File size: 15,007 Bytes
aefacda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
"""
paper: https://arxiv.org/abs/1904.04514
ref: https://github.com/HRNet/HRNet-Semantic-Segmentation/blob/HRNet-OCR/lib/models/seg_hrnet.py
"""

import torch
import torch.nn as nn
from torch.functional import F
import math


def _gen_same_length_conv(in_channel, out_channel, kernel_size=1, dilation=1):
    """길이가 λ³€ν•˜μ§€ μ•ŠλŠ” conv 생성, block λ‚΄μ—μ„œ feature λ₯Ό μΆ”μΆœν•˜λŠ” convolution μ—μ„œ μ‚¬μš©"""
    return nn.Conv1d(
        in_channel,
        out_channel,
        kernel_size=kernel_size,
        stride=1,
        padding=(dilation * (kernel_size - 1)) // 2,
        dilation=dilation,
        bias=False,
    )


def _gen_downsample(in_channel, out_channel):
    """kernel_size:3, stride:2, padding:1 인 2λ°° downsample ν•˜λŠ” conv 생성"""
    return nn.Conv1d(
        in_channel, out_channel, kernel_size=3, stride=2, padding=1, bias=False
    )


def _gen_channel_change_conv(in_channel, out_channel):
    """kernel_size:1, stride:1 인 channel λ³€κ²½ν•˜λŠ” conv 생성"""
    return nn.Conv1d(in_channel, out_channel, kernel_size=1, stride=1, bias=False)


class BasicBlock(nn.Module):
    """resnet 의 basic block 으둜 channel λ³€ν™”λŠ” inplanes -> planes"""

    expansion = 1

    def __init__(self, inplanes, planes, kernel_size=3, dilation=1):
        super().__init__()
        self.conv1 = _gen_same_length_conv(inplanes, planes, kernel_size, dilation)
        self.bn1 = nn.BatchNorm1d(planes)
        self.relu = nn.ReLU()
        self.conv2 = _gen_same_length_conv(planes, planes, kernel_size, dilation)
        self.bn2 = nn.BatchNorm1d(planes)
        self.make_residual = (
            _gen_channel_change_conv(inplanes, planes)
            if inplanes != planes
            else nn.Identity()
        )

    def forward(self, x):
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        residual = self.make_residual(x)

        out = out + residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    """resnet 의 Bottleneck block 으둜 channel λ³€ν™”λŠ” inplanes -> planes * 4"""

    expansion = 4

    def __init__(self, inplanes, planes, kernel_size=3, dilation=1):
        super().__init__()
        self.conv1 = _gen_same_length_conv(inplanes, planes)
        self.bn1 = nn.BatchNorm1d(planes)
        self.conv2 = _gen_same_length_conv(planes, planes, kernel_size, dilation)
        self.bn2 = nn.BatchNorm1d(planes)
        self.conv3 = _gen_same_length_conv(planes, planes * self.expansion)
        self.bn3 = nn.BatchNorm1d(planes * self.expansion)
        self.relu = nn.ReLU()
        self.make_residual = (
            _gen_channel_change_conv(inplanes, planes * self.expansion)
            if inplanes != planes * self.expansion
            else nn.Identity()
        )

    def forward(self, x):
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        residual = self.make_residual(x)

        out = out + residual
        out = self.relu(out)

        return out


class HRModule(nn.Module):
    def __init__(
        self,
        stage_idx,
        num_blocks,
        block_type_by_stage,
        in_channels_by_stage,
        out_channels_by_stage,
        data_len_by_branch,
        kernel_size,
        dilation,
        interpolate_mode,
    ):
        super().__init__()

        self.branches = nn.ModuleList()
        self.fusions = nn.ModuleList()

        block_type: BasicBlock | Bottleneck = block_type_by_stage[stage_idx]
        in_channels = in_channels_by_stage[stage_idx]
        for i in range(stage_idx + 1):  # branch 생성
            blocks_by_branch = []
            _channels = in_channels[i]
            blocks_by_branch.append(
                block_type(_channels, _channels, kernel_size, dilation)
            )
            for _ in range(1, num_blocks):
                blocks_by_branch.append(
                    block_type(
                        _channels * block_type.expansion,
                        _channels,
                        kernel_size,
                        dilation,
                    )
                )
            self.branches.append(nn.Sequential(*blocks_by_branch))

        out_channels = out_channels_by_stage[stage_idx]
        for i in range(stage_idx + 1):
            fusion_by_branch = nn.ModuleList()
            for j in range(stage_idx + 1):
                if i < j:
                    fusion_by_branch.append(
                        nn.Sequential(
                            _gen_channel_change_conv(out_channels[j], in_channels[i]),
                            nn.BatchNorm1d(in_channels[i]),
                            nn.Upsample(
                                size=data_len_by_branch[i], mode=interpolate_mode
                            ),
                        )
                    )
                elif i == j:
                    if out_channels[i] != in_channels[j]:
                        fusion_by_branch.append(
                            nn.Sequential(
                                _gen_channel_change_conv(
                                    out_channels[i], in_channels[j]
                                ),
                                nn.BatchNorm1d(in_channels[j]),
                                nn.ReLU(),
                            )
                        )
                    else:
                        fusion_by_branch.append(nn.Identity())
                else:
                    # μ°¨μ΄λ‚˜λŠ” branch 만큼 2λ°°μ”© downsample, channel 은 ν˜„μž¬ layer 의 in_channel 둜 맞좰쀌
                    downsamples = [
                        _gen_downsample(out_channels[j], in_channels[i]),
                        nn.BatchNorm1d(in_channels[i]),
                    ]
                    for _ in range(1, i - j):
                        downsamples.extend(
                            [
                                nn.ReLU(),
                                _gen_downsample(in_channels[i], in_channels[i]),
                                nn.BatchNorm1d(in_channels[i]),
                            ]
                        )
                    fusion_by_branch.append(nn.Sequential(*downsamples))
            self.fusions.append(fusion_by_branch)


class HRNetV2(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.config = config
        data_len = int(config.data_len)  # ECGPQRSTDataset.second, hz 에 λ§žμΆ°μ„œ
        kernel_size = int(config.kernel_size)
        dilation = int(config.dilation)
        num_stages = int(config.num_stages)
        num_blocks = int(config.num_blocks)
        self.num_modules = config.num_modules  # [1, 1, 4, 3, ..]
        assert num_stages <= len(self.num_modules)
        use_bottleneck = config.use_bottleneck  # [1, 0, 0, 0, ..]
        assert num_stages <= len(use_bottleneck)
        stage1_channels = int(config.stage1_channels)  # 64, 128
        num_channels_init = int(config.num_channels_init)  # 18, 32, 48
        self.interpolate_mode = config.interpolate_mode
        output_size = config.output_size  # 3(p, qrs, t)

        # stem
        self.stem = nn.Sequential(
            nn.Conv1d(
                1, stage1_channels, kernel_size=3, stride=2, padding=1, bias=False
            ),
            nn.BatchNorm1d(stage1_channels),
            nn.Conv1d(
                stage1_channels,
                stage1_channels,
                kernel_size=3,
                stride=2,
                padding=1,
                bias=False,
            ),
            nn.BatchNorm1d(stage1_channels),
            nn.ReLU(),
        )
        for _ in range(2):  # stem 을 거친 이후 데이터 길이 계산
            data_len = math.floor((data_len - 1) / 2 + 1)

        # create meta: λ„€νŠΈμ›Œν¬ 생성 μ „ 각 stage 의 in_channel, out_channel λ“±μ˜ 정보λ₯Ό λ¨Όμ € λ§Œλ“€κ³  μ‹œμž‘
        in_channels_by_stage = []
        out_channels_by_stage = []
        block_type_by_stage = []
        for stage_idx in range(num_stages):
            block_type_each_stage = (
                Bottleneck if use_bottleneck[stage_idx] == 1 else BasicBlock
            )
            if stage_idx == 0:
                in_channels_each_stage = [stage1_channels]
                out_channels_each_stage = [
                    stage1_channels * block_type_each_stage.expansion
                ]
                data_len_by_branch = [data_len]
            else:
                in_channels_each_stage = [
                    num_channels_init * 2**idx for idx in range(stage_idx + 1)
                ]
                out_channels_each_stage = [
                    (num_channels_init * 2**idx) * block_type_each_stage.expansion
                    for idx in range(stage_idx + 1)
                ]
                data_len_by_branch.append(
                    math.floor((data_len_by_branch[-1] - 1) / 2 + 1)
                )

            block_type_by_stage.append(block_type_each_stage)
            in_channels_by_stage.append(in_channels_each_stage)
            out_channels_by_stage.append(out_channels_each_stage)

        # create stages
        self.stages = nn.ModuleList()
        for stage_idx in range(num_stages):
            modules_by_stage = nn.ModuleList()
            for _ in range(self.num_modules[stage_idx]):
                modules_by_stage.append(
                    HRModule(
                        stage_idx,
                        num_blocks,
                        block_type_by_stage,
                        in_channels_by_stage,
                        out_channels_by_stage,
                        data_len_by_branch,
                        kernel_size,
                        dilation,
                        self.interpolate_mode,
                    )
                )
            self.stages.append(modules_by_stage)

        # create transition
        self.transitions = nn.ModuleList()
        for stage_idx in range(num_stages - 1):
            # μ—¬κΈ°μ—μ„œ stage_idx λŠ” 이전 stage λ₯Ό λœ»ν•¨. transition 은 각 stage μ‚¬μ΄μ—μ„œ channel 을 λ°”κΏ”μ£Όκ±°λ‚˜ μƒˆλ‘œμš΄ branch λ₯Ό μƒμ„±ν•˜λŠ” μ—­ν• 
            transition_by_stage = nn.ModuleList()
            psc = in_channels_by_stage[stage_idx]  # psc: prev_stage_channels
            nsc = in_channels_by_stage[stage_idx + 1]  # nsc: next_stage_channels
            for nsbi in range(stage_idx + 2):  # nsbi: next_stage_branch_idx
                if nsbi < stage_idx + 1:  # λ™μΌν•œ branch level
                    if psc[nsbi] != nsc[nsbi]:
                        transition_by_stage.append(
                            nn.Sequential(
                                _gen_channel_change_conv(psc[nsbi], nsc[nsbi]),
                                nn.BatchNorm1d(nsc[nsbi]),
                                nn.ReLU(),
                            )
                        )
                    else:
                        transition_by_stage.append(nn.Identity())
                else:  # create new branch from exists branches
                    transition_from_branches = nn.ModuleList()
                    for psbi in range(nsbi):
                        # psbi: prev_stage_branch_idx
                        transition_from_one_branch = [
                            _gen_downsample(psc[psbi], nsc[nsbi]),
                            nn.BatchNorm1d(nsc[nsbi]),
                        ]
                        for _ in range(1, nsbi - psbi):
                            transition_from_one_branch.extend(
                                [
                                    nn.ReLU(),
                                    _gen_downsample(nsc[nsbi], nsc[nsbi]),
                                    nn.BatchNorm1d(nsc[nsbi]),
                                ]
                            )
                        transition_from_branches.append(
                            nn.Sequential(*transition_from_one_branch)
                        )
                    transition_by_stage.append(transition_from_branches)
            self.transitions.append(transition_by_stage)

        self.cls = nn.Conv1d(sum(in_channels_each_stage), output_size, 1, bias=False)

    def forward(self, input: torch.Tensor, y=None):
        output: torch.Tensor = input

        output = self.stem(output)

        outputs = [output]
        for stage_idx, stage in enumerate(self.stages):
            for module_idx in range(self.num_modules[stage_idx]):
                for branch_idx in range(stage_idx + 1):
                    outputs[branch_idx] = stage[module_idx].branches[branch_idx](
                        outputs[branch_idx]
                    )
                fusion_outputs = []
                for next in range(stage_idx + 1):
                    fusion_output_from_branches = []
                    for prev in range(stage_idx + 1):
                        fusion_output_from_branch: torch.Tensor = stage[
                            module_idx
                        ].fusions[next][prev](outputs[prev])
                        fusion_output_from_branches.append(fusion_output_from_branch)
                    fusion_outputs.append(sum(fusion_output_from_branches))
                outputs = fusion_outputs

            if stage_idx < len(self.stages) - 1:
                transition_outputs = []
                for trans_idx, transition in enumerate(self.transitions[stage_idx]):
                    # transition μ—λŠ” λ‹€μŒ stage 의 branch 개수만큼 Sequential μ΄λ‚˜ ModuleList κ°€ 쑴재
                    # μ•žμ˜ Sequential 듀은 channel 만 λ‹€μŒ stage 에 맞게 λ³€κ²½ν•˜κ±°λ‚˜ κΈ°μ‘΄ κ·ΈλŒ€λ‘œ μ‚¬μš© (Identity)
                    # λ§ˆμ§€λ§‰ ModuleList 각 branch 의 fusion 결과듀을 downsample ν•œ κ²°κ³Όλ“€λ‘œλΆ€ν„° μƒˆλ‘œμš΄ branch λ₯Ό 생성
                    if trans_idx < stage_idx + 1:
                        transition_outputs.append(transition(outputs[trans_idx]))
                    else:
                        transition_outputs.append(
                            sum(
                                [
                                    transition_from_each_branch(output)
                                    for transition_from_each_branch, output in zip(
                                        transition, outputs
                                    )
                                ]
                            )
                        )
                outputs = transition_outputs

        # HRNetV2
        outputs = [
            F.interpolate(output, size=outputs[0].shape[-1], mode=self.interpolate_mode)
            for output in outputs
        ]
        output = torch.cat(outputs, dim=1)

        return F.interpolate(
            self.cls(output), size=input.shape[-1], mode=self.interpolate_mode
        )