Spaces:
Sleeping
Sleeping
File size: 6,806 Bytes
b7914f1 7e401f6 b7914f1 7e401f6 b7914f1 7e401f6 b7914f1 7e401f6 264a97c 7e401f6 264a97c 7e401f6 264a97c 7e401f6 c69af64 7e401f6 c69af64 7e401f6 264a97c 7e401f6 264a97c 7e401f6 264a97c 7e401f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import os
import tempfile
import traceback as tb
import gradio as gr
import pandas as pd
import numpy as np
import torch
import matplotlib.pyplot as plt
from model import HRNetV2Wrapper
# True 이면, tmp directory 에 파일 존재 유무와 상관없이 항상 새로운 이미지 생성
ALWAYS_RECREATE_IMAGE = os.getenv("ALWAYS_RECREATE_IMAGE", "False").lower() == "true"
selected_columns = ["subject_id", "no_p", "Rhythm", "Electric axis of the heart", "Etc"]
train_df = pd.read_csv("./res/ludb/dataset/train_for_public.csv").drop_duplicates(
subset=["subject_id"]
)[selected_columns]
valid_df = pd.read_csv("./res/ludb/dataset/valid_for_public.csv").drop_duplicates(
subset=["subject_id"]
)[selected_columns]
test_df = pd.read_csv("./res/ludb/dataset/test_for_public.csv").drop_duplicates(
subset=["subject_id"]
)[selected_columns]
cutoffs = [0.001163482666015625, 0.15087890625, -0.587890625]
lead_names = ["I", "II", "III", "aVR", "aVL", "aVF", "V1", "V2", "V3", "V4", "V5", "V6"]
hrnetv2_wrapper = HRNetV2Wrapper()
def gen_seg(subject_id):
input = np.load(f"./res/ludb/ecg_np/{subject_id}.npy")
output: torch.Tensor = (
hrnetv2_wrapper.model(torch.from_numpy(input)).detach().numpy()
)
seg = [(output[:, i, :] >= cutoffs[i]).astype(int) for i in range(len(cutoffs))]
return input, np.stack(seg, axis=1)
def concat_short_interval(seg, th):
"""seg에서 구간(1)과 구간(1) 사이에 th 보다 짧은 부분(0)을 이어 붙인다. (0 -> 1)"""
# seg 에서 같은 구간끼리 그룹을 만듦. ex: seg = [0, 0, 1, 1, 0, 1, 1, 1, 1] -> seg_groups=[[0, 0], [1, 1], [0], [1, 1, 1, 1]]]
seg_groups = np.split(seg, np.where(np.diff(seg) != 0)[0] + 1)
for i in range(1, len(seg_groups) - 1): # 첫 번째와 마지막 그룹 제외
group = seg_groups[i]
if len(group) <= th and np.all(group == 0):
seg_groups[i] = np.ones_like(group) # 0 -> 1
return np.concatenate(seg_groups)
def remove_short_duration(seg, th):
"""seg의 구간(1)중에 th 보다 짧은 구간은 제거 (1 -> 0)"""
seg_groups = np.split(seg, np.where(np.diff(seg) != 0)[0] + 1)
for i, group in enumerate(seg_groups):
if len(group) <= th and np.all(group == 1):
seg_groups[i] = np.zeros_like(group) # 1 -> 0
return np.concatenate(seg_groups)
def gen_each_image(input, seg, image_path, ths=[5, 25, 25, 25, 15, 25], pp=False):
fig = plt.figure(figsize=(15, 18))
plt.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02, hspace=0.2)
for idx, (in_by_lead, seg_by_lead) in enumerate(zip(input, seg)):
sub_fig = fig.add_subplot(12, 1, idx + 1)
sub_fig.text(
0.02,
0.5,
f"{lead_names[idx]}",
fontsize=9,
fontweight="bold",
ha="center",
va="center",
rotation=90,
transform=sub_fig.transAxes,
)
sub_fig.set_xticks([])
sub_fig.set_yticks([])
sub_fig.plot(
range(len(in_by_lead[0])), in_by_lead[0], color="black", linewidth=1.0
)
p_seg = seg_by_lead[0]
qrs_seg = seg_by_lead[1]
t_seg = seg_by_lead[2]
if pp:
p_seg = remove_short_duration(concat_short_interval(p_seg, ths[0]), ths[1])
qrs_seg = remove_short_duration(
concat_short_interval(qrs_seg, ths[2]), ths[3]
)
t_seg = remove_short_duration(concat_short_interval(t_seg, ths[4]), ths[5])
sub_fig.plot(
range(len(p_seg)), p_seg / 2, label="P", color="red", linewidth=0.7
)
sub_fig.plot(
range(len(qrs_seg)), qrs_seg, label="QRS", color="green", linewidth=0.7
)
sub_fig.plot(
range(len(t_seg)), t_seg / 2, label="T", color="blue", linewidth=0.7
)
plt.savefig(image_path, dpi=150)
plt.close()
def gen_image(subject_id, image_path, pp_image_path):
try:
input, seg = gen_seg(subject_id)
gen_each_image(input, seg, image_path)
gen_each_image(input, seg, pp_image_path, pp=True)
return True
except Exception:
print(tb.format_exc())
return False
with gr.Blocks() as demo:
with gr.Tab("App"):
with gr.Row():
gr.Textbox(
"""Welcome to visit ECG Delineation space.
The following three tables represent the train, validation, and test datasets, which have been meticulously stratified from the LUDB dataset. These datasets were used for training and evaluating the models.
Usage: By clicking on the desired record in one of the tables below, the P, QRS, and T wave segments will be inferred by HRNetV2 and displayed as an image at the bottom. Additionally, the post-processed results based on predefined thresholds will also be displayed alongside.""",
label="Information",
lines=3,
)
gr_dfs = []
with gr.Row():
gr_dfs.append(
gr.Dataframe(
value=train_df,
interactive=False,
max_height=250,
label="our train dataset. (source: ./res/ludb/dataset/train_for_public.csv)",
)
)
with gr.Row():
gr_dfs.append(
gr.Dataframe(
value=valid_df,
interactive=False,
max_height=250,
label="our valid dataset. (source: ./res/ludb/dataset/valid_for_public.csv)",
)
)
with gr.Row():
gr_dfs.append(
gr.Dataframe(
value=test_df,
interactive=False,
max_height=250,
label="our test dataset. (source: ./res/ludb/dataset/test_for_public.csv)",
)
)
with gr.Row():
gr_image = gr.Image(type="filepath", label="Output")
gr_pp_image = gr.Image(type="filepath", label="PostProcessed Output")
def show_image(df: pd.DataFrame, evt: gr.SelectData):
subject_id = evt.row_value[0]
image_path = f"{tempfile.gettempdir()}/ludb_{subject_id}.png"
pp_image_path = f"{tempfile.gettempdir()}/ludb_{subject_id}_pp.png"
if not ALWAYS_RECREATE_IMAGE and (
os.path.exists(image_path) and os.path.exists(pp_image_path)
):
return [image_path, pp_image_path]
gen_image(subject_id, image_path, pp_image_path)
return [image_path, pp_image_path]
for gr_df in gr_dfs:
gr_df.select(fn=show_image, inputs=[gr_df], outputs=[gr_image, gr_pp_image])
demo.launch()
|