File size: 22,705 Bytes
1f53a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import argparse
from distutils.util import strtobool
from pathlib import Path
import pandas as pd
import json
import torch
from .logger import BaseLogger
from typing import List, Dict, Tuple, Union


logger = BaseLogger.get_logger(__name__)


class Options:
    """
    Class for options.
    """
    def __init__(self,  datetime: str = None, isTrain: bool = None) -> None:
        """
            Args:
            datetime (str, optional): date time    Args:
            isTrain (bool, optional): Variable indicating whether training or not. Defaults to None.
        """
        self.parser = argparse.ArgumentParser(description='Options for training or test')

        # CSV
        self.parser.add_argument('--csvpath', type=str, required=True, help='path to csv for training or test')

        # GPU Ids
        self.parser.add_argument('--gpu_ids', type=str, default='cpu', help='gpu ids: e.g. 0, 0-1-2, 0-2. Use cpu for CPU (Default: cpu)')

        if isTrain:
            # Task
            self.parser.add_argument('--task', type=str, required=True, choices=['classification', 'regression', 'deepsurv'], help='Task')

            # Model
            self.parser.add_argument('--model',      type=str, required=True, help='model: MLP, CNN, ViT, or MLP+(CNN or ViT)')
            self.parser.add_argument('--pretrained', type=strtobool, default=False, help='For use of pretrained model(CNN or ViT)')

            # Training and Internal validation
            self.parser.add_argument('--criterion', type=str,   required=True, choices=['CEL', 'MSE', 'RMSE', 'MAE', 'NLL'], help='criterion')
            self.parser.add_argument('--optimizer', type=str,   default='Adam', choices=['SGD', 'Adadelta', 'RMSprop', 'Adam', 'RAdam'], help='optimizer')
            self.parser.add_argument('--lr',        type=float,                metavar='N', help='learning rate')
            self.parser.add_argument('--epochs',    type=int,   default=10,    metavar='N', help='number of epochs (Default: 10)')

            # Batch size
            self.parser.add_argument('--batch_size', type=int,  required=True, metavar='N', help='batch size in training')

            # Preprocess for image
            self.parser.add_argument('--augmentation',       type=str,  default='no', choices=['xrayaug', 'trivialaugwide', 'randaug', 'no'], help='kind of augmentation')
            self.parser.add_argument('--normalize_image',    type=str,                choices=['yes', 'no'], default='yes', help='image normalization: yes, no (Default: yes)')

            # Sampler
            self.parser.add_argument('--sampler',            type=str,  default='no',  choices=['yes', 'no'], help='sample data in training or not, yes or no')

            # Input channel
            self.parser.add_argument('--in_channel',         type=int,  required=True, choices=[1, 3], help='channel of input image')
            self.parser.add_argument('--vit_image_size',     type=int,  default=0,                     help='input image size for ViT. Set 0 if not used ViT (Default: 0)')

            # Weight saving strategy
            self.parser.add_argument('--save_weight_policy', type=str,  choices=['best', 'each'], default='best', help='Save weight policy: best, or each(ie. save each time loss decreases when multi-label output) (Default: best)')

        else:
            # Directory of weight at training
            self.parser.add_argument('--weight_dir',         type=str,  default=None, help='directory of weight to be used when test. If None, the latest one is selected')

            # Test bash size
            self.parser.add_argument('--test_batch_size',    type=int,  default=1, metavar='N', help='batch size for test (Default: 1)')

            # Splits for test
            self.parser.add_argument('--test_splits',        type=str, default='train-val-test', help='splits for test: e.g. test, val-test, train-val-test. (Default: train-val-test)')

        self.args = self.parser.parse_args()

        if datetime is not None:
            self.args.datetime = datetime

        assert isinstance(isTrain, bool), 'isTrain should be bool.'
        self.args.isTrain = isTrain

    def get_args(self) -> argparse.Namespace:
        """
        Return arguments.

        Returns:
            argparse.Namespace: arguments
        """
        return self.args


class CSVParser:
    """
    Class to get information of csv and cast csv.
    """
    def __init__(self, csvpath: str, task: str, isTrain: bool = None) -> None:
        """
        Args:
            csvpath (str): path to csv
            task (str): task
            isTrain (bool): if training or not
        """
        self.csvpath = csvpath
        self.task = task

        _df_source = pd.read_csv(self.csvpath)
        _df_source = _df_source[_df_source['split'] != 'exclude']

        self.input_list = list(_df_source.columns[_df_source.columns.str.startswith('input')])
        self.label_list = list(_df_source.columns[_df_source.columns.str.startswith('label')])
        if self.task == 'deepsurv':
            _period_name_list = list(_df_source.columns[_df_source.columns.str.startswith('period')])
            assert (len(_period_name_list) == 1), f"One column of period should be contained in {self.csvpath} when deepsurv."
            self.period_name = _period_name_list[0]

        _df_source = self._cast(_df_source, self.task)

        # If no column of group, add it.
        if 'group' not in _df_source.columns:
            _df_source = _df_source.assign(group='all')

        self.df_source = _df_source

        if isTrain:
            self.mlp_num_inputs = len(self.input_list)
            self.num_outputs_for_label = self._define_num_outputs_for_label(self.df_source, self.label_list, self.task)

    def _cast(self, df_source: pd.DataFrame, task: str) -> pd.DataFrame:
        """
        Make dictionary of cast depending on task.

        Args:
            df_source (pd.DataFrame): excluded DataFrame
            task: (str): task

        Returns:
            DataFrame: csv excluded and cast depending on task
        """
        _cast_input = {input_name: float for input_name in self.input_list}

        if task == 'classification':
            _cast_label = {label_name: int for label_name in self.label_list}
            _casts = {**_cast_input, **_cast_label}
            df_source = df_source.astype(_casts)
            return df_source

        elif task == 'regression':
            _cast_label = {label_name: float for label_name in self.label_list}
            _casts = {**_cast_input, **_cast_label}
            df_source = df_source.astype(_casts)
            return df_source

        elif task == 'deepsurv':
            _cast_label = {label_name: int for label_name in self.label_list}
            _cast_period = {self.period_name: int}
            _casts = {**_cast_input, **_cast_label, **_cast_period}
            df_source = df_source.astype(_casts)
            return df_source

        else:
            raise ValueError(f"Invalid task: {self.task}.")

    def _define_num_outputs_for_label(self, df_source: pd.DataFrame, label_list: List[str], task :str) -> Dict[str, int]:
        """
        Define the number of outputs for each label.

        Args:
            df_source (pd.DataFrame): DataFrame of csv
            label_list (List[str]): list of labels
                task: str

        Returns:
            Dict[str, int]: dictionary of the number of outputs for each label
            eg.
                classification:       _num_outputs_for_label = {label_A: 2, label_B: 3, ...}
                regression, deepsurv: _num_outputs_for_label = {label_A: 1, label_B: 1, ...}
                deepsurv:             _num_outputs_for_label = {label_A: 1}
        """
        if task == 'classification':
            _num_outputs_for_label = {label_name: df_source[label_name].nunique() for label_name in label_list}
            return _num_outputs_for_label

        elif (task == 'regression') or (task == 'deepsurv'):
            _num_outputs_for_label = {label_name: 1 for label_name in label_list}
            return _num_outputs_for_label

        else:
            raise ValueError(f"Invalid task: {task}.")


def _parse_model(model_name: str) -> Tuple[Union[str, None], Union[str, None]]:
    """
    Parse model name.

    Args:
        model_name (str): model name (eg. MLP, ResNey18, or MLP+ResNet18)

    Returns:
        Tuple[str, str]: MLP, CNN or Vision Transformer name
        eg. 'MLP', 'ResNet18', 'MLP+ResNet18' ->
            ['MLP'], ['ResNet18'], ['MLP', 'ResNet18']
    """
    _model = model_name.split('+')
    mlp = 'MLP' if 'MLP' in _model else None
    _net = [_n for _n in _model if _n != 'MLP']
    net = _net[0] if _net != [] else None
    return mlp, net


def _parse_gpu_ids(gpu_ids: str) -> List[int]:
    """
    Parse GPU ids concatenated with '-' to list of integers of GPU ids.
    eg. '0-1-2' -> [0, 1, 2], '-1' -> []

    Args:
        gpu_ids (str): GPU Ids

    Returns:
        List[int]: list of GPU ids
    """
    if (gpu_ids == 'cpu') or (gpu_ids == 'cpu\r'):
        str_ids = []
    else:
        str_ids = gpu_ids.split('-')
    _gpu_ids = []
    for str_id in str_ids:
        id = int(str_id)
        if id >= 0:
            _gpu_ids.append(id)
    return _gpu_ids


def _get_latest_weight_dir() -> str:
    """
    Return the latest path to directory of weight made at training.

    Returns:
        str: path to directory of the latest weight
        eg. 'results/<project>/trials/2022-09-30-15-56-60/weights'
    """
    _weight_dirs = list(Path('results').glob('*/trials/*/weights'))
    assert (_weight_dirs != []), 'No directory of weight.'
    weight_dir = max(_weight_dirs, key=lambda weight_dir: weight_dir.stat().st_mtime)
    return str(weight_dir)


def _collect_weight_paths(weight_dir: str) -> List[str]:
    """
    Return list of weight paths.

    Args:
        weight_dir (str): path to directory of weights

    Returns:
        List[str]: list of weight paths
    """
    _weight_paths = list(Path(weight_dir).glob('*.pt'))
    assert _weight_paths != [], f"No weight in {weight_dir}."
    _weight_paths.sort(key=lambda path: path.stat().st_mtime)
    _weight_paths = [str(weight_path) for weight_path in _weight_paths]
    return _weight_paths


class ParamTable:
    """
    Class to make table to dispatch parameters by group.
    """
    def __init__(self) -> None:
        # groups
        # key is abbreviation, value is group name
        self.groups = {
                        'mo': 'model',
                        'dl': 'dataloader',
                        'trc': 'train_conf',
                        'tsc': 'test_conf',
                        'sa': 'save',
                        'lo': 'load',
                        'trp': 'train_print',
                        'tsp': 'test_print'
                        }

        mo = self.groups['mo']
        dl = self.groups['dl']
        trc = self.groups['trc']
        tsc = self.groups['tsc']
        sa = self.groups['sa']
        lo = self.groups['lo']
        trp = self.groups['trp']
        tsp = self.groups['tsp']

        # The below shows that which group each parameter dispatches to.
        self.dispatch = {
                'datetime': [sa],
                'project': [sa, trp, tsp],
                'csvpath': [sa, trp, tsp],
                'task': [dl, tsc, sa, lo, trp, tsp],
                'isTrain': [dl, trp, tsp],

                'model': [sa, lo, trp, tsp],
                'vit_image_size': [mo, sa, lo, trp, tsp],
                'pretrained': [mo, sa, trp],
                'mlp': [mo, dl],
                'net': [mo, dl],

                'weight_dir': [tsc, tsp],
                'weight_paths': [tsc],

                'criterion': [trc, sa, trp],
                'optimizer': [trc, sa, trp],
                'lr': [trc, sa, trp],
                'epochs': [trc, sa, trp],

                'batch_size': [dl, sa, trp],
                'test_batch_size': [dl, tsp],
                'test_splits': [tsc, tsp],

                'in_channel': [mo, dl, sa, lo, trp, tsp],
                'normalize_image': [dl, sa, lo, trp, tsp],
                'augmentation': [dl, sa, trp],
                'sampler': [dl, sa, trp],

                'df_source': [dl],
                'label_list': [dl, trc, sa, lo],
                'input_list': [dl, sa, lo],
                'period_name': [dl, sa, lo],
                'mlp_num_inputs': [mo, sa, lo],
                'num_outputs_for_label': [mo, sa, lo, tsc],

                'save_weight_policy': [sa, trp, trc],
                'scaler_path': [dl, tsp],
                'save_datetime_dir': [trc, tsc, trp, tsp],

                'gpu_ids': [trc, tsc, sa, trp, tsp],
                'device': [mo, trc, tsc],
                'dataset_info': [trc, sa, trp, tsp]
                }

        self.table = self._make_table()

    def _make_table(self) -> pd.DataFrame:
        """
        Make table to dispatch parameters by group.

        Returns:
            pd.DataFrame: table which shows that which group each parameter belongs to.
        """
        df_table = pd.DataFrame([], index=self.dispatch.keys(), columns=self.groups.values()).fillna('no')
        for param, grps in self.dispatch.items():
            for grp in grps:
                df_table.loc[param, grp] = 'yes'

        df_table = df_table.reset_index()
        df_table = df_table.rename(columns={'index': 'parameter'})
        return df_table

    def get_by_group(self, group_name: str) -> List[str]:
        """
        Return list of parameters which belong to group

        Args:
            group_name (str): group name

        Returns:
            List[str]: list of parameters
        """
        _df_table = self.table
        _param_names = _df_table[_df_table[group_name] == 'yes']['parameter'].tolist()
        return _param_names


Param_Table = ParamTable()


class ParamSet:
    """
    Class to store required parameters for each group.
    """
    pass


def _dispatch_by_group(args: argparse.Namespace, group_name: str) -> ParamSet:
    """
    Dispatch parameters depending on group.

    Args:
        args (argparse.Namespace): arguments
        group_name (str): group

    Returns:
        ParamSet: class containing parameters for group
    """
    _param_names = Param_Table.get_by_group(group_name)
    param_set = ParamSet()
    for param_name in _param_names:
        if hasattr(args, param_name):
            _arg = getattr(args, param_name)
            setattr(param_set, param_name, _arg)
    return param_set


def save_parameter(params: ParamSet, save_path: str) -> None:
    """
    Save parameters.

    Args:
        params (ParamSet): parameters

        save_path (str): save path for parameters
    """
    _saved = {_param: _arg for _param, _arg in vars(params).items()}
    save_dir = Path(save_path).parents[0]
    save_dir.mkdir(parents=True, exist_ok=True)
    with open(save_path, 'w') as f:
        json.dump(_saved, f, indent=4)


def _retrieve_parameter(parameter_path: str) -> Dict[str, Union[str, int, float]]:
    """
    Retrieve only parameters required at test from parameters at training.

    Args:
        parameter_path (str): path to parameter_path

    Returns:
        Dict[str, Union[str, int, float]]: parameters at training
    """
    with open(parameter_path) as f:
        params = json.load(f)

    _required = Param_Table.get_by_group('load')
    params = {p: v for p, v in params.items() if p in _required}
    return params


def print_parameter(params: ParamSet) -> None:
    """
    Print parameters.

    Args:
        params (ParamSet): parameters
    """

    LINE_LENGTH = 82

    if params.isTrain:
        phase = 'Training'
    else:
        phase = 'Test'

    _header = f" Configuration of {phase} "
    _padding = (LINE_LENGTH - len(_header) + 1) // 2  # round up
    _header = ('-' * _padding) + _header + ('-' * _padding) + '\n'

    _footer = ' End '
    _padding = (LINE_LENGTH - len(_footer) + 1) // 2
    _footer = ('-' * _padding) + _footer + ('-' * _padding) + '\n'

    message = ''
    message += _header

    _params_dict = vars(params)
    del _params_dict['isTrain']
    for _param, _arg in _params_dict.items():
        _str_arg = _arg2str(_param, _arg)
        message += f"{_param:>30}: {_str_arg:<40}\n"

    message += _footer
    logger.info(message)


def _arg2str(param: str, arg: Union[str, int, float]) -> str:
        """
        Convert argument to string.

        Args:
            param (str): parameter
            arg (Union[str, int, float]): argument

        Returns:
            str: strings of argument
        """
        if param == 'lr':
            if arg is None:
                str_arg = 'Default'
            else:
                str_arg = str(param)
            return str_arg
        elif param == 'gpu_ids':
            if arg == []:
                str_arg = 'CPU selected'
            else:
                str_arg = f"{arg}  (Primary GPU:{arg[0]})"
            return str_arg
        elif param == 'test_splits':
            str_arg = ', '.join(arg)
            return str_arg
        elif param == 'dataset_info':
            str_arg = ''
            for i, (split, total) in enumerate(arg.items()):
                if i < len(arg) - 1:
                    str_arg += (f"{split}_data={total}, ")
                else:
                    str_arg += (f"{split}_data={total}")
            return str_arg
        else:
            if arg is None:
                str_arg = 'No need'
            else:
                str_arg = str(arg)
            return str_arg


def _check_if_valid_criterion(task: str = None, criterion: str = None) -> None:
    """
    Check if criterion is valid.

    Args:
        task (str): task
        criterion (str): criterion
    """
    valid_criterion = {
        'classification': ['CEL'],
        'regression': ['MSE', 'RMSE', 'MAE'],
        'deepsurv': ['NLL']
    }
    if criterion in valid_criterion[task]:
        pass
    else:
        raise ValueError(f"Invalid criterion for task: task={task}, criterion={criterion}.")


def _train_parse(args: argparse.Namespace) -> Dict[str, ParamSet]:
    """
    Parse parameters required at training.

    Args:
        args (argparse.Namespace): arguments

    Returns:
        Dict[str, ParamSet]: parameters dispatched by group
    """
    # Check if criterion is valid.
    _check_if_valid_criterion(task=args.task, criterion=args.criterion)

    args.project = Path(args.csvpath).stem
    args.gpu_ids = _parse_gpu_ids(args.gpu_ids)
    args.device = torch.device(f"cuda:{args.gpu_ids[0]}") if args.gpu_ids != [] else torch.device('cpu')
    args.mlp, args.net = _parse_model(args.model)
    args.pretrained = bool(args.pretrained)  # strtobool('False') = 0 (== False)
    args.save_datetime_dir = str(Path('results', args.project, 'trials', args.datetime))

    # Parse csv
    _csvparser = CSVParser(args.csvpath, args.task, args.isTrain)
    args.df_source = _csvparser.df_source
    args.dataset_info = {split: len(args.df_source[args.df_source['split'] == split]) for split in ['train', 'val']}
    args.input_list = _csvparser.input_list
    args.label_list = _csvparser.label_list
    args.mlp_num_inputs = _csvparser.mlp_num_inputs
    args.num_outputs_for_label = _csvparser.num_outputs_for_label
    if args.task == 'deepsurv':
        args.period_name = _csvparser.period_name

    # Dispatch parameters
    return {
            'args_model': _dispatch_by_group(args, 'model'),
            'args_dataloader': _dispatch_by_group(args, 'dataloader'),
            'args_conf': _dispatch_by_group(args, 'train_conf'),
            'args_print': _dispatch_by_group(args, 'train_print'),
            'args_save': _dispatch_by_group(args, 'save')
            }


def _test_parse(args: argparse.Namespace) -> Dict[str, ParamSet]:
    """
    Parse parameters required at test.

    Args:
        args (argparse.Namespace): arguments

    Returns:
        Dict[str, ParamSet]: parameters dispatched by group
    """
    args.project = Path(args.csvpath).stem
    args.gpu_ids = _parse_gpu_ids(args.gpu_ids)
    args.device = torch.device(f"cuda:{args.gpu_ids[0]}") if args.gpu_ids != [] else torch.device('cpu')

    # Collect weight paths
    if args.weight_dir is None:
        args.weight_dir = _get_latest_weight_dir()
    args.weight_paths = _collect_weight_paths(args.weight_dir)

    # Get datetime at training
    _train_datetime_dir = Path(args.weight_dir).parents[0]
    _train_datetime = _train_datetime_dir.name

    args.save_datetime_dir = str(Path('results', args.project, 'trials', _train_datetime))

    # Retrieve only parameters required at test
    _parameter_path = str(Path(_train_datetime_dir, 'parameters.json'))
    params = _retrieve_parameter(_parameter_path)
    for _param, _arg in params.items():
        setattr(args, _param, _arg)

    # When test, the followings are always fixed.
    args.augmentation = 'no'
    args.sampler = 'no'
    args.pretrained = False

    args.mlp, args.net = _parse_model(args.model)
    if args.mlp is not None:
        args.scaler_path = str(Path(_train_datetime_dir, 'scaler.pkl'))

    # Parse csv
    _csvparser = CSVParser(args.csvpath, args.task)
    args.df_source = _csvparser.df_source

    # Align test_splits
    args.test_splits = args.test_splits.split('-')
    _splits = args.df_source['split'].unique().tolist()
    if set(_splits) < set(args.test_splits):
        args.test_splits = _splits

    args.dataset_info = {split: len(args.df_source[args.df_source['split'] == split]) for split in args.test_splits}

    # Dispatch parameters
    return {
            'args_model': _dispatch_by_group(args, 'model'),
            'args_dataloader': _dispatch_by_group(args, 'dataloader'),
            'args_conf': _dispatch_by_group(args, 'test_conf'),
            'args_print': _dispatch_by_group(args, 'test_print')
            }

def set_options(datetime_name: str = None, phase: str = None) -> argparse.Namespace:
    """
    Parse options for training or test.

    Args:
        datetime_name (str, optional): datetime name. Defaults to None.
        phase (str, optional): train or test. Defaults to None.

    Returns:
        argparse.Namespace: arguments
    """
    if phase == 'train':
        opt = Options(datetime=datetime_name, isTrain=True)
        _args = opt.get_args()
        args = _train_parse(_args)
        return args
    else:
        opt = Options(isTrain=False)
        _args = opt.get_args()
        args = _test_parse(_args)
        return args