File size: 6,806 Bytes
b7914f1
 
 
 
7e401f6
 
 
 
 
b7914f1
 
7e401f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7914f1
 
7e401f6
 
 
b7914f1
 
 
7e401f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264a97c
7e401f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264a97c
7e401f6
 
264a97c
 
7e401f6
 
 
 
 
 
 
 
 
 
c69af64
 
 
7e401f6
c69af64
7e401f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264a97c
7e401f6
 
 
 
 
 
 
 
 
264a97c
7e401f6
 
 
 
264a97c
7e401f6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import tempfile
import traceback as tb

import gradio as gr
import pandas as pd
import numpy as np
import torch
import matplotlib.pyplot as plt

from model import HRNetV2Wrapper

# True 이면, tmp directory 에 파일 존재 유무와 상관없이 항상 새로운 이미지 생성
ALWAYS_RECREATE_IMAGE = os.getenv("ALWAYS_RECREATE_IMAGE", "False").lower() == "true"
selected_columns = ["subject_id", "no_p", "Rhythm", "Electric axis of the heart", "Etc"]
train_df = pd.read_csv("./res/ludb/dataset/train_for_public.csv").drop_duplicates(
    subset=["subject_id"]
)[selected_columns]
valid_df = pd.read_csv("./res/ludb/dataset/valid_for_public.csv").drop_duplicates(
    subset=["subject_id"]
)[selected_columns]
test_df = pd.read_csv("./res/ludb/dataset/test_for_public.csv").drop_duplicates(
    subset=["subject_id"]
)[selected_columns]
cutoffs = [0.001163482666015625, 0.15087890625, -0.587890625]
lead_names = ["I", "II", "III", "aVR", "aVL", "aVF", "V1", "V2", "V3", "V4", "V5", "V6"]

hrnetv2_wrapper = HRNetV2Wrapper()


def gen_seg(subject_id):
    input = np.load(f"./res/ludb/ecg_np/{subject_id}.npy")
    output: torch.Tensor = (
        hrnetv2_wrapper.model(torch.from_numpy(input)).detach().numpy()
    )
    seg = [(output[:, i, :] >= cutoffs[i]).astype(int) for i in range(len(cutoffs))]
    return input, np.stack(seg, axis=1)


def concat_short_interval(seg, th):
    """seg에서 구간(1)과 구간(1) 사이에 th 보다 짧은 부분(0)을 이어 붙인다. (0 -> 1)"""
    # seg 에서 같은 구간끼리 그룹을 만듦. ex: seg = [0, 0, 1, 1, 0, 1, 1, 1, 1] -> seg_groups=[[0, 0], [1, 1], [0], [1, 1, 1, 1]]]
    seg_groups = np.split(seg, np.where(np.diff(seg) != 0)[0] + 1)
    for i in range(1, len(seg_groups) - 1):  # 첫 번째와 마지막 그룹 제외
        group = seg_groups[i]
        if len(group) <= th and np.all(group == 0):
            seg_groups[i] = np.ones_like(group)  # 0 -> 1

    return np.concatenate(seg_groups)


def remove_short_duration(seg, th):
    """seg의 구간(1)중에 th 보다 짧은 구간은 제거 (1 -> 0)"""
    seg_groups = np.split(seg, np.where(np.diff(seg) != 0)[0] + 1)
    for i, group in enumerate(seg_groups):
        if len(group) <= th and np.all(group == 1):
            seg_groups[i] = np.zeros_like(group)  # 1 -> 0

    return np.concatenate(seg_groups)


def gen_each_image(input, seg, image_path, ths=[5, 25, 25, 25, 15, 25], pp=False):
    fig = plt.figure(figsize=(15, 18))
    plt.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02, hspace=0.2)
    for idx, (in_by_lead, seg_by_lead) in enumerate(zip(input, seg)):
        sub_fig = fig.add_subplot(12, 1, idx + 1)
        sub_fig.text(
            0.02,
            0.5,
            f"{lead_names[idx]}",
            fontsize=9,
            fontweight="bold",
            ha="center",
            va="center",
            rotation=90,
            transform=sub_fig.transAxes,
        )
        sub_fig.set_xticks([])
        sub_fig.set_yticks([])
        sub_fig.plot(
            range(len(in_by_lead[0])), in_by_lead[0], color="black", linewidth=1.0
        )
        p_seg = seg_by_lead[0]
        qrs_seg = seg_by_lead[1]
        t_seg = seg_by_lead[2]
        if pp:
            p_seg = remove_short_duration(concat_short_interval(p_seg, ths[0]), ths[1])
            qrs_seg = remove_short_duration(
                concat_short_interval(qrs_seg, ths[2]), ths[3]
            )
            t_seg = remove_short_duration(concat_short_interval(t_seg, ths[4]), ths[5])
        sub_fig.plot(
            range(len(p_seg)), p_seg / 2, label="P", color="red", linewidth=0.7
        )
        sub_fig.plot(
            range(len(qrs_seg)), qrs_seg, label="QRS", color="green", linewidth=0.7
        )
        sub_fig.plot(
            range(len(t_seg)), t_seg / 2, label="T", color="blue", linewidth=0.7
        )
    plt.savefig(image_path, dpi=150)
    plt.close()


def gen_image(subject_id, image_path, pp_image_path):
    try:
        input, seg = gen_seg(subject_id)
        gen_each_image(input, seg, image_path)
        gen_each_image(input, seg, pp_image_path, pp=True)
        return True
    except Exception:
        print(tb.format_exc())
        return False


with gr.Blocks() as demo:
    with gr.Tab("App"):
        with gr.Row():
            gr.Textbox(
                """Welcome to visit ECG Delineation space.
The following three tables represent the train, validation, and test datasets, which have been meticulously stratified from the LUDB dataset. These datasets were used for training and evaluating the models.
Usage: By clicking on the desired record in one of the tables below, the P, QRS, and T wave segments will be inferred by HRNetV2 and displayed as an image at the bottom. Additionally, the post-processed results based on predefined thresholds will also be displayed alongside.""",
                label="Information",
                lines=3,
            )
        gr_dfs = []
        with gr.Row():
            gr_dfs.append(
                gr.Dataframe(
                    value=train_df,
                    interactive=False,
                    max_height=250,
                    label="our train dataset. (source: ./res/ludb/dataset/train_for_public.csv)",
                )
            )

        with gr.Row():
            gr_dfs.append(
                gr.Dataframe(
                    value=valid_df,
                    interactive=False,
                    max_height=250,
                    label="our valid dataset. (source: ./res/ludb/dataset/valid_for_public.csv)",
                )
            )

        with gr.Row():
            gr_dfs.append(
                gr.Dataframe(
                    value=test_df,
                    interactive=False,
                    max_height=250,
                    label="our test dataset. (source: ./res/ludb/dataset/test_for_public.csv)",
                )
            )

        with gr.Row():
            gr_image = gr.Image(type="filepath", label="Output")
            gr_pp_image = gr.Image(type="filepath", label="PostProcessed Output")

        def show_image(df: pd.DataFrame, evt: gr.SelectData):
            subject_id = evt.row_value[0]

            image_path = f"{tempfile.gettempdir()}/ludb_{subject_id}.png"
            pp_image_path = f"{tempfile.gettempdir()}/ludb_{subject_id}_pp.png"
            if not ALWAYS_RECREATE_IMAGE and (
                os.path.exists(image_path) and os.path.exists(pp_image_path)
            ):
                return [image_path, pp_image_path]

            gen_image(subject_id, image_path, pp_image_path)

            return [image_path, pp_image_path]

        for gr_df in gr_dfs:
            gr_df.select(fn=show_image, inputs=[gr_df], outputs=[gr_image, gr_pp_image])

demo.launch()