MedicalAI-DP commited on
Commit
644fac1
·
verified ·
1 Parent(s): 36276eb

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +72 -63
  2. requirements.txt +3 -1
app.py CHANGED
@@ -1,64 +1,73 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
1
+ from io import BytesIO
2
  import gradio as gr
3
+ import pandas as pd
4
+ import requests
5
+ from matplotlib.image import imread
6
+
7
+
8
+ ALFRED_URL = "http://192.168.1.202:8090"
9
+
10
+ selected_columns = ["ecg_id", "patient_id", "age", "sex", "scp_codes", "report"]
11
+ ptbxl_df = pd.read_csv("./res/ptbxl_database.csv")
12
+ ptbxl_df = ptbxl_df[selected_columns]
13
+
14
+
15
+ def get_ecg_id_from_dataframe(df: pd.DataFrame, evt: gr.SelectData):
16
+ return evt.row_value[0]
17
+
18
+
19
+ def get_ecg_image_from_dataframe(ecg_id):
20
+ response = requests.post(
21
+ f"{ALFRED_URL}/hf_demo/ptbxl_to_image",
22
+ params={"ecg_id": ecg_id},
23
+ )
24
+ response.raise_for_status()
25
+ return imread(BytesIO(response.content))
26
+
27
+
28
+ def get_alfred_from_dataframe(ecg_id):
29
+ response = requests.post(
30
+ f"{ALFRED_URL}/hf_demo/alfred",
31
+ params={"ecg_id": ecg_id},
32
+ )
33
+ response.raise_for_status()
34
+ return response.json()
35
+
36
+
37
+ with gr.Blocks() as demo:
38
+ with gr.Tab("Example"):
39
+ with gr.Row():
40
+ gr_df = gr.Image(
41
+ value="./res/example.png",
42
+ interactive=False,
43
+ type="filepath",
44
+ label="This is an example screen. The service is not fully operational yet due to DNS issues. Please wait a moment.",
45
+ )
46
+
47
+ with gr.Tab("Coming Soon"):
48
+ with gr.Row():
49
+ gr_df = gr.Dataframe(
50
+ value=ptbxl_df,
51
+ interactive=False,
52
+ max_height=200,
53
+ label="All PTB-XL v1.3.0 data (https://physionet.org/content/ptb-xl/1.0.3/ptbxl_database.csv). You can refer to the following URL(https://physionet.org/content/ptb-xl/1.0.3/scp_statements.csv) to understand what 'scp_codes' represent.",
54
+ )
55
+
56
+ with gr.Row():
57
+ ecg_id_output = gr.Textbox(label="The selected ecg_id is")
58
+
59
+ with gr.Row():
60
+ ecg_viewer = gr.Image(interactive=False, label="The selected ecg is")
61
+
62
+ with gr.Row():
63
+ alfred_result = gr.JSON(value={}, label="Alfred said that")
64
+
65
+ gr_df.select(fn=get_ecg_id_from_dataframe, inputs=gr_df, outputs=ecg_id_output)
66
+ ecg_id_output.change(
67
+ fn=get_ecg_image_from_dataframe, inputs=ecg_id_output, outputs=ecg_viewer
68
+ )
69
+ ecg_id_output.change(
70
+ fn=get_alfred_from_dataframe, inputs=ecg_id_output, outputs=alfred_result
71
+ )
72
+
73
+ demo.launch()
requirements.txt CHANGED
@@ -1 +1,3 @@
1
- huggingface_hub==0.25.2
 
 
 
1
+ huggingface_hub==0.25.2
2
+ gradio==5.8.0
3
+ matplotlib==3.9.3