Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 12,909 Bytes
1f53a4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
import torch
import torchvision.transforms as transforms
from torch.utils.data.dataset import Dataset
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.sampler import WeightedRandomSampler
from PIL import Image
from sklearn.preprocessing import MinMaxScaler
import pickle
from .logger import BaseLogger
from typing import List, Dict, Union
import pandas as pd
logger = BaseLogger.get_logger(__name__)
class PrivateAugment(torch.nn.Module):
"""
Augmentation defined privately.
Variety of augmentation can be written in this class if necessary.
"""
# For X-ray photo.
xray_augs_list = [
transforms.RandomAffine(degrees=(-3, 3), translate=(0.02, 0.02)),
transforms.RandomAdjustSharpness(sharpness_factor=2),
transforms.RandomAutocontrast()
]
class InputDataMixin:
"""
Class to normalizes input data.
"""
def _make_scaler(self) -> MinMaxScaler:
"""
Make scaler to normalize input data by min-max normalization with train data.
Returns:
MinMaxScaler: scaler
"""
scaler = MinMaxScaler()
_df_train = self.df_source[self.df_source['split'] == 'train'] # should be normalized with min and max of training data
_ = scaler.fit(_df_train[self.input_list]) # fit only
return scaler
def save_scaler(self, save_path :str) -> None:
"""
Save scaler
Args:
save_path (str): path for saving scaler.
"""
#save_scaler_path = Path(save_datetime_dir, 'scaler.pkl')
with open(save_path, 'wb') as f:
pickle.dump(self.scaler, f)
def load_scaler(self, scaler_path :str) -> None:
"""
Load scaler.
Args:
scaler_path (str): path to scaler
"""
with open(scaler_path, 'rb') as f:
scaler = pickle.load(f)
return scaler
def _normalize_inputs(self, df_inputs: pd.DataFrame) -> torch.FloatTensor:
"""
Normalize inputs.
Args:
df_inputs (pd.DataFrame): DataFrame of inputs
Returns:
torch.FloatTensor: normalized inputs
Note:
After iloc[[idx], index_input_list], pd.DataFrame is obtained.
DataFrame fits the input type of self.scaler.transform.
However, after normalizing, the shape of inputs_value is (1, N), where N is the number of input values.
Since the shape (1, N) is not acceptable when forwarding, convert (1, N) -> (N,) is needed.
"""
inputs_value = self.scaler.transform(df_inputs).reshape(-1) # np.float64
inputs_value = np.array(inputs_value, dtype=np.float32) # -> np.float32
inputs_value = torch.from_numpy(inputs_value).clone() # -> torch.float32
return inputs_value
def _load_input_value_if_mlp(self, idx: int) -> Union[torch.FloatTensor, str]:
"""
Load input values after converting them into tensor if MLP is used.
Args:
idx (int): index
Returns:
Union[torch.Tensor[float], str]: tensor of input values, or empty string
"""
inputs_value = ''
if self.params.mlp is None:
return inputs_value
index_input_list = [self.col_index_dict[input] for input in self.input_list]
_df_inputs = self.df_split.iloc[[idx], index_input_list]
inputs_value = self._normalize_inputs( _df_inputs)
return inputs_value
class ImageMixin:
"""
Class to normalize and transform image.
"""
def _make_augmentations(self) -> List:
"""
Define which augmentation is applied.
When training, augmentation is needed for train data only.
When test, no need of augmentation.
"""
_augmentation = []
if (self.params.isTrain) and (self.split == 'train'):
if self.params.augmentation == 'xrayaug':
_augmentation = PrivateAugment.xray_augs_list
elif self.params.augmentation == 'trivialaugwide':
_augmentation.append(transforms.TrivialAugmentWide())
elif self.params.augmentation == 'randaug':
_augmentation.append(transforms.RandAugment())
else:
# ie. self.params.augmentation == 'no':
pass
_augmentation = transforms.Compose(_augmentation)
return _augmentation
def _make_transforms(self) -> List:
"""
Make list of transforms.
Returns:
list of transforms: image normalization
"""
_transforms = []
_transforms.append(transforms.ToTensor())
if self.params.normalize_image == 'yes':
# transforms.Normalize accepts only Tensor.
if self.params.in_channel == 1:
_transforms.append(transforms.Normalize(mean=(0.5, ), std=(0.5, )))
else:
# ie. self.params.in_channel == 3
_transforms.append(transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
_transforms = transforms.Compose(_transforms)
return _transforms
def _open_image_in_channel(self, imgpath: str, in_channel: int) -> Image:
"""
Open image in channel.
Args:
imgpath (str): path to image
in_channel (int): channel, or 1 or 3
Returns:
Image: PIL image
"""
if in_channel == 1:
image = Image.open(imgpath).convert('L') # eg. np.array(image).shape = (64, 64)
return image
else:
# ie. self.params.in_channel == 3
image = Image.open(imgpath).convert('RGB') # eg. np.array(image).shape = (64, 64, 3)
return image
def _load_image_if_cnn(self, idx: int) -> Union[torch.Tensor, str]:
"""
Load image and convert it to tensor if any of CNN or ViT is used.
Args:
idx (int): index
Returns:
Union[torch.Tensor[float], str]: tensor converted from image, or empty string
"""
image = ''
if self.params.net is None:
return image
imgpath = self.df_split.iat[idx, self.col_index_dict['imgpath']]
image = self._open_image_in_channel(imgpath, self.params.in_channel)
image = self.augmentation(image)
image = self.transform(image)
return image
class DeepSurvMixin:
"""
Class to handle required data for deepsurv.
"""
def _load_periods_if_deepsurv(self, idx: int) -> Union[torch.FloatTensor, str]:
"""
Return period if deepsurv.
Args:
idx (int): index
Returns:
Union[torch.FloatTensor, str]: period, or empty string
"""
periods = ''
if self.params.task != 'deepsurv':
return periods
assert (self.params.task == 'deepsurv') and (len(self.label_list) == 1), 'Deepsurv cannot work in multi-label.'
periods = self.df_split.iat[idx, self.col_index_dict[self.period_name]] # int64
periods = np.array(periods, dtype=np.float32) # -> np.float32
periods = torch.from_numpy(periods).clone() # -> torch.float32
return periods
class DataSetWidget(InputDataMixin, ImageMixin, DeepSurvMixin):
"""
Class for a widget to inherit multiple classes simultaneously.
"""
pass
class LoadDataSet(Dataset, DataSetWidget):
"""
Dataset for split.
"""
def __init__(
self,
params,
split: str
) -> None:
"""
Args:
params (ParamSet): parameter for model
split (str): split
"""
self.params = params
self.df_source = self.params.df_source
self.split = split
self.input_list = self.params.input_list
self.label_list = self.params.label_list
if self.params.task == 'deepsurv':
self.period_name = self.params.period_name
self.df_split = self.df_source[self.df_source['split'] == self.split]
self.col_index_dict = {col_name: self.df_split.columns.get_loc(col_name) for col_name in self.df_split.columns}
# For input data
if self.params.mlp is not None:
assert (self.input_list != []), f"input list is empty."
if params.isTrain:
self.scaler = self._make_scaler()
else:
# load scaler used at training.
self.scaler = self.load_scaler(self.params.scaler_path)
# For image
if self.params.net is not None:
self.augmentation = self._make_augmentations()
self.transform = self._make_transforms()
def __len__(self) -> int:
"""
Return length of DataFrame.
Returns:
int: length of DataFrame
"""
return len(self.df_split)
def _load_label(self, idx: int) -> Dict[str, Union[int, float]]:
"""
Return labels.
If no column of label when csv of external dataset is used,
empty dictionary is returned.
Args:
idx (int): index
Returns:
Dict[str, Union[int, float]]: dictionary of label name and its value
"""
# For checking if columns of labels exist when used csv for external dataset.
label_list_in_split = list(self.df_split.columns[self.df_split.columns.str.startswith('label')])
label_dict = dict()
if label_list_in_split != []:
for label_name in self.label_list:
label_dict[label_name] = self.df_split.iat[idx, self.col_index_dict[label_name]]
else:
# no label
pass
return label_dict
def __getitem__(self, idx: int) -> Dict:
"""
Return data row specified by index.
Args:
idx (int): index
Returns:
Dict: dictionary of data to be passed model
"""
uniqID = self.df_split.iat[idx, self.col_index_dict['uniqID']]
group = self.df_split.iat[idx, self.col_index_dict['group']]
imgpath = self.df_split.iat[idx, self.col_index_dict['imgpath']]
split = self.df_split.iat[idx, self.col_index_dict['split']]
inputs_value = self._load_input_value_if_mlp(idx)
image = self._load_image_if_cnn(idx)
label_dict = self._load_label(idx)
periods = self._load_periods_if_deepsurv(idx)
_data = {
'uniqID': uniqID,
'group': group,
'imgpath': imgpath,
'split': split,
'inputs': inputs_value,
'image': image,
'labels': label_dict,
'periods': periods
}
return _data
def _make_sampler(split_data: LoadDataSet) -> WeightedRandomSampler:
"""
Make sampler.
Args:
split_data (LoadDataSet): dataset
Returns:
WeightedRandomSampler: sampler
"""
_target = []
for _, data in enumerate(split_data):
_target.append(list(data['labels'].values())[0])
class_sample_count = np.array([len(np.where(_target == t)[0]) for t in np.unique(_target)])
weight = 1. / class_sample_count
samples_weight = np.array([weight[t] for t in _target])
sampler = WeightedRandomSampler(samples_weight, len(samples_weight))
return sampler
def create_dataloader(
params,
split: str = None
) -> DataLoader:
"""
Create data loader ofr split.
Args:
params (ParamSet): parameter for dataloader
split (str): split. Defaults to None.
Returns:
DataLoader: data loader
"""
split_data = LoadDataSet(params, split)
if params.isTrain:
batch_size = params.batch_size
shuffle = True
else:
batch_size = params.test_batch_size
shuffle = False
if params.sampler == 'yes':
assert ((params.task == 'classification') or (params.task == 'deepsurv')), 'Cannot make sampler in regression.'
assert (len(params.label_list) == 1), 'Cannot make sampler for multi-label.'
shuffle = False
sampler = _make_sampler(split_data)
else:
# When params.sampler == 'no'
sampler = None
split_loader = DataLoader(
dataset=split_data,
batch_size=batch_size,
shuffle=shuffle,
num_workers=0,
sampler=sampler
)
return split_loader
|