Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -16,62 +16,50 @@ sys.excepthook = custom_excepthook
|
|
16 |
def list_overlay_images(directory):
|
17 |
return [f for f in os.listdir(directory) if f.endswith('.png')]
|
18 |
|
19 |
-
def process_frame(frame, overlay, LEFT_EYE, RIGHT_EYE, LEFT_IRIS, RIGHT_IRIS
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
zero_overlay[y1_r:y2_r, x1_r:x2_r] = resized_overlay_r
|
62 |
-
eye_mask_left = np.zeros(rgba_frame.shape, dtype=np.uint8)
|
63 |
-
eye_mask_right = np.zeros(rgba_frame.shape, dtype=np.uint8)
|
64 |
-
cv.fillPoly(eye_mask_left, [mesh_points[LEFT_EYE]], (255, 0, 0, 255))
|
65 |
-
cv.fillPoly(eye_mask_right, [mesh_points[RIGHT_EYE]], (255, 0, 0, 255))
|
66 |
-
zero_overlay[np.where((iris_mask_left[:, :, 3] > 0) & (eye_mask_left[:, :, 3] == 0))] = 0
|
67 |
-
zero_overlay[np.where((iris_mask_right[:, :, 3] > 0) & (eye_mask_right[:, :, 3] == 0))] = 0
|
68 |
-
rgba_frame = cv.addWeighted(rgba_frame, 1, zero_overlay, alpha, 0)
|
69 |
-
return rgba_frame
|
70 |
-
except Exception as e:
|
71 |
-
print(f"Error in process_frame: {e}")
|
72 |
-
traceback.print_exc()
|
73 |
|
74 |
-
def process_image(input_image, overlay_file, alpha=0.3
|
75 |
overlay_file = overlay_file + '.png'
|
76 |
overlay_path = os.path.join(os.getcwd(),'overlays', overlay_file)
|
77 |
overlay = cv.imread(overlay_path, cv.IMREAD_UNCHANGED)
|
@@ -79,13 +67,11 @@ def process_image(input_image, overlay_file, alpha=0.3, min_detection_confidence
|
|
79 |
w,h,_ = frame.shape
|
80 |
new_h = 500
|
81 |
new_w = int((w/h)*new_h)
|
82 |
-
frame = cv.resize(frame, (new_h,new_w), interpolation=cv.
|
83 |
-
processed_frame = process_frame(frame, overlay, LEFT_EYE, RIGHT_EYE, LEFT_IRIS, RIGHT_IRIS
|
84 |
-
min_detection_confidence, min_tracking_confidence, alpha)
|
85 |
return cv.cvtColor(processed_frame, cv.COLOR_BGR2RGB)
|
86 |
|
87 |
-
def process_video(input_video, overlay_file, alpha=0.3, output_format='mp4', output_frame_rate=30
|
88 |
-
min_detection_confidence=0.5, min_tracking_confidence=0.5):
|
89 |
overlay_file = overlay_file + '.png'
|
90 |
overlay_path = os.path.join(os.getcwd(),'overlays', overlay_file)
|
91 |
overlay = cv.imread(overlay_path, cv.IMREAD_UNCHANGED)
|
@@ -107,9 +93,7 @@ def process_video(input_video, overlay_file, alpha=0.3, output_format='mp4', out
|
|
107 |
ret, frame = cap.read()
|
108 |
if ret == True:
|
109 |
frame = cv.resize(frame, (new_w,new_h), interpolation=cv.INTER_NEAREST)
|
110 |
-
processed_frame = process_frame(frame,overlay,LEFT_EYE, RIGHT_EYE, LEFT_IRIS, RIGHT_IRIS
|
111 |
-
float(min_detection_confidence),
|
112 |
-
float(min_tracking_confidence), float(alpha)) # Assuming process_frame is a function that processes a single frame
|
113 |
processed_frame = cv.cvtColor(processed_frame, cv.COLOR_RGBA2BGR)
|
114 |
out.write(processed_frame)
|
115 |
else:
|
@@ -119,13 +103,15 @@ def process_video(input_video, overlay_file, alpha=0.3, output_format='mp4', out
|
|
119 |
return output_path
|
120 |
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
129 |
|
130 |
LEFT_EYE = [362, 382, 381, 380, 374, 373, 390, 249, 263, 466, 388, 387, 386, 385, 384, 398]
|
131 |
RIGHT_EYE = [33, 7, 163, 144, 145, 153, 154, 155, 133, 173, 157, 158, 159, 160, 161, 246]
|
|
|
16 |
def list_overlay_images(directory):
|
17 |
return [f for f in os.listdir(directory) if f.endswith('.png')]
|
18 |
|
19 |
+
def process_frame(frame, overlay, alpha, LEFT_EYE, RIGHT_EYE, LEFT_IRIS, RIGHT_IRIS):
|
20 |
+
rgb_frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
|
21 |
+
rgba_frame = cv.cvtColor(frame, cv.COLOR_BGR2RGBA)
|
22 |
+
height, width = rgba_frame.shape[:2]
|
23 |
+
results = face_mesh.process(rgb_frame)
|
24 |
+
if results.multi_face_landmarks:
|
25 |
+
zero_overlay = np.zeros_like(rgba_frame)
|
26 |
+
mesh_points = np.array([np.multiply([p.x, p.y],
|
27 |
+
[width, height]).astype(int) for p in results.multi_face_landmarks[0].landmark])
|
28 |
+
iris_mask_left = np.zeros(rgba_frame.shape, dtype=np.uint8)
|
29 |
+
iris_mask_right = np.zeros(rgba_frame.shape, dtype=np.uint8)
|
30 |
+
_, re_ratio, le_ratio = blinkRatio(rgb_frame, mesh_points, RIGHT_EYE, LEFT_EYE)
|
31 |
+
(l_cx, l_cy), l_radius = cv.minEnclosingCircle(mesh_points[LEFT_IRIS])
|
32 |
+
(r_cx, r_cy), r_radius = cv.minEnclosingCircle(mesh_points[RIGHT_IRIS])
|
33 |
+
center_left = (int(l_cx), int(l_cy))
|
34 |
+
center_right = (int(r_cx), int(r_cy))
|
35 |
+
cv.circle(iris_mask_left, center_left, int(l_radius), (255, 0, 0, 255), -1, cv.LINE_AA)
|
36 |
+
cv.circle(iris_mask_right, center_right, int(r_radius), (255, 0, 0, 255), -1, cv.LINE_AA)
|
37 |
+
bbx_size_l = int((l_radius * 2) / 2)
|
38 |
+
bbx_size_r = int((r_radius * 2) / 2)
|
39 |
+
resized_overlay_l = cv.resize(overlay, (bbx_size_l * 2, bbx_size_l * 2), interpolation=cv.INTER_CUBIC)
|
40 |
+
resized_overlay_r = cv.resize(overlay, (bbx_size_r * 2, bbx_size_r * 2), interpolation=cv.INTER_CUBIC)
|
41 |
+
y1_r = center_right[1] - bbx_size_r
|
42 |
+
y2_r = center_right[1] + bbx_size_r
|
43 |
+
x1_r = center_right[0] - bbx_size_r
|
44 |
+
x2_r = center_right[0] + bbx_size_r
|
45 |
+
y1_l = center_left[1] - bbx_size_l
|
46 |
+
y2_l = center_left[1] + bbx_size_l
|
47 |
+
x1_l = center_left[0] - bbx_size_l
|
48 |
+
x2_l = center_left[0] + bbx_size_l
|
49 |
+
if (resized_overlay_l.shape == zero_overlay[y1_l:y2_l, x1_l:x2_l].shape) & (le_ratio < 5.0) & (le_ratio > 2.0):
|
50 |
+
zero_overlay[y1_l:y2_l, x1_l:x2_l] = resized_overlay_l
|
51 |
+
if (resized_overlay_r.shape == zero_overlay[y1_r:y2_r, x1_r:x2_r].shape) & (re_ratio < 5.0) & (re_ratio > 2.0):
|
52 |
+
zero_overlay[y1_r:y2_r, x1_r:x2_r] = resized_overlay_r
|
53 |
+
eye_mask_left = np.zeros(rgba_frame.shape, dtype=np.uint8)
|
54 |
+
eye_mask_right = np.zeros(rgba_frame.shape, dtype=np.uint8)
|
55 |
+
cv.fillPoly(eye_mask_left, [mesh_points[LEFT_EYE]], (255, 0, 0, 255))
|
56 |
+
cv.fillPoly(eye_mask_right, [mesh_points[RIGHT_EYE]], (255, 0, 0, 255))
|
57 |
+
zero_overlay[np.where((iris_mask_left[:, :, 3] > 0) & (eye_mask_left[:, :, 3] == 0))] = 0
|
58 |
+
zero_overlay[np.where((iris_mask_right[:, :, 3] > 0) & (eye_mask_right[:, :, 3] == 0))] = 0
|
59 |
+
rgba_frame = cv.addWeighted(rgba_frame, 1, zero_overlay, alpha, 0)
|
60 |
+
return rgba_frame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
def process_image(input_image, overlay_file, alpha=0.3):
|
63 |
overlay_file = overlay_file + '.png'
|
64 |
overlay_path = os.path.join(os.getcwd(),'overlays', overlay_file)
|
65 |
overlay = cv.imread(overlay_path, cv.IMREAD_UNCHANGED)
|
|
|
67 |
w,h,_ = frame.shape
|
68 |
new_h = 500
|
69 |
new_w = int((w/h)*new_h)
|
70 |
+
frame = cv.resize(frame, (new_h,new_w), interpolation=cv.INTER_NEAREST)
|
71 |
+
processed_frame = process_frame(frame, overlay, alpha, LEFT_EYE, RIGHT_EYE, LEFT_IRIS, RIGHT_IRIS)
|
|
|
72 |
return cv.cvtColor(processed_frame, cv.COLOR_BGR2RGB)
|
73 |
|
74 |
+
def process_video(input_video, overlay_file, alpha=0.3, output_format='mp4', output_frame_rate=30):
|
|
|
75 |
overlay_file = overlay_file + '.png'
|
76 |
overlay_path = os.path.join(os.getcwd(),'overlays', overlay_file)
|
77 |
overlay = cv.imread(overlay_path, cv.IMREAD_UNCHANGED)
|
|
|
93 |
ret, frame = cap.read()
|
94 |
if ret == True:
|
95 |
frame = cv.resize(frame, (new_w,new_h), interpolation=cv.INTER_NEAREST)
|
96 |
+
processed_frame = process_frame(frame,overlay,alpha,LEFT_EYE, RIGHT_EYE, LEFT_IRIS, RIGHT_IRIS) # Assuming process_frame is a function that processes a single frame
|
|
|
|
|
97 |
processed_frame = cv.cvtColor(processed_frame, cv.COLOR_RGBA2BGR)
|
98 |
out.write(processed_frame)
|
99 |
else:
|
|
|
103 |
return output_path
|
104 |
|
105 |
|
106 |
+
|
107 |
+
# Initialize face mesh once and reuse it
|
108 |
+
mp_face_mesh = mp.solutions.face_mesh
|
109 |
+
face_mesh = mp_face_mesh.FaceMesh(
|
110 |
+
max_num_faces=1,
|
111 |
+
refine_landmarks=True,
|
112 |
+
min_detection_confidence=0.5,
|
113 |
+
min_tracking_confidence=0.5
|
114 |
+
)
|
115 |
|
116 |
LEFT_EYE = [362, 382, 381, 380, 374, 373, 390, 249, 263, 466, 388, 387, 386, 385, 384, 398]
|
117 |
RIGHT_EYE = [33, 7, 163, 144, 145, 153, 154, 155, 133, 173, 157, 158, 159, 160, 161, 246]
|