Spaces:
Sleeping
Sleeping
File size: 6,223 Bytes
6f98f11 e48e29d 6f98f11 00d0dca 6f98f11 4d6e8c2 70f5f26 1c33274 70f5f26 1c33274 70f5f26 4d6e8c2 70f5f26 4d6e8c2 76fccaf 4d6e8c2 70f5f26 3804c64 6f98f11 a99fef1 aacb60a 6f98f11 4d4a47e 6f98f11 4d4a47e 6f98f11 e48e29d 4d4a47e 6f98f11 70f5f26 6f98f11 3804c64 a99fef1 3804c64 6f98f11 3804c64 a87fbf0 6f98f11 e48e29d 3804c64 a87fbf0 70f5f26 4d6e8c2 70f5f26 4d6e8c2 1c33274 4d6e8c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import os
import gc
os.environ["CUDA_VISIBLE_DEVICES"]="0,1"
import torch
from tqdm import tqdm
from typing import Optional, Union
import pandas as pd, numpy as np, torch
from datasets import Dataset, load_dataset
from dataclasses import dataclass
from transformers import AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, AutoModel
from transformers import EarlyStoppingCallback
from transformers.tokenization_utils_base import PreTrainedTokenizerBase, PaddingStrategy
from transformers import AutoModelForMultipleChoice, TrainingArguments, Trainer
import numpy as np
from sklearn.metrics import recall_score, accuracy_score
from transformers import DataCollatorWithPadding
import logging
# import mylib
logger = logging.getLogger(__name__)
VER = 1
MAX_LEN = 256
TOKENIZER_BINARY = "crarojasca/BinaryAugmentedCARDS"
BINARY_MODEL = "Medissa/Roberta_Binary"
TOKENIZER_MULTI_CLASS = "crarojasca/TaxonomyAugmentedCARDS"
MULTI_CLASS_MODEL = "Medissa/Deberta_Taxonomy"
ID2LABEL = {
0: '1_not_happening',
1: '2_not_human',
2: '3_not_bad',
3: '4_solutions_harmful_unnecessary',
4: '7_fossil_fuels_needed',
5: '5_science_unreliable',
6: '6_proponents_biased'}
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"]
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
print('Start Binary')
# Binary Model
tokenizer = AutoTokenizer.from_pretrained(BINARY_MODEL)
print('Loaded Tokenizer')
model = AutoModelForSequenceClassification.from_pretrained(BINARY_MODEL)
print(device)
model.to(device)
model.eval()
print('Loaded Model')
predictions = []
for i,text in tqdm(enumerate(test_dataset["quote"])):
print(i)
with torch.no_grad():
tokenized_text = tokenizer(text, truncation=True, padding='max_length', return_tensors = "pt")
inputt = {k:v.to(device) for k,v in tokenized_text.items()}
# Running Binary Model
outputs = model(**inputt)
binary_prediction = torch.argmax(outputs.logits, axis=1)
binary_predictions = binary_prediction.to('cpu').item()
prediction = "0_not_relevant" if binary_prediction==0 else 1
predictions.append(prediction)
gc.collect()
## 2. Taxonomy Model
print('Start Multi')
tokenizer = AutoTokenizer.from_pretrained(MULTI_CLASS_MODEL)
print('Loaded Tokenizer')
model = AutoModelForSequenceClassification.from_pretrained(MULTI_CLASS_MODEL)
model.to(device)
model.eval()
print('Loaded Model')
for i,text in tqdm(enumerate(test_dataset["quote"])):
if isinstance(predictions[i], str):
continue
with torch.no_grad():
tokenized_text = tokenizer(text, truncation=True, padding='max_length', return_tensors = "pt")
inputt = {k:v.to(device) for k,v in tokenized_text.items()}
outputs = model(**inputt)
taxonomy_prediction = torch.argmax(outputs.logits, axis=1)
taxonomy_prediction = taxonomy_prediction.to('cpu').item()
prediction = ID2LABEL[taxonomy_prediction]
predictions[i] = prediction
if i%10:
print(f'iteration: {i}')
predictions = [LABEL_MAPPING[pred] for pred in predictions]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |