f %f\n" % (t, 0.0, 0.0, 0.0))
+ t = t[:-1]
+ f.write("%s}\n" % t)
+
+ t = t[:-1]
+ f.write("%s}\n" % t)
+
+ return t
+
+
+def save(filename, data, save_positions=False):
+ """ Save a joint hierarchy to a file.
+
+ Args:
+ filename (str): The output will save on the bvh file.
+ data (dict): The data to save.(rotations, positions, offsets, parents, names, order, frametime)
+ save_positions (bool): Whether to save all of joint positions on MOTION. (False is recommended.)
+ """
+
+ order = data['order']
+ frametime = data['frametime']
+
+ with open(filename, 'w') as f:
+
+ t = ""
+ f.write("%sHIERARCHY\n" % t)
+ f.write("%sROOT %s\n" % (t, data['names'][0]))
+ f.write("%s{\n" % t)
+ t += '\t'
+
+ f.write("%sOFFSET %f %f %f\n" % (t, data['offsets'][0,0], data['offsets'][0,1], data['offsets'][0,2]) )
+ f.write("%sCHANNELS 6 Xposition Yposition Zposition %s %s %s \n" %
+ (t, channelmap_inv[order[0]], channelmap_inv[order[1]], channelmap_inv[order[2]]))
+
+ save_order = [0]
+
+ for i in range(len(data['parents'])):
+ if data['parents'][i] == 0:
+ t = save_joint(f, data, t, i, save_order, order=order, save_positions=save_positions)
+
+ t = t[:-1]
+ f.write("%s}\n" % t)
+
+ rots, poss = data['rotations'], data['positions']
+
+ f.write("MOTION\n")
+ f.write("Frames: %i\n" % len(rots));
+ f.write("Frame Time: %f\n" % frametime);
+
+ for i in range(rots.shape[0]):
+ for j in save_order:
+
+ if save_positions or j == 0:
+
+ f.write("%f %f %f %f %f %f " % (
+ poss[i,j,0], poss[i,j,1], poss[i,j,2],
+ rots[i,j,0], rots[i,j,1], rots[i,j,2]))
+
+ else:
+
+ f.write("%f %f %f " % (
+ rots[i,j,0], rots[i,j,1], rots[i,j,2]))
+
+ f.write("\n")
\ No newline at end of file
diff --git a/visualization/utils/quat.py b/visualization/utils/quat.py
new file mode 100644
index 0000000000000000000000000000000000000000..451d7b23d5172b6615cff06167824102a1942730
--- /dev/null
+++ b/visualization/utils/quat.py
@@ -0,0 +1,320 @@
+import numpy as np
+
+# Calculate cross object of two 3D vectors.
+def _fast_cross(a, b):
+ return np.concatenate([
+ a[...,1:2]*b[...,2:3] - a[...,2:3]*b[...,1:2],
+ a[...,2:3]*b[...,0:1] - a[...,0:1]*b[...,2:3],
+ a[...,0:1]*b[...,1:2] - a[...,1:2]*b[...,0:1]], axis=-1)
+
+# Make origin quaternions (No rotations)
+def eye(shape, dtype=np.float32):
+ return np.ones(list(shape) + [4], dtype=dtype) * np.asarray([1, 0, 0, 0], dtype=dtype)
+
+# Return norm of quaternions
+def length(x):
+ return np.sqrt(np.sum(x * x, axis=-1))
+
+# Make unit quaternions
+def normalize(x, eps=1e-8):
+ return x / (length(x)[...,None] + eps)
+
+def abs(x):
+ return np.where(x[...,0:1] > 0.0, x, -x)
+
+# Calculate inverse rotations
+def inv(q):
+ return np.array([1, -1, -1, -1], dtype=np.float32) * q
+
+# Calculate the dot product of two quaternions
+def dot(x, y):
+ return np.sum(x * y, axis=-1)[...,None] if x.ndim > 1 else np.sum(x * y, axis=-1)
+
+# Multiply two quaternions (return rotations).
+def mul(x, y):
+ x0, x1, x2, x3 = x[..., 0:1], x[..., 1:2], x[..., 2:3], x[..., 3:4]
+ y0, y1, y2, y3 = y[..., 0:1], y[..., 1:2], y[..., 2:3], y[..., 3:4]
+
+ return np.concatenate([
+ y0 * x0 - y1 * x1 - y2 * x2 - y3 * x3,
+ y0 * x1 + y1 * x0 - y2 * x3 + y3 * x2,
+ y0 * x2 + y1 * x3 + y2 * x0 - y3 * x1,
+ y0 * x3 - y1 * x2 + y2 * x1 + y3 * x0], axis=-1)
+
+def inv_mul(x, y):
+ return mul(inv(x), y)
+
+def mul_inv(x, y):
+ return mul(x, inv(y))
+
+# Multiply quaternions and vectors (return vectors).
+def mul_vec(q, x):
+ t = 2.0 * _fast_cross(q[..., 1:], x)
+ return x + q[..., 0][..., None] * t + _fast_cross(q[..., 1:], t)
+
+def inv_mul_vec(q, x):
+ return mul_vec(inv(q), x)
+
+def unroll(x):
+ y = x.copy()
+ for i in range(1, len(x)):
+ d0 = np.sum( y[i] * y[i-1], axis=-1)
+ d1 = np.sum(-y[i] * y[i-1], axis=-1)
+ y[i][d0 < d1] = -y[i][d0 < d1]
+ return y
+
+# Calculate quaternions between two 3D vectors (x to y).
+def between(x, y):
+ return np.concatenate([
+ np.sqrt(np.sum(x*x, axis=-1) * np.sum(y*y, axis=-1))[...,None] +
+ np.sum(x * y, axis=-1)[...,None],
+ _fast_cross(x, y)], axis=-1)
+
+def log(x, eps=1e-5):
+ length = np.sqrt(np.sum(np.square(x[...,1:]), axis=-1))[...,None]
+ halfangle = np.where(length < eps, np.ones_like(length), np.arctan2(length, x[...,0:1]) / length)
+ return halfangle * x[...,1:]
+
+def exp(x, eps=1e-5):
+ halfangle = np.sqrt(np.sum(np.square(x), axis=-1))[...,None]
+ c = np.where(halfangle < eps, np.ones_like(halfangle), np.cos(halfangle))
+ s = np.where(halfangle < eps, np.ones_like(halfangle), np.sinc(halfangle / np.pi))
+ return np.concatenate([c, s * x], axis=-1)
+
+# Calculate global space rotations and positions from local space.
+def fk(lrot, lpos, parents):
+
+ gp, gr = [lpos[...,:1,:]], [lrot[...,:1,:]]
+ for i in range(1, len(parents)):
+ gp.append(mul_vec(gr[parents[i]], lpos[...,i:i+1,:]) + gp[parents[i]])
+ gr.append(mul (gr[parents[i]], lrot[...,i:i+1,:]))
+
+ return np.concatenate(gr, axis=-2), np.concatenate(gp, axis=-2)
+
+def fk_rot(lrot, parents):
+
+ gr = [lrot[...,:1,:]]
+ for i in range(1, len(parents)):
+ gr.append(mul(gr[parents[i]], lrot[...,i:i+1,:]))
+
+ return np.concatenate(gr, axis=-2)
+
+# Calculate local space rotations and positions from global space.
+def ik(grot, gpos, parents):
+
+ return (
+ np.concatenate([
+ grot[...,:1,:],
+ mul(inv(grot[...,parents[1:],:]), grot[...,1:,:]),
+ ], axis=-2),
+ np.concatenate([
+ gpos[...,:1,:],
+ mul_vec(
+ inv(grot[...,parents[1:],:]),
+ gpos[...,1:,:] - gpos[...,parents[1:],:]),
+ ], axis=-2))
+
+def ik_rot(grot, parents):
+
+ return np.concatenate([grot[...,:1,:],
+ mul(inv(grot[...,parents[1:],:]), grot[...,1:,:]),
+ ], axis=-2)
+
+def fk_vel(lrot, lpos, lvel, lang, parents):
+
+ gp, gr, gv, ga = [lpos[...,:1,:]], [lrot[...,:1,:]], [lvel[...,:1,:]], [lang[...,:1,:]]
+ for i in range(1, len(parents)):
+ gp.append(mul_vec(gr[parents[i]], lpos[...,i:i+1,:]) + gp[parents[i]])
+ gr.append(mul (gr[parents[i]], lrot[...,i:i+1,:]))
+ gv.append(mul_vec(gr[parents[i]], lvel[...,i:i+1,:]) +
+ _fast_cross(ga[parents[i]], mul_vec(gr[parents[i]], lpos[...,i:i+1,:])) +
+ gv[parents[i]])
+ ga.append(mul_vec(gr[parents[i]], lang[...,i:i+1,:]) + ga[parents[i]])
+
+ return (
+ np.concatenate(gr, axis=-2),
+ np.concatenate(gp, axis=-2),
+ np.concatenate(gv, axis=-2),
+ np.concatenate(ga, axis=-2))
+
+# Linear Interpolation of two vectors
+def lerp(x, y, t):
+ return (1 - t) * x + t * y
+
+# LERP of quaternions
+def quat_lerp(x, y, t):
+ return normalize(lerp(x, y, t))
+
+# Spherical linear interpolation of quaternions
+def slerp(x, y, t):
+ if t == 0:
+ return x
+ elif t == 1:
+ return y
+
+ if dot(x, y) < 0:
+ y = - y
+ ca = dot(x, y)
+ theta = np.arccos(np.clip(ca, 0, 1))
+
+ r = normalize(y - x * ca)
+
+ return x * np.cos(theta * t) + r * np.sin(theta * t)
+
+
+###################################################
+# Calculate other rotations from other quaternions.
+###################################################
+
+# Calculate euler angles from quaternions.
+def to_euler(x, order='zyx'):
+
+ q0 = x[...,0:1]
+ q1 = x[...,1:2]
+ q2 = x[...,2:3]
+ q3 = x[...,3:4]
+
+ if order == 'zyx':
+
+ return np.concatenate([
+ np.arctan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3)),
+ np.arcsin((2 * (q0 * q2 - q3 * q1)).clip(-1,1)),
+ np.arctan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))], axis=-1)
+
+ elif order == 'yzx':
+
+ return np.concatenate([
+ np.arctan2(2 * (q2 * q0 - q1 * q3), q1 * q1 - q2 * q2 - q3 * q3 + q0 * q0),
+ np.arcsin((2 * (q1 * q2 + q3 * q0)).clip(-1,1)),
+ np.arctan2(2 * (q1 * q0 - q2 * q3), -q1 * q1 + q2 * q2 - q3 * q3 + q0 * q0)],axis=-1)
+
+ elif order == 'zxy':
+
+ return np.concatenate([
+ np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3),
+ np.arcsin((2 * (q0 * q1 + q2 * q3)).clip(-1,1)),
+ np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)], axis=-1)
+
+ elif order == 'yxz':
+
+ return np.concatenate([
+ np.arctan2(2 * (q1 * q3 + q0 * q2), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3),
+ np.arcsin((2 * (q0 * q1 - q2 * q3)).clip(-1,1)),
+ np.arctan2(2 * (q1 * q2 + q0 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)], axis=-1)
+
+ else:
+ raise NotImplementedError('Cannot convert from ordering %s' % order)
+
+# Calculate rotation matrix from quaternions.
+def to_xform(x):
+
+ qw, qx, qy, qz = x[...,0:1], x[...,1:2], x[...,2:3], x[...,3:4]
+
+ x2, y2, z2 = qx + qx, qy + qy, qz + qz
+ xx, yy, wx = qx * x2, qy * y2, qw * x2
+ xy, yz, wy = qx * y2, qy * z2, qw * y2
+ xz, zz, wz = qx * z2, qz * z2, qw * z2
+
+ return np.concatenate([
+ np.concatenate([1.0 - (yy + zz), xy - wz, xz + wy], axis=-1)[...,None,:],
+ np.concatenate([xy + wz, 1.0 - (xx + zz), yz - wx], axis=-1)[...,None,:],
+ np.concatenate([xz - wy, yz + wx, 1.0 - (xx + yy)], axis=-1)[...,None,:],
+ ], axis=-2)
+
+# Calculate 6d orthogonal rotation representation (ortho6d) from quaternions.
+# https://github.com/papagina/RotationContinuity
+def to_xform_xy(x):
+
+ qw, qx, qy, qz = x[...,0:1], x[...,1:2], x[...,2:3], x[...,3:4]
+
+ x2, y2, z2 = qx + qx, qy + qy, qz + qz
+ xx, yy, wx = qx * x2, qy * y2, qw * x2
+ xy, yz, wy = qx * y2, qy * z2, qw * y2
+ xz, zz, wz = qx * z2, qz * z2, qw * z2
+
+ return np.concatenate([
+ np.concatenate([1.0 - (yy + zz), xy - wz], axis=-1)[...,None,:],
+ np.concatenate([xy + wz, 1.0 - (xx + zz)], axis=-1)[...,None,:],
+ np.concatenate([xz - wy, yz + wx], axis=-1)[...,None,:],
+ ], axis=-2)
+
+# Calculate scaled angle axis from quaternions.
+def to_scaled_angle_axis(x, eps=1e-5):
+ return 2.0 * log(x, eps)
+
+
+#############################################
+# Calculate quaternions from other rotations.
+#############################################
+
+# Calculate quaternions from axis angles.
+def from_angle_axis(angle, axis):
+ c = np.cos(angle / 2.0)[..., None]
+ s = np.sin(angle / 2.0)[..., None]
+ q = np.concatenate([c, s * axis], axis=-1)
+ return q
+
+# Calculate quaternions from axis-angle.
+def from_axis_angle(rots):
+ angle = np.linalg.norm(rots, axis=-1)
+ axis = rots / angle[...,None]
+ return from_angle_axis(angle, axis)
+
+# Calculate quaternions from euler angles.
+def from_euler(e, order='zyx'):
+ axis = {
+ 'x': np.asarray([1, 0, 0], dtype=np.float32),
+ 'y': np.asarray([0, 1, 0], dtype=np.float32),
+ 'z': np.asarray([0, 0, 1], dtype=np.float32)}
+
+ q0 = from_angle_axis(e[..., 0], axis[order[0]])
+ q1 = from_angle_axis(e[..., 1], axis[order[1]])
+ q2 = from_angle_axis(e[..., 2], axis[order[2]])
+
+ return mul(q0, mul(q1, q2))
+
+# Calculate quaternions from rotation matrix.
+def from_xform(ts):
+
+ return normalize(
+ np.where((ts[...,2,2] < 0.0)[...,None],
+ np.where((ts[...,0,0] > ts[...,1,1])[...,None],
+ np.concatenate([
+ (ts[...,2,1]-ts[...,1,2])[...,None],
+ (1.0 + ts[...,0,0] - ts[...,1,1] - ts[...,2,2])[...,None],
+ (ts[...,1,0]+ts[...,0,1])[...,None],
+ (ts[...,0,2]+ts[...,2,0])[...,None]], axis=-1),
+ np.concatenate([
+ (ts[...,0,2]-ts[...,2,0])[...,None],
+ (ts[...,1,0]+ts[...,0,1])[...,None],
+ (1.0 - ts[...,0,0] + ts[...,1,1] - ts[...,2,2])[...,None],
+ (ts[...,2,1]+ts[...,1,2])[...,None]], axis=-1)),
+ np.where((ts[...,0,0] < -ts[...,1,1])[...,None],
+ np.concatenate([
+ (ts[...,1,0]-ts[...,0,1])[...,None],
+ (ts[...,0,2]+ts[...,2,0])[...,None],
+ (ts[...,2,1]+ts[...,1,2])[...,None],
+ (1.0 - ts[...,0,0] - ts[...,1,1] + ts[...,2,2])[...,None]], axis=-1),
+ np.concatenate([
+ (1.0 + ts[...,0,0] + ts[...,1,1] + ts[...,2,2])[...,None],
+ (ts[...,2,1]-ts[...,1,2])[...,None],
+ (ts[...,0,2]-ts[...,2,0])[...,None],
+ (ts[...,1,0]-ts[...,0,1])[...,None]], axis=-1))))
+
+# Calculate quaternions from ortho6d.
+def from_xform_xy(x):
+
+ c2 = _fast_cross(x[...,0], x[...,1])
+ c2 = c2 / np.sqrt(np.sum(np.square(c2), axis=-1))[...,None]
+ c1 = _fast_cross(c2, x[...,0])
+ c1 = c1 / np.sqrt(np.sum(np.square(c1), axis=-1))[...,None]
+ c0 = x[...,0]
+
+ return from_xform(np.concatenate([
+ c0[...,None],
+ c1[...,None],
+ c2[...,None]], axis=-1))
+
+# Calculate quaternions from scaled angle axis.
+def from_scaled_angle_axis(x, eps=1e-5):
+ return exp(x / 2.0, eps)
\ No newline at end of file