File size: 9,024 Bytes
1f53a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#!/usr/bin/env python
# -*- coding: utf-8 -*-

from pathlib import Path
import torch
import pandas as pd
from ..logger import BaseLogger
from typing import List, Dict, Union


logger = BaseLogger.get_logger(__name__)


class LabelLoss:
    """
    Class to store loss for every bash and epoch loss of each label.
    """
    def __init__(self) -> None:
        # Accumulate batch_loss(=loss * batch_size)
        self.train_batch_loss = 0.0
        self.val_batch_loss = 0.0

        # epoch_loss = batch_loss / dataset_size
        self.train_epoch_loss = []       # List[float]
        self.val_epoch_loss = []         # List[float]

        self.best_val_loss = None        # float
        self.best_epoch = None           # int
        self.is_val_loss_updated = None  # bool

    def get_loss(self, phase: str, target: str) -> Union[float, List[float]]:
        """
        Return loss depending on phase and target

        Args:
            phase (str): 'train' or 'val'
            target (str): 'batch' or 'epoch'

        Returns:
            Union[float, List[float]]: batch_loss or epoch_loss
        """
        _target = phase + '_' + target + '_loss'
        return getattr(self, _target)

    def store_batch_loss(self, phase: str, new_batch_loss: torch.FloatTensor, batch_size: int) -> None:
        """
        Add new batch loss to previous one for phase by multiplying by batch_size.

        Args:
            phase (str): 'train' or 'val'
            new_batch_loss (torch.FloatTensor): batch loss calculated by criterion
            batch_size (int): batch size
        """
        _new = new_batch_loss.item() * batch_size  # torch.FloatTensor -> float
        _prev = self.get_loss(phase, 'batch')
        _added = _prev + _new
        _target = phase + '_' + 'batch_loss'
        setattr(self, _target, _added)

    def append_epoch_loss(self, phase: str, new_epoch_loss: float) -> None:
        """
        Append epoch loss depending on phase and target

        Args:
            phase (str): 'train' or 'val'
            new_epoch_loss (float): batch loss or epoch loss
        """
        _target = phase + '_' + 'epoch_loss'
        getattr(self, _target).append(new_epoch_loss)

    def get_latest_epoch_loss(self, phase: str) -> float:
        """
        Return the latest loss of phase.

        Args:
            phase (str): train or val

        Returns:
            float: the latest loss
        """
        return self.get_loss(phase, 'epoch')[-1]

    def update_best_val_loss(self, at_epoch: int = None) -> None:
        """
        Update val_epoch_loss is the best.

        Args:
            at_epoch (int): epoch when checked
        """
        _latest_val_loss = self.get_latest_epoch_loss('val')

        if at_epoch == 1:
            self.best_val_loss = _latest_val_loss
            self.best_epoch = at_epoch
            self.is_val_loss_updated = True
        else:
            # When at_epoch > 1
            if _latest_val_loss < self.best_val_loss:
                self.best_val_loss = _latest_val_loss
                self.best_epoch = at_epoch
                self.is_val_loss_updated = True
            else:
                self.is_val_loss_updated = False


class LossStore:
    """
    Class for calculating loss and store it.
    """
    def __init__(self, label_list: List[str], num_epochs: int, dataset_info: Dict[str, int]) -> None:
        """
        Args:
            label_list (List[str]): list of internal labels
            num_epochs (int) : number of epochs
            dataset_info (Dict[str, int]):  dataset sizes of 'train' and 'val'
        """
        self.label_list = label_list
        self.num_epochs = num_epochs
        self.dataset_info = dataset_info

        # Added a special label 'total' to store total of losses of all labels.
        self.label_losses = {label_name: LabelLoss() for label_name in self.label_list + ['total']}

    def store(self, phase: str, losses: Dict[str, torch.FloatTensor], batch_size: int = None) -> None:
        """
        Store label-wise batch losses of phase to previous one.

        Args:
            phase (str): 'train' or 'val'
            losses (Dict[str, torch.FloatTensor]): loss for each label calculated by criterion
            batch_size (int): batch size

        # Note:
            self.loss_stores['total'] is already total of losses of all label, which is calculated in criterion.py,
            therefore, it is OK just to multiply by batch_size. This is done in add_batch_loss().
        """
        for label_name in self.label_list + ['total']:
            _new_batch_loss = losses[label_name]
            self.label_losses[label_name].store_batch_loss(phase, _new_batch_loss, batch_size)

    def cal_epoch_loss(self, at_epoch: int = None) -> None:
        """
        Calculate epoch loss for each phase all at once.

        Args:
            at_epoch (int): epoch number
        """
        # For each label
        for label_name in self.label_list:
            for phase in ['train', 'val']:
                _batch_loss = self.label_losses[label_name].get_loss(phase, 'batch')
                _dataset_size = self.dataset_info[phase]
                _new_epoch_loss = _batch_loss / _dataset_size
                self.label_losses[label_name].append_epoch_loss(phase, _new_epoch_loss)

        # For total, average by dataset_size and the number of labels.
        for phase in ['train', 'val']:
            _batch_loss = self.label_losses['total'].get_loss(phase, 'batch')
            _dataset_size = self.dataset_info[phase]
            _new_epoch_loss = _batch_loss / (_dataset_size * len(self.label_list))
            self.label_losses['total'].append_epoch_loss(phase, _new_epoch_loss)

        # Update val_best_loss and best_epoch.
        for label_name in self.label_list + ['total']:
            self.label_losses[label_name].update_best_val_loss(at_epoch=at_epoch)

        # Initialize batch_loss after calculating epoch loss.
        for label_name in self.label_list + ['total']:
            self.label_losses[label_name].train_batch_loss = 0.0
            self.label_losses[label_name].val_batch_loss = 0.0

    def is_val_loss_updated(self) -> bool:
        """
        Check if val_loss of 'total' is updated.

        Returns:
            bool: Updated or not
        """
        return self.label_losses['total'].is_val_loss_updated

    def get_best_epoch(self) -> int:
        """
        Returns best epoch.

        Returns:
            int: best epoch
        """
        return self.label_losses['total'].best_epoch

    def print_epoch_loss(self, at_epoch: int = None) -> None:
        """
        Print train_loss and val_loss for the ith epoch.

        Args:
            at_epoch (int): epoch number
        """
        train_epoch_loss = self.label_losses['total'].get_latest_epoch_loss('train')
        val_epoch_loss = self.label_losses['total'].get_latest_epoch_loss('val')

        _epoch_comm = f"epoch [{at_epoch:>3}/{self.num_epochs:<3}]"
        _train_comm = f"train_loss: {train_epoch_loss :>8.4f}"
        _val_comm = f"val_loss: {val_epoch_loss:>8.4f}"
        _updated_comment = ''
        if (at_epoch > 1) and (self.is_val_loss_updated()):
            _updated_comment = '   Updated best val_loss!'
        comment = _epoch_comm + ', ' + _train_comm + ', ' + _val_comm + _updated_comment
        logger.info(comment)

    def save_learning_curve(self, save_datetime_dir: str) -> None:
        """
        Save learning curve.

        Args:
            save_datetime_dir (str): save_datetime_dir
        """
        save_dir = Path(save_datetime_dir, 'learning_curve')
        save_dir.mkdir(parents=True, exist_ok=True)

        for label_name in self.label_list + ['total']:
            _label_loss = self.label_losses[label_name]
            _train_epoch_loss = _label_loss.get_loss('train', 'epoch')
            _val_epoch_loss = _label_loss.get_loss('val', 'epoch')

            df_label_epoch_loss = pd.DataFrame({
                                                'train_loss': _train_epoch_loss,
                                                'val_loss': _val_epoch_loss
                                            })

            _best_epoch = str(_label_loss.best_epoch).zfill(3)
            _best_val_loss = f"{_label_loss.best_val_loss:.4f}"
            save_name = 'learning_curve_' + label_name + '_val-best-epoch-' + _best_epoch + '_val-best-loss-' + _best_val_loss + '.csv'
            save_path = Path(save_dir, save_name)
            df_label_epoch_loss.to_csv(save_path, index=False)


def set_loss_store(label_list: List[str], num_epochs: int, dataset_info: Dict[str, int]) -> LossStore:
    """
    Return class LossStore.

    Args:
        label_list (List[str]): label list
        num_epochs (int) : number of epochs
        dataset_info (Dict[str, int]):  dataset sizes of 'train' and 'val'

    Returns:
        LossStore: LossStore
    """
    return LossStore(label_list, num_epochs, dataset_info)