File size: 9,237 Bytes
aefacda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
"""
paper: https://arxiv.org/abs/2105.15203
- ref:
    - encoder:
        - https://github.com/NVlabs/SegFormer/blob/master/mmseg/models/backbones/mix_transformer.py
        - https://github.com/open-mmlab/mmsegmentation/blob/master/mmseg/models/backbones/mit.py
    - decoder:
        - https://github.com/NVlabs/SegFormer/blob/master/mmseg/models/decode_heads/segformer_head.py
        - https://github.com/open-mmlab/mmsegmentation/blob/master/mmseg/models/decode_heads/segformer_head.py
"""


import torch
from torch import nn
from torch.functional import F
import math
from einops import rearrange


class MixFFN(nn.Module):
    def __init__(self, embed_dim, channels, dropout=0.0):
        super().__init__()

        self.layers = nn.Sequential(
            nn.Conv1d(  # fc1
                in_channels=embed_dim, out_channels=channels, kernel_size=1, stride=1
            ),
            nn.Conv1d(  # position embed (depthwise-separable)
                in_channels=channels,
                out_channels=channels,
                kernel_size=3,
                stride=1,
                padding=1,
                groups=channels,
            ),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Conv1d(  # fc2
                in_channels=channels, out_channels=embed_dim, kernel_size=1
            ),
            nn.Dropout(dropout),
        )

    def forward(self, x):
        out = x.transpose(1, 2)
        out = self.layers(out)
        out = out.transpose(1, 2)
        return out


class EfficientMultiheadAttention(nn.Module):
    """
    PVT(Pyramid Vision Transformer)μ—μ„œ μ‚¬μš©ν•œ Spatial-Reduction Attention 을 차용
    λ³€μˆ˜λͺ… 쀑 sr 은 Spatial-Reduction 의 μ•½μ–΄
    """

    def __init__(
        self, embed_dim, num_heads=8, attn_drop=0.0, proj_drop=0.0, sr_ratio=1
    ):
        super().__init__()

        assert (
            embed_dim % num_heads == 0
        ), f"dim {embed_dim} should be divided by num_heads {num_heads}."

        self.num_heads = num_heads
        head_dim = embed_dim // num_heads
        self.scale = head_dim**-0.5

        self.q = nn.Linear(embed_dim, embed_dim, bias=False)
        self.kv = nn.Linear(embed_dim, embed_dim * 2, bias=False)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(embed_dim, embed_dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv1d(
                embed_dim, embed_dim, kernel_size=sr_ratio, stride=sr_ratio
            )
            self.norm = nn.LayerNorm(embed_dim)

    def forward(self, x):
        B, N, C = x.shape
        q = self.q(x)
        q = rearrange(q, "b n (h c) -> b h n c", h=self.num_heads)

        if self.sr_ratio > 1:
            x_ = x.transpose(1, 2)
            x_ = self.sr(x_).transpose(1, 2)
            x_ = self.norm(x_)
            kv = self.kv(x_)
            kv = rearrange(
                kv,
                "b n (two_heads h c) -> two_heads b h n c",
                two_heads=2,
                h=self.num_heads,
            )
        else:
            kv = self.kv(x)
            kv = rearrange(
                kv,
                "b n (two_heads h c) -> two_heads b h n c",
                two_heads=2,
                h=self.num_heads,
            )
        k, v = kv[0], kv[1]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2)
        x = x.reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class TransformerBlock(nn.Module):
    def __init__(self, embed_dim, num_heads, ffn_channels, dropout=0.2, sr_ratio=1):
        super().__init__()

        self.attn = nn.Sequential(
            nn.LayerNorm(embed_dim),
            EfficientMultiheadAttention(
                embed_dim=embed_dim,
                num_heads=num_heads,
                attn_drop=dropout,
                proj_drop=dropout,
                sr_ratio=sr_ratio,
            ),
        )

        self.ffn = nn.Sequential(
            nn.LayerNorm(embed_dim),
            MixFFN(embed_dim=embed_dim, channels=ffn_channels, dropout=dropout),
        )

    def forward(self, x):
        x = x + self.attn(x)
        x = x + self.ffn(x)
        return x


class PatchEmbed(nn.Module):
    def __init__(
        self,
        in_channels=1,
        embed_dim=1024,
        kernel_size=7,
        stride=4,
        padding=3,
        bias=False,
    ):
        super().__init__()

        self.projection = nn.Conv1d(
            in_channels=in_channels,
            out_channels=embed_dim,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            bias=bias,
        )

    def forward(self, x: torch.Tensor):
        return self.projection(x).transpose(1, 2)


class MiT(nn.Module):
    """MixVisionTransformer"""

    def __init__(
        self,
        embed_dim=512,
        num_blocks=[2, 2, 6, 2],
        num_heads=[1, 2, "ceil"],
        sr_ratios=[1, 2, "ceil"],
        mlp_ratio=4,
        dropout=0.2,
    ):
        super().__init__()

        num_stages = len(num_blocks)
        round_func = getattr(math, num_heads[2])  # math.ceil or match.floor
        num_heads = [
            round_func((num_heads[0] * math.pow(num_heads[1], itr)))
            for itr in range(num_stages)
        ]
        round_func = getattr(math, sr_ratios[2])  # math.ceil or match.floor
        sr_ratios = [
            round_func(sr_ratios[0] * math.pow(sr_ratios[1], itr))
            for itr in range(num_stages)
        ]
        sr_ratios.reverse()

        self.embed_dims = [embed_dim * num_head for num_head in num_heads]
        patch_kernel_sizes = [7]  # [7, 3, 3, ..]
        patch_kernel_sizes.extend([3] * (num_stages - 1))
        patch_strides = [4]  # [4, 2, 2, ..]
        patch_strides.extend([2] * (num_stages - 1))
        patch_paddings = [3]  # [3, 1, 1, ..]
        patch_paddings.extend([1] * (num_stages - 1))

        in_channels = 1
        self.stages = nn.ModuleList()
        for i, num_block in enumerate(num_blocks):
            patch_embed = PatchEmbed(
                in_channels=in_channels,
                embed_dim=self.embed_dims[i],
                kernel_size=patch_kernel_sizes[i],
                stride=patch_strides[i],
                padding=patch_paddings[i],
            )
            blocks = nn.ModuleList(
                [
                    TransformerBlock(
                        embed_dim=self.embed_dims[i],
                        num_heads=num_heads[i],
                        ffn_channels=mlp_ratio * self.embed_dims[i],
                        dropout=dropout,
                        sr_ratio=sr_ratios[i],
                    )
                    for _ in range(num_block)
                ]
            )
            in_channels = self.embed_dims[i]
            norm = nn.LayerNorm(self.embed_dims[i])
            self.stages.append(nn.ModuleList([patch_embed, blocks, norm]))

    def forward(self, x):
        outs = []

        for stage in self.stages:
            x = stage[0](x)  # patch embed
            for block in stage[1]:  # transformer blocks
                x = block(x)
            x = stage[2](x)  # norm
            x = x.transpose(1, 2)
            outs.append(x)

        return outs


class SegFormer(nn.Module):
    def __init__(self, config):
        super().__init__()

        embed_dim = int(config.embed_dim)
        num_blocks = config.num_blocks
        num_heads = config.num_heads
        assert len(num_heads) == 3 and num_heads[2] in ["floor", "ceil"]
        sr_ratios = config.sr_ratios
        assert len(sr_ratios) == 3 and sr_ratios[2] in ["floor", "ceil"]
        mlp_ratio = int(config.mlp_ratio)
        dropout = float(config.dropout)
        decoder_channels = int(config.decoder_channels)
        self.interpolate_mode = str(config.interpolate_mode)
        output_size = int(config.output_size)

        self.MiT = MiT(embed_dim, num_blocks, num_heads, sr_ratios, mlp_ratio, dropout)

        num_stages = len(num_blocks)
        self.decode_mlps = nn.ModuleList(
            [
                nn.Conv1d(self.MiT.embed_dims[i], decoder_channels, 1, bias=False)
                for i in range(num_stages)
            ]
        )
        self.decode_fusion = nn.Conv1d(
            decoder_channels * num_stages, decoder_channels, 1, bias=False
        )

        self.cls = nn.Conv1d(decoder_channels, output_size, 1, bias=False)

    def forward(self, input: torch.Tensor, y=None):
        output = input

        output = self.MiT(output)
        for i, (_output, decode_mlp) in enumerate(zip(output, self.decode_mlps)):
            _output = decode_mlp(_output)
            if i != 0:
                _output = F.interpolate(
                    _output, size=output[0].shape[2], mode=self.interpolate_mode
                )
            output[i] = _output

        output = torch.concat(output, dim=1)
        output = self.decode_fusion(output)
        output = self.cls(output)

        return F.interpolate(output, size=input.shape[2], mode=self.interpolate_mode)