fall_detection / app.py
Medvira's picture
Update app.py
cb2178b verified
raw
history blame
2.88 kB
import streamlit as st
import os
import cv2
import numpy as np
from ultralytics import YOLO
# Load YOLO model
model = YOLO('yolov8n.pt') # Ensure you have the correct model file
def process_video(video_path):
cap = cv2.VideoCapture(video_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
# Create a video writer to save the output
output_path = os.path.join(os.getcwd(), "output.mp4")
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = model(frame)
for result in results:
for bbox in result.boxes:
x1, y1, x2, y2 = map(int, bbox.xyxy[0])
confidence = float(bbox.conf)
cls = int(bbox.cls)
if cls == 0: # Assuming class 0 is 'person'
w = x2 - x1
h = y2 - y1
if h < w:
color = (0, 0, 255) # Red color for fall detected
label = "Fall Detected"
else:
color = (0, 255, 0) # Green color for normal detection
label = "Person"
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
out.write(frame)
cap.release()
out.release()
return output_path
# Streamlit interface
st.title("Fall Detection App")
st.write("Upload a video or choose from the default videos to detect falls.")
# Create two columns
left_column, right_column = st.columns(2)
# Right column for video selection
with right_column:
default_videos = {
"Video 1": os.path.join(os.getcwd(), "fall_test_01.mp4"),
"Video 2": os.path.join(os.getcwd(), "fall_test_02.mp4"),
"Video 3": "video3.mp4",
}
option = st.selectbox("Choose a video", list(default_videos.keys()))
uploaded_video = st.file_uploader("Or upload your own video", type=["mp4", "avi", "mov"])
if uploaded_video is not None:
video_path = uploaded_video.name
with open(video_path, 'wb') as f:
f.write(uploaded_video.getbuffer())
st.success(f"Uploaded {uploaded_video.name}")
else:
video_path = default_videos[option]
if st.button("Process Video"):
output_video = process_video(video_path)
left_column.video(output_video) # Display video in the left column
left_column.write("Download the processed video:")
with open(output_video, "rb") as video_file:
left_column.download_button("Download", video_file, "output.mp4")