File size: 6,223 Bytes
6f98f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e48e29d
 
 
6f98f11
 
 
 
 
 
 
 
00d0dca
 
 
 
 
 
 
 
 
6f98f11
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
70f5f26
1c33274
70f5f26
1c33274
70f5f26
4d6e8c2
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76fccaf
 
4d6e8c2
 
 
 
70f5f26
 
 
 
 
3804c64
6f98f11
a99fef1
aacb60a
6f98f11
4d4a47e
6f98f11
 
4d4a47e
6f98f11
e48e29d
4d4a47e
6f98f11
 
 
 
 
 
 
 
 
 
 
 
70f5f26
6f98f11
3804c64
a99fef1
3804c64
6f98f11
 
 
3804c64
a87fbf0
6f98f11
 
 
 
 
 
 
 
 
 
 
e48e29d
3804c64
a87fbf0
70f5f26
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
70f5f26
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import gc

os.environ["CUDA_VISIBLE_DEVICES"]="0,1"

import torch
from tqdm import tqdm
from typing import Optional, Union
import pandas as pd, numpy as np, torch
from datasets import Dataset, load_dataset
from dataclasses import dataclass
from transformers import AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, AutoModel
from transformers import EarlyStoppingCallback
from transformers.tokenization_utils_base import PreTrainedTokenizerBase, PaddingStrategy
from transformers import AutoModelForMultipleChoice, TrainingArguments, Trainer
import numpy as np
from sklearn.metrics import recall_score, accuracy_score
from transformers import DataCollatorWithPadding
import logging
# import mylib
logger = logging.getLogger(__name__)

VER = 1
MAX_LEN = 256
TOKENIZER_BINARY = "crarojasca/BinaryAugmentedCARDS"
BINARY_MODEL = "Medissa/Roberta_Binary"
TOKENIZER_MULTI_CLASS = "crarojasca/TaxonomyAugmentedCARDS"
MULTI_CLASS_MODEL = "Medissa/Deberta_Taxonomy"

ID2LABEL = {
 0: '1_not_happening',
 1: '2_not_human',
 2: '3_not_bad',
 3: '4_solutions_harmful_unnecessary',
 4: '7_fossil_fuels_needed',
 5: '5_science_unreliable',
 6: '6_proponents_biased'}

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

router = APIRouter()

DESCRIPTION = "Random Baseline"
ROUTE = "/text"

@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-7)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"]
    test_dataset = dataset["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    print('Start Binary')
    # Binary Model
    tokenizer = AutoTokenizer.from_pretrained(BINARY_MODEL)
    print('Loaded Tokenizer')
    model = AutoModelForSequenceClassification.from_pretrained(BINARY_MODEL)
    print(device)
    model.to(device)
    model.eval()
    print('Loaded Model')
    predictions = []
    for i,text in tqdm(enumerate(test_dataset["quote"])):
        print(i)
        with torch.no_grad():        
            tokenized_text = tokenizer(text, truncation=True, padding='max_length', return_tensors = "pt")
            inputt = {k:v.to(device) for k,v in tokenized_text.items()}
            # Running Binary Model
            outputs = model(**inputt)
            binary_prediction = torch.argmax(outputs.logits, axis=1)
            binary_predictions = binary_prediction.to('cpu').item()
            
            prediction = "0_not_relevant" if binary_prediction==0 else 1
            predictions.append(prediction)
            
    gc.collect()

    ## 2. Taxonomy Model
    print('Start Multi')
    tokenizer = AutoTokenizer.from_pretrained(MULTI_CLASS_MODEL)
    print('Loaded Tokenizer')
    model = AutoModelForSequenceClassification.from_pretrained(MULTI_CLASS_MODEL)
    model.to(device)
    model.eval()
    print('Loaded Model')
    for i,text in tqdm(enumerate(test_dataset["quote"])):
        if isinstance(predictions[i], str):
            continue
        with torch.no_grad():        
            tokenized_text = tokenizer(text, truncation=True, padding='max_length', return_tensors = "pt")
            inputt = {k:v.to(device) for k,v in tokenized_text.items()}
            outputs = model(**inputt)
            taxonomy_prediction = torch.argmax(outputs.logits, axis=1)
            taxonomy_prediction = taxonomy_prediction.to('cpu').item()
            
            prediction = ID2LABEL[taxonomy_prediction]
            predictions[i] = prediction
        if i%10:
            print(f'iteration: {i}')
    predictions = [LABEL_MAPPING[pred] for pred in predictions]
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results