Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 9,024 Bytes
1f53a4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from pathlib import Path
import torch
import pandas as pd
from ..logger import BaseLogger
from typing import List, Dict, Union
logger = BaseLogger.get_logger(__name__)
class LabelLoss:
"""
Class to store loss for every bash and epoch loss of each label.
"""
def __init__(self) -> None:
# Accumulate batch_loss(=loss * batch_size)
self.train_batch_loss = 0.0
self.val_batch_loss = 0.0
# epoch_loss = batch_loss / dataset_size
self.train_epoch_loss = [] # List[float]
self.val_epoch_loss = [] # List[float]
self.best_val_loss = None # float
self.best_epoch = None # int
self.is_val_loss_updated = None # bool
def get_loss(self, phase: str, target: str) -> Union[float, List[float]]:
"""
Return loss depending on phase and target
Args:
phase (str): 'train' or 'val'
target (str): 'batch' or 'epoch'
Returns:
Union[float, List[float]]: batch_loss or epoch_loss
"""
_target = phase + '_' + target + '_loss'
return getattr(self, _target)
def store_batch_loss(self, phase: str, new_batch_loss: torch.FloatTensor, batch_size: int) -> None:
"""
Add new batch loss to previous one for phase by multiplying by batch_size.
Args:
phase (str): 'train' or 'val'
new_batch_loss (torch.FloatTensor): batch loss calculated by criterion
batch_size (int): batch size
"""
_new = new_batch_loss.item() * batch_size # torch.FloatTensor -> float
_prev = self.get_loss(phase, 'batch')
_added = _prev + _new
_target = phase + '_' + 'batch_loss'
setattr(self, _target, _added)
def append_epoch_loss(self, phase: str, new_epoch_loss: float) -> None:
"""
Append epoch loss depending on phase and target
Args:
phase (str): 'train' or 'val'
new_epoch_loss (float): batch loss or epoch loss
"""
_target = phase + '_' + 'epoch_loss'
getattr(self, _target).append(new_epoch_loss)
def get_latest_epoch_loss(self, phase: str) -> float:
"""
Return the latest loss of phase.
Args:
phase (str): train or val
Returns:
float: the latest loss
"""
return self.get_loss(phase, 'epoch')[-1]
def update_best_val_loss(self, at_epoch: int = None) -> None:
"""
Update val_epoch_loss is the best.
Args:
at_epoch (int): epoch when checked
"""
_latest_val_loss = self.get_latest_epoch_loss('val')
if at_epoch == 1:
self.best_val_loss = _latest_val_loss
self.best_epoch = at_epoch
self.is_val_loss_updated = True
else:
# When at_epoch > 1
if _latest_val_loss < self.best_val_loss:
self.best_val_loss = _latest_val_loss
self.best_epoch = at_epoch
self.is_val_loss_updated = True
else:
self.is_val_loss_updated = False
class LossStore:
"""
Class for calculating loss and store it.
"""
def __init__(self, label_list: List[str], num_epochs: int, dataset_info: Dict[str, int]) -> None:
"""
Args:
label_list (List[str]): list of internal labels
num_epochs (int) : number of epochs
dataset_info (Dict[str, int]): dataset sizes of 'train' and 'val'
"""
self.label_list = label_list
self.num_epochs = num_epochs
self.dataset_info = dataset_info
# Added a special label 'total' to store total of losses of all labels.
self.label_losses = {label_name: LabelLoss() for label_name in self.label_list + ['total']}
def store(self, phase: str, losses: Dict[str, torch.FloatTensor], batch_size: int = None) -> None:
"""
Store label-wise batch losses of phase to previous one.
Args:
phase (str): 'train' or 'val'
losses (Dict[str, torch.FloatTensor]): loss for each label calculated by criterion
batch_size (int): batch size
# Note:
self.loss_stores['total'] is already total of losses of all label, which is calculated in criterion.py,
therefore, it is OK just to multiply by batch_size. This is done in add_batch_loss().
"""
for label_name in self.label_list + ['total']:
_new_batch_loss = losses[label_name]
self.label_losses[label_name].store_batch_loss(phase, _new_batch_loss, batch_size)
def cal_epoch_loss(self, at_epoch: int = None) -> None:
"""
Calculate epoch loss for each phase all at once.
Args:
at_epoch (int): epoch number
"""
# For each label
for label_name in self.label_list:
for phase in ['train', 'val']:
_batch_loss = self.label_losses[label_name].get_loss(phase, 'batch')
_dataset_size = self.dataset_info[phase]
_new_epoch_loss = _batch_loss / _dataset_size
self.label_losses[label_name].append_epoch_loss(phase, _new_epoch_loss)
# For total, average by dataset_size and the number of labels.
for phase in ['train', 'val']:
_batch_loss = self.label_losses['total'].get_loss(phase, 'batch')
_dataset_size = self.dataset_info[phase]
_new_epoch_loss = _batch_loss / (_dataset_size * len(self.label_list))
self.label_losses['total'].append_epoch_loss(phase, _new_epoch_loss)
# Update val_best_loss and best_epoch.
for label_name in self.label_list + ['total']:
self.label_losses[label_name].update_best_val_loss(at_epoch=at_epoch)
# Initialize batch_loss after calculating epoch loss.
for label_name in self.label_list + ['total']:
self.label_losses[label_name].train_batch_loss = 0.0
self.label_losses[label_name].val_batch_loss = 0.0
def is_val_loss_updated(self) -> bool:
"""
Check if val_loss of 'total' is updated.
Returns:
bool: Updated or not
"""
return self.label_losses['total'].is_val_loss_updated
def get_best_epoch(self) -> int:
"""
Returns best epoch.
Returns:
int: best epoch
"""
return self.label_losses['total'].best_epoch
def print_epoch_loss(self, at_epoch: int = None) -> None:
"""
Print train_loss and val_loss for the ith epoch.
Args:
at_epoch (int): epoch number
"""
train_epoch_loss = self.label_losses['total'].get_latest_epoch_loss('train')
val_epoch_loss = self.label_losses['total'].get_latest_epoch_loss('val')
_epoch_comm = f"epoch [{at_epoch:>3}/{self.num_epochs:<3}]"
_train_comm = f"train_loss: {train_epoch_loss :>8.4f}"
_val_comm = f"val_loss: {val_epoch_loss:>8.4f}"
_updated_comment = ''
if (at_epoch > 1) and (self.is_val_loss_updated()):
_updated_comment = ' Updated best val_loss!'
comment = _epoch_comm + ', ' + _train_comm + ', ' + _val_comm + _updated_comment
logger.info(comment)
def save_learning_curve(self, save_datetime_dir: str) -> None:
"""
Save learning curve.
Args:
save_datetime_dir (str): save_datetime_dir
"""
save_dir = Path(save_datetime_dir, 'learning_curve')
save_dir.mkdir(parents=True, exist_ok=True)
for label_name in self.label_list + ['total']:
_label_loss = self.label_losses[label_name]
_train_epoch_loss = _label_loss.get_loss('train', 'epoch')
_val_epoch_loss = _label_loss.get_loss('val', 'epoch')
df_label_epoch_loss = pd.DataFrame({
'train_loss': _train_epoch_loss,
'val_loss': _val_epoch_loss
})
_best_epoch = str(_label_loss.best_epoch).zfill(3)
_best_val_loss = f"{_label_loss.best_val_loss:.4f}"
save_name = 'learning_curve_' + label_name + '_val-best-epoch-' + _best_epoch + '_val-best-loss-' + _best_val_loss + '.csv'
save_path = Path(save_dir, save_name)
df_label_epoch_loss.to_csv(save_path, index=False)
def set_loss_store(label_list: List[str], num_epochs: int, dataset_info: Dict[str, int]) -> LossStore:
"""
Return class LossStore.
Args:
label_list (List[str]): label list
num_epochs (int) : number of epochs
dataset_info (Dict[str, int]): dataset sizes of 'train' and 'val'
Returns:
LossStore: LossStore
"""
return LossStore(label_list, num_epochs, dataset_info)
|