Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 10,831 Bytes
1f53a4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
from typing import Dict, Union
# Alias of typing
# eg. {'labels': {'label_A: torch.Tensor([0, 1, ...]), ...}}
LabelDict = Dict[str, Dict[str, Union[torch.IntTensor, torch.FloatTensor]]]
class RMSELoss(nn.Module):
"""
Class to calculate RMSE.
"""
def __init__(self, eps: float = 1e-7) -> None:
"""
Args:
eps (float, optional): value to avoid 0. Defaults to 1e-7.
"""
super().__init__()
self.mse = nn.MSELoss()
self.eps = eps
def forward(self, yhat: float, y: float) -> torch.FloatTensor:
"""
Calculate RMSE.
Args:
yhat (float): prediction value
y (float): ground truth value
Returns:
float: RMSE
"""
_loss = self.mse(yhat, y) + self.eps
return torch.sqrt(_loss)
class Regularization:
"""
Class to calculate regularization loss.
Args:
object (object): object
"""
def __init__(self, order: int, weight_decay: float) -> None:
"""
The initialization of Regularization class.
Args:
order: (int) norm order number
weight_decay: (float) weight decay rate
"""
super().__init__()
self.order = order
self.weight_decay = weight_decay
def __call__(self, network: nn.Module) -> torch.FloatTensor:
""""
Calculates regularization(self.order) loss for network.
Args:
model: (torch.nn.Module object)
Returns:
torch.FloatTensor: the regularization(self.order) loss
"""
reg_loss = 0
for name, w in network.named_parameters():
if 'weight' in name:
reg_loss = reg_loss + torch.norm(w, p=self.order)
reg_loss = self.weight_decay * reg_loss
return reg_loss
class NegativeLogLikelihood(nn.Module):
"""
Class to calculate RMSE.
"""
def __init__(self, device: torch.device) -> None:
"""
Args:
device (torch.device): device
"""
super().__init__()
self.L2_reg = 0.05
self.reg = Regularization(order=2, weight_decay=self.L2_reg)
self.device = device
def forward(
self,
output: torch.FloatTensor,
label: torch.IntTensor,
periods: torch.FloatTensor,
network: nn.Module
) -> torch.FloatTensor:
"""
Calculates Negative Log Likelihood.
Args:
output (torch.FloatTensor): prediction value, ie risk prediction
label (torch.IntTensor): occurrence of event
periods (torch.FloatTensor): period
network (nn.Network): network
Returns:
torch.FloatTensor: Negative Log Likelihood
"""
mask = torch.ones(periods.shape[0], periods.shape[0]).to(self.device) # output and mask should be on the same device.
mask[(periods.T - periods) > 0] = 0
_loss = torch.exp(output) * mask
# Note: torch.sum(_loss, dim=0) possibly returns nan, in particular MLP.
_loss = torch.sum(_loss, dim=0) / torch.sum(mask, dim=0)
_loss = torch.log(_loss).reshape(-1, 1)
num_occurs = torch.sum(label)
if num_occurs.item() == 0.0:
loss = torch.tensor([1e-7], requires_grad=True).to(self.device) # To avoid zero division, set small value as loss
return loss
else:
neg_log_loss = -torch.sum((output - _loss) * label) / num_occurs
l2_loss = self.reg(network)
loss = neg_log_loss + l2_loss
return loss
class ClsCriterion:
"""
Class of criterion for classification.
"""
def __init__(self, device: torch.device = None) -> None:
"""
Set CrossEntropyLoss.
Args:
device (torch.device): device
"""
self.device = device
self.criterion = nn.CrossEntropyLoss()
def __call__(
self,
outputs: Dict[str, torch.FloatTensor],
labels: Dict[str, LabelDict]
) -> Dict[str, torch.FloatTensor]:
"""
Calculate loss.
Args:
outputs (Dict[str, torch.FloatTensor], optional): output
labels (Dict[str, LabelDict]): labels
Returns:
Dict[str, torch.FloatTensor]: loss for each label and their total loss
# No reshape and no cast:
output: [64, 2]: torch.float32
label: [64] : torch.int64
label.dtype should be torch.int64, otherwise nn.CrossEntropyLoss() causes error.
eg.
outputs = {'label_A': [[0.8, 0.2], ...] 'label_B': [[0.7, 0.3]], ...}
labels = { 'labels': {'label_A: 1: [1, 1, 0, ...], 'label_B': [0, 0, 1, ...], ...} }
-> losses = {total: loss_total, label_A: loss_A, label_B: loss_B, ... }
"""
_labels = labels['labels']
# loss for each label and total of their losses
losses = dict()
losses['total'] = torch.tensor([0.0], requires_grad=True).to(self.device)
for label_name in labels['labels'].keys():
_output = outputs[label_name]
_label = _labels[label_name]
_label_loss = self.criterion(_output, _label)
losses[label_name] = _label_loss
losses['total'] = torch.add(losses['total'], _label_loss)
return losses
class RegCriterion:
"""
Class of criterion for regression.
"""
def __init__(self, criterion_name: str = None, device: torch.device = None) -> None:
"""
Set MSE, RMSE or MAE.
Args:
criterion_name (str): 'MSE', 'RMSE', or 'MAE'
device (torch.device): device
"""
self.device = device
if criterion_name == 'MSE':
self.criterion = nn.MSELoss()
elif criterion_name == 'RMSE':
self.criterion = RMSELoss()
elif criterion_name == 'MAE':
self.criterion = nn.L1Loss()
else:
raise ValueError(f"Invalid criterion for regression: {criterion_name}.")
def __call__(
self,
outputs: Dict[str, torch.FloatTensor],
labels: Dict[str, LabelDict]
) -> Dict[str, torch.FloatTensor]:
"""
Calculate loss.
Args:
Args:
outputs (Dict[str, torch.FloatTensor], optional): output
labels (Dict[str, LabelDict]): labels
Returns:
Dict[str, torch.FloatTensor]: loss for each label and their total loss
# Reshape and cast
output: [64, 1] -> [64]: torch.float32
label: [64]: torch.float64 -> torch.float32
# label.dtype should be torch.float32, otherwise cannot backward.
eg.
outputs = {'label_A': [[10.8], ...] 'label_B': [[15.7]], ...}
labels = {'labels': {'label_A: 1: [10, 9, ...], 'label_B': [12, 17,], ...}}
-> losses = {total: loss_total, label_A: loss_A, label_B: loss_B, ... }
"""
_outputs = {label_name: _output.squeeze() for label_name, _output in outputs.items()}
_labels = {label_name: _label.to(torch.float32) for label_name, _label in labels['labels'].items()}
# loss for each label and total of their losses
losses = dict()
losses['total'] = torch.tensor([0.0], requires_grad=True).to(self.device)
for label_name in labels['labels'].keys():
_output = _outputs[label_name]
_label = _labels[label_name]
_label_loss = self.criterion(_output, _label)
losses[label_name] = _label_loss
losses['total'] = torch.add(losses['total'], _label_loss)
return losses
class DeepSurvCriterion:
"""
Class of criterion for deepsurv.
"""
def __init__(self, device: torch.device = None) -> None:
"""
Set NegativeLogLikelihood.
Args:
device (torch.device, optional): device
"""
self.device = device
self.criterion = NegativeLogLikelihood(self.device).to(self.device)
def __call__(
self,
outputs: Dict[str, torch.FloatTensor],
labels: Dict[str, Union[LabelDict, torch.IntTensor, nn.Module]]
) -> Dict[str, torch.FloatTensor]:
"""
Calculate loss.
Args:
outputs (Dict[str, torch.FloatTensor], optional): output
labels (Dict[str, Union[LabelDict, torch.IntTensor, nn.Module]]): labels, periods, and network
Returns:
Dict[str, torch.FloatTensor]: loss for each label and their total loss
# Reshape and no cast
output: [64, 1]: torch.float32
label: [64] -> [64, 1]: torch.int64
period: [64] -> [64, 1]: torch.float32
eg.
outputs = {'label_A': [[10.8], ...] 'label_B': [[15.7]], ...}
labels = {
'labels': {'label_A: 1: [1, 0, 1, ...] },
'periods': [5, 10, 7, ...],
'network': network
}
-> losses = {total: loss_total, label_A: loss_A, label_B: loss_B, ... }
"""
_labels = {label_name: _label.reshape(-1, 1) for label_name, _label in labels['labels'].items()}
_periods = labels['periods'].reshape(-1, 1)
_network = labels['network']
# loss for each label and total of their losses
losses = dict()
losses['total'] = torch.tensor([0.0], requires_grad=True).to(self.device)
for label_name in labels['labels'].keys():
_output = outputs[label_name]
_label = _labels[label_name]
_label_loss = self.criterion(_output, _label, _periods, _network)
losses[label_name] = _label_loss
losses['total'] = torch.add(losses['total'], _label_loss)
return losses
def set_criterion(
criterion_name: str,
device: torch.device
) -> Union[ClsCriterion, RegCriterion, DeepSurvCriterion]:
"""
Return criterion class
Args:
criterion_name (str): criterion name
device (torch.device): device
Returns:
Union[ClsCriterion, RegCriterion, DeepSurvCriterion]: criterion class
"""
if criterion_name == 'CEL':
return ClsCriterion(device=device)
elif criterion_name in ['MSE', 'RMSE', 'MAE']:
return RegCriterion(criterion_name=criterion_name, device=device)
elif criterion_name == 'NLL':
return DeepSurvCriterion(device=device)
else:
raise ValueError(f"Invalid criterion: {criterion_name}.")
|