Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 24,640 Bytes
1f53a4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-r
from collections import OrderedDict
import torch
import torch.nn as nn
from torchvision.ops import MLP
import torchvision.models as models
from typing import Dict, Optional
class BaseNet:
"""
Class to construct network
"""
cnn = {
'ResNet18': models.resnet18,
'ResNet': models.resnet50,
'DenseNet': models.densenet161,
'EfficientNetB0': models.efficientnet_b0,
'EfficientNetB2': models.efficientnet_b2,
'EfficientNetB4': models.efficientnet_b4,
'EfficientNetB6': models.efficientnet_b6,
'EfficientNetV2s': models.efficientnet_v2_s,
'EfficientNetV2m': models.efficientnet_v2_m,
'EfficientNetV2l': models.efficientnet_v2_l,
'ConvNeXtTiny': models.convnext_tiny,
'ConvNeXtSmall': models.convnext_small,
'ConvNeXtBase': models.convnext_base,
'ConvNeXtLarge': models.convnext_large
}
vit = {
'ViTb16': models.vit_b_16,
'ViTb32': models.vit_b_32,
'ViTl16': models.vit_l_16,
'ViTl32': models.vit_l_32,
'ViTH14': models.vit_h_14
}
net = {**cnn, **vit}
_classifier = {
'ResNet': 'fc',
'DenseNet': 'classifier',
'EfficientNet': 'classifier',
'ConvNext': 'classifier',
'ViT': 'heads'
}
classifier = {
'ResNet18': _classifier['ResNet'],
'ResNet': _classifier['ResNet'],
'DenseNet': _classifier['DenseNet'],
'EfficientNetB0': _classifier['EfficientNet'],
'EfficientNetB2': _classifier['EfficientNet'],
'EfficientNetB4': _classifier['EfficientNet'],
'EfficientNetB6': _classifier['EfficientNet'],
'EfficientNetV2s': _classifier['EfficientNet'],
'EfficientNetV2m': _classifier['EfficientNet'],
'EfficientNetV2l': _classifier['EfficientNet'],
'ConvNeXtTiny': _classifier['ConvNext'],
'ConvNeXtSmall': _classifier['ConvNext'],
'ConvNeXtBase': _classifier['ConvNext'],
'ConvNeXtLarge': _classifier['ConvNext'],
'ViTb16': _classifier['ViT'],
'ViTb32': _classifier['ViT'],
'ViTl16': _classifier['ViT'],
'ViTl32': _classifier['ViT'],
'ViTH14': _classifier['ViT']
}
mlp_config = {
'hidden_channels': [256, 256, 256],
'dropout': 0.2
}
DUMMY = nn.Identity()
@classmethod
def MLPNet(cls, mlp_num_inputs: int = None, inplace: bool = None) -> MLP:
"""
Construct MLP.
Args:
mlp_num_inputs (int): the number of input of MLP
inplace (bool, optional): parameter for the activation layer, which can optionally do the operation in-place. Defaults to None.
Returns:
MLP: MLP
"""
assert isinstance(mlp_num_inputs, int), f"Invalid number of inputs for MLP: {mlp_num_inputs}."
mlp = MLP(in_channels=mlp_num_inputs, hidden_channels=cls.mlp_config['hidden_channels'], inplace=inplace, dropout=cls.mlp_config['dropout'])
return mlp
@classmethod
def align_in_channels_1ch(cls, net_name: str = None, net: nn.Module = None) -> nn.Module:
"""
Modify network to handle gray scale image.
Args:
net_name (str): network name
net (nn.Module): network itself
Returns:
nn.Module: network available for gray scale
"""
if net_name.startswith('ResNet'):
net.conv1.in_channels = 1
net.conv1.weight = nn.Parameter(net.conv1.weight.sum(dim=1).unsqueeze(1))
elif net_name.startswith('DenseNet'):
net.features.conv0.in_channels = 1
net.features.conv0.weight = nn.Parameter(net.features.conv0.weight.sum(dim=1).unsqueeze(1))
elif net_name.startswith('Efficient'):
net.features[0][0].in_channels = 1
net.features[0][0].weight = nn.Parameter(net.features[0][0].weight.sum(dim=1).unsqueeze(1))
elif net_name.startswith('ConvNeXt'):
net.features[0][0].in_channels = 1
net.features[0][0].weight = nn.Parameter(net.features[0][0].weight.sum(dim=1).unsqueeze(1))
elif net_name.startswith('ViT'):
net.conv_proj.in_channels = 1
net.conv_proj.weight = nn.Parameter(net.conv_proj.weight.sum(dim=1).unsqueeze(1))
else:
raise ValueError(f"No specified net: {net_name}.")
return net
@classmethod
def set_net(
cls,
net_name: str = None,
in_channel: int = None,
vit_image_size: int = None,
pretrained: bool = None
) -> nn.Module:
"""
Modify network depending on in_channel and vit_image_size.
Args:
net_name (str): network name
in_channel (int, optional): image channel(any of 1ch or 3ch). Defaults to None.
vit_image_size (int, optional): image size which ViT handles if ViT is used. Defaults to None.
vit_image_size should be power of patch size.
pretrained (bool, optional): True when use pretrained CNN or ViT, otherwise False. Defaults to None.
Returns:
nn.Module: modified network
"""
assert net_name in cls.net, f"No specified net: {net_name}."
if net_name in cls.cnn:
if pretrained:
net = cls.cnn[net_name](weights='DEFAULT')
else:
net = cls.cnn[net_name]()
else:
# When ViT
# always use pretrained
net = cls.set_vit(net_name=net_name, vit_image_size=vit_image_size)
if in_channel == 1:
net = cls.align_in_channels_1ch(net_name=net_name, net=net)
return net
@classmethod
def set_vit(cls, net_name: str = None, vit_image_size: int = None) -> nn.Module:
"""
Modify ViT depending on vit_image_size.
Args:
net_name (str): ViT name
vit_image_size (int): image size which ViT handles if ViT is used.
Returns:
nn.Module: modified ViT
"""
base_vit = cls.vit[net_name]
# pretrained_vit = base_vit(weights=cls.vit_weight[net_name])
pretrained_vit = base_vit(weights='DEFAULT')
# Align weight depending on image size
weight = pretrained_vit.state_dict()
patch_size = int(net_name[-2:]) # 'ViTb16' -> 16
aligned_weight = models.vision_transformer.interpolate_embeddings(
image_size=vit_image_size,
patch_size=patch_size,
model_state=weight
)
aligned_vit = base_vit(image_size=vit_image_size) # Specify new image size.
aligned_vit.load_state_dict(aligned_weight) # Load weight which can handle the new image size.
return aligned_vit
@classmethod
def construct_extractor(
cls,
net_name: str = None,
mlp_num_inputs: int = None,
in_channel: int = None,
vit_image_size: int = None,
pretrained: bool = None
) -> nn.Module:
"""
Construct extractor of network depending on net_name.
Args:
net_name (str): network name.
mlp_num_inputs (int, optional): number of input of MLP. Defaults to None.
in_channel (int, optional): image channel(any of 1ch or 3ch). Defaults to None.
vit_image_size (int, optional): image size which ViT handles if ViT is used. Defaults to None.
pretrained (bool, optional): True when use pretrained CNN or ViT, otherwise False. Defaults to None.
Returns:
nn.Module: extractor of network
"""
if net_name == 'MLP':
extractor = cls.MLPNet(mlp_num_inputs=mlp_num_inputs)
else:
extractor = cls.set_net(net_name=net_name, in_channel=in_channel, vit_image_size=vit_image_size, pretrained=pretrained)
setattr(extractor, cls.classifier[net_name], cls.DUMMY) # Replace classifier with DUMMY(=nn.Identity()).
return extractor
@classmethod
def get_classifier(cls, net_name: str) -> nn.Module:
"""
Get classifier of network depending on net_name.
Args:
net_name (str): network name
Returns:
nn.Module: classifier of network
"""
net = cls.net[net_name]()
classifier = getattr(net, cls.classifier[net_name])
return classifier
@classmethod
def construct_multi_classifier(cls, net_name: str = None, num_outputs_for_label: Dict[str, int] = None) -> nn.ModuleDict:
"""
Construct classifier for multi-label.
Args:
net_name (str): network name
num_outputs_for_label (Dict[str, int]): number of outputs for each label
Returns:
nn.ModuleDict: classifier for multi-label
"""
classifiers = dict()
if net_name == 'MLP':
in_features = cls.mlp_config['hidden_channels'][-1]
for label_name, num_outputs in num_outputs_for_label.items():
classifiers[label_name] = nn.Linear(in_features, num_outputs)
elif net_name.startswith('ResNet') or net_name.startswith('DenseNet'):
base_classifier = cls.get_classifier(net_name)
in_features = base_classifier.in_features
for label_name, num_outputs in num_outputs_for_label.items():
classifiers[label_name] = nn.Linear(in_features, num_outputs)
elif net_name.startswith('EfficientNet'):
base_classifier = cls.get_classifier(net_name)
dropout = base_classifier[0].p
in_features = base_classifier[1].in_features
for label_name, num_outputs in num_outputs_for_label.items():
classifiers[label_name] = nn.Sequential(
nn.Dropout(p=dropout, inplace=False),
nn.Linear(in_features, num_outputs)
)
elif net_name.startswith('ConvNeXt'):
base_classifier = cls.get_classifier(net_name)
layer_norm = base_classifier[0]
flatten = base_classifier[1]
in_features = base_classifier[2].in_features
for label_name, num_outputs in num_outputs_for_label.items():
# Shape is changed before nn.Linear.
classifiers[label_name] = nn.Sequential(
layer_norm,
flatten,
nn.Linear(in_features, num_outputs)
)
elif net_name.startswith('ViT'):
base_classifier = cls.get_classifier(net_name)
in_features = base_classifier.head.in_features
for label_name, num_outputs in num_outputs_for_label.items():
classifiers[label_name] = nn.Sequential(
OrderedDict([
('head', nn.Linear(in_features, num_outputs))
])
)
else:
raise ValueError(f"No specified net: {net_name}.")
multi_classifier = nn.ModuleDict(classifiers)
return multi_classifier
@classmethod
def get_classifier_in_features(cls, net_name: str) -> int:
"""
Return in_feature of network indicating by net_name.
This class is used in class MultiNetFusion() only.
Args:
net_name (str): net_name
Returns:
int : in_feature
Required:
classifier.in_feature
classifier.[1].in_features
classifier.[2].in_features
classifier.head.in_features
"""
if net_name == 'MLP':
in_features = cls.mlp_config['hidden_channels'][-1]
elif net_name.startswith('ResNet') or net_name.startswith('DenseNet'):
base_classifier = cls.get_classifier(net_name)
in_features = base_classifier.in_features
elif net_name.startswith('EfficientNet'):
base_classifier = cls.get_classifier(net_name)
in_features = base_classifier[1].in_features
elif net_name.startswith('ConvNeXt'):
base_classifier = cls.get_classifier(net_name)
in_features = base_classifier[2].in_features
elif net_name.startswith('ViT'):
base_classifier = cls.get_classifier(net_name)
in_features = base_classifier.head.in_features
else:
raise ValueError(f"No specified net: {net_name}.")
return in_features
@classmethod
def construct_aux_module(cls, net_name: str) -> nn.Sequential:
"""
Construct module to align the shape of feature from extractor depending on network.
Actually, only when net_name == 'ConvNeXt'.
Because ConvNeXt has the process of aligning the dimensions in its classifier.
Needs to align shape of the feature extractor when ConvNeXt
(classifier):
Sequential(
(0): LayerNorm2d((768,), eps=1e-06, elementwise_affine=True)
(1): Flatten(start_dim=1, end_dim=-1)
(2): Linear(in_features=768, out_features=1000, bias=True)
)
Args:
net_name (str): net name
Returns:
nn.Module: layers such that they align the dimension of the output from the extractor like the original ConvNeXt.
"""
aux_module = cls.DUMMY
if net_name.startswith('ConvNeXt'):
base_classifier = cls.get_classifier(net_name)
layer_norm = base_classifier[0]
flatten = base_classifier[1]
aux_module = nn.Sequential(
layer_norm,
flatten
)
return aux_module
@classmethod
def get_last_extractor(cls, net: nn.Module = None, mlp: str = None, net_name: str = None) -> nn.Module:
"""
Return the last extractor of network.
This is for Grad-CAM.
net should be one loaded weight.
Args:
net (nn.Module): network itself
mlp (str): 'MLP', otherwise None
net_name (str): network name
Returns:
nn.Module: last extractor of network
"""
assert (net_name is not None), f"Network does not contain CNN or ViT: mlp={mlp}, net={net_name}."
_extractor = net.extractor_net
if net_name.startswith('ResNet'):
last_extractor = _extractor.layer4[-1]
elif net_name.startswith('DenseNet'):
last_extractor = _extractor.features.denseblock4.denselayer24
elif net_name.startswith('EfficientNet'):
last_extractor = _extractor.features[-1]
elif net_name.startswith('ConvNeXt'):
last_extractor = _extractor.features[-1][-1].block
elif net_name.startswith('ViT'):
last_extractor = _extractor.encoder.layers[-1]
else:
raise ValueError(f"Cannot get last extractor of net: {net_name}.")
return last_extractor
class MultiMixin:
"""
Class to define auxiliary function to handle multi-label.
"""
def multi_forward(self, out_features: int) -> Dict[str, float]:
"""
Forward out_features to classifier for each label.
Args:
out_features (int): output from extractor
Returns:
Dict[str, float]: output of classifier of each label
"""
output = dict()
for label_name, classifier in self.multi_classifier.items():
output[label_name] = classifier(out_features)
return output
class MultiWidget(nn.Module, BaseNet, MultiMixin):
"""
Class for a widget to inherit multiple classes simultaneously.
"""
pass
class MultiNet(MultiWidget):
"""
Model of MLP, CNN or ViT.
"""
def __init__(
self,
net_name: str = None,
num_outputs_for_label: Dict[str, int] = None,
mlp_num_inputs: int = None,
in_channel: int = None,
vit_image_size: int = None,
pretrained: bool = None
) -> None:
"""
Args:
net_name (str): MLP, CNN or ViT name
num_outputs_for_label (Dict[str, int]): number of classes for each label
mlp_num_inputs (int): number of input of MLP.
in_channel (int): number of image channel, ie gray scale(=1) or color image(=3).
vit_image_size (int): image size to be input to ViT.
pretrained (bool): True when use pretrained CNN or ViT, otherwise False.
"""
super().__init__()
self.net_name = net_name
self.num_outputs_for_label = num_outputs_for_label
self.mlp_num_inputs = mlp_num_inputs
self.in_channel = in_channel
self.vit_image_size = vit_image_size
self.pretrained = pretrained
# self.extractor_net = MLP or CVmodel
self.extractor_net = self.construct_extractor(
net_name=self.net_name,
mlp_num_inputs=self.mlp_num_inputs,
in_channel=self.in_channel,
vit_image_size=self.vit_image_size,
pretrained=self.pretrained
)
self.multi_classifier = self.construct_multi_classifier(net_name=self.net_name, num_outputs_for_label=self.num_outputs_for_label)
def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
"""
Forward.
Args:
x (torch.Tensor): tabular data or image
Returns:
Dict[str, torch.Tensor]: output
"""
out_features = self.extractor_net(x)
output = self.multi_forward(out_features)
return output
class MultiNetFusion(MultiWidget):
"""
Fusion model of MLP and CNN or ViT.
"""
def __init__(
self,
net_name: str = None,
num_outputs_for_label: Dict[str, int] = None,
mlp_num_inputs: int = None,
in_channel: int = None,
vit_image_size: int = None,
pretrained: bool = None
) -> None:
"""
Args:
net_name (str): CNN or ViT name. It is clear that MLP is used in fusion model.
num_outputs_for_label (Dict[str, int]): number of classes for each label
mlp_num_inputs (int): number of input of MLP. Defaults to None.
in_channel (int): number of image channel, ie gray scale(=1) or color image(=3).
vit_image_size (int): image size to be input to ViT.
pretrained (bool): True when use pretrained CNN or ViT, otherwise False.
"""
assert (net_name != 'MLP'), 'net_name should not be MLP.'
super().__init__()
self.net_name = net_name
self.num_outputs_for_label = num_outputs_for_label
self.mlp_num_inputs = mlp_num_inputs
self.in_channel = in_channel
self.vit_image_size = vit_image_size
self.pretrained = pretrained
# Extractor of MLP and Net
self.extractor_mlp = self.construct_extractor(net_name='MLP', mlp_num_inputs=self.mlp_num_inputs)
self.extractor_net = self.construct_extractor(
net_name=self.net_name,
in_channel=self.in_channel,
vit_image_size=self.vit_image_size,
pretrained=self.pretrained
)
self.aux_module = self.construct_aux_module(self.net_name)
# Intermediate MLP
self.in_features_from_mlp = self.get_classifier_in_features('MLP')
self.in_features_from_net = self.get_classifier_in_features(self.net_name)
self.inter_mlp_in_feature = self.in_features_from_mlp + self.in_features_from_net
self.inter_mlp = self.MLPNet(mlp_num_inputs=self.inter_mlp_in_feature, inplace=False)
# Multi classifier
self.multi_classifier = self.construct_multi_classifier(net_name='MLP', num_outputs_for_label=num_outputs_for_label)
def forward(self, x_mlp: torch.Tensor, x_net: torch.Tensor) -> Dict[str, torch.Tensor]:
"""
Forward.
Args:
x_mlp (torch.Tensor): tabular data
x_net (torch.Tensor): image
Returns:
Dict[str, torch.Tensor]: output
"""
out_mlp = self.extractor_mlp(x_mlp)
out_net = self.extractor_net(x_net)
out_net = self.aux_module(out_net)
out_features = torch.cat([out_mlp, out_net], dim=1)
out_features = self.inter_mlp(out_features)
output = self.multi_forward(out_features)
return output
def create_net(
mlp: Optional[str] = None,
net: Optional[str] = None,
num_outputs_for_label: Dict[str, int] = None,
mlp_num_inputs: int = None,
in_channel: int = None,
vit_image_size: int = None,
pretrained: bool = None
) -> nn.Module:
"""
Create network.
Args:
mlp (Optional[str]): 'MLP' or None
net (Optional[str]): CNN, ViT name or None
num_outputs_for_label (Dict[str, int]): number of outputs for each label
mlp_num_inputs (int): number of input of MLP.
in_channel (int): number of image channel, ie gray scale(=1) or color image(=3).
vit_image_size (int): image size to be input to ViT.
pretrained (bool): True when use pretrained CNN or ViT, otherwise False.
Returns:
nn.Module: network
"""
_isMLPModel = (mlp is not None) and (net is None)
_isCVModel = (mlp is None) and (net is not None)
_isFusion = (mlp is not None) and (net is not None)
if _isMLPModel:
multi_net = MultiNet(
net_name='MLP',
num_outputs_for_label=num_outputs_for_label,
mlp_num_inputs=mlp_num_inputs,
in_channel=in_channel,
vit_image_size=vit_image_size,
pretrained=False # No need of pretrained for MLP
)
elif _isCVModel:
multi_net = MultiNet(
net_name=net,
num_outputs_for_label=num_outputs_for_label,
mlp_num_inputs=mlp_num_inputs,
in_channel=in_channel,
vit_image_size=vit_image_size,
pretrained=pretrained
)
elif _isFusion:
multi_net = MultiNetFusion(
net_name=net,
num_outputs_for_label=num_outputs_for_label,
mlp_num_inputs=mlp_num_inputs,
in_channel=in_channel,
vit_image_size=vit_image_size,
pretrained=pretrained
)
else:
raise ValueError(f"Invalid model type: mlp={mlp}, net={net}.")
return multi_net
|