File size: 3,574 Bytes
9b5b26a
 
 
 
c19d193
6aae614
8fe992b
9b5b26a
 
5df72d6
9b5b26a
a99b38f
 
 
 
9b5b26a
a99b38f
 
 
 
 
9b5b26a
a99b38f
 
 
 
 
 
 
4c8f1bb
a99b38f
 
 
 
 
 
 
 
 
 
 
 
 
4c8f1bb
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
 
 
 
e121372
bf6d34c
 
29ec968
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
a99b38f
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI

# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def search_error_tickets(machine_name: str, error_code: int) -> str:
    """
    Simulates a search for error tickets in a system for a given machine and error code.
    
    Args:
        machine_name: The name or identifier of the machine (e.g., "MachineXY").
        error_code: The error code to search for.
        
    Returns:
        A string summarizing the simulated search results.
    """
    # Simulated database of error tickets
    simulated_tickets = [
        {"ticket_id": 2032, "machine": "MachineXY", "error_code": 404, "description": "Not Found"},
        {"ticket_id": 2033, "machine": "MachineXY", "error_code": 500, "description": "Internal Server Error"},
        {"ticket_id": 2034, "machine": "MachineAB", "error_code": 404, "description": "Not Found"},
        {"ticket_id": 2035, "machine": "MachineXY", "error_code": 404, "description": "Resource missing"},
    ]
    
    # Filter the simulated tickets based on the provided machine name and error code.
    matching_tickets = [
        ticket for ticket in simulated_tickets
        if ticket["machine"].lower() == machine_name.lower() and ticket["error_code"] == error_code
    ]
    
    if matching_tickets:
        results = "\n".join(
            [f"Ticket {ticket['ticket_id']}: {ticket['description']}" for ticket in matching_tickets]
        )
        return f"Found the following tickets for machine '{machine_name}' with error code {error_code}:\n{results}"
    else:
        return f"No tickets found for machine '{machine_name}' with error code {error_code}."
    
    return f"if have found existing tickets for {arg1} with error code {arg2}, please check the ticketsystem"

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer, search_error_tickets], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()