File size: 4,104 Bytes
87e5c9c
 
 
 
 
8312087
34de38e
8312087
 
 
87e5c9c
8312087
 
 
 
 
 
 
 
87e5c9c
079d1ca
 
34de38e
 
 
 
 
 
079d1ca
 
87e5c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ea8fe3
87e5c9c
 
 
 
 
 
 
925dd67
7452863
 
 
925dd67
3ea8fe3
87e5c9c
 
 
 
 
 
3ea8fe3
87e5c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
34de38e
079d1ca
03e9034
 
 
34de38e
 
 
03e9034
 
 
 
34de38e
079d1ca
 
 
 
 
34de38e
 
 
 
 
 
 
 
03e9034
34de38e
 
03e9034
 
 
 
 
34de38e
 
 
 
 
03e9034
34de38e
03e9034
 
 
 
 
 
 
34de38e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""
    utils.py - Utility functions for the project.
"""

import re
import subprocess
from datetime import datetime
from pathlib import Path

import torch
from natsort import natsorted


def validate_pytorch2(torch_version: str = None):
    torch_version = torch.__version__ if torch_version is None else torch_version

    pattern = r"^2\.\d+(\.\d+)*"

    return True if re.match(pattern, torch_version) else False


def get_timestamp() -> str:
    """
    get_timestamp - get a timestamp for the current time
    Returns:
        str, the timestamp
    """
    return datetime.now().strftime("%Y%m%d_%H%M%S")


def truncate_word_count(text, max_words=512):
    """
    truncate_word_count - a helper function for the gradio module
    Parameters
    ----------
    text : str, required, the text to be processed
    max_words : int, optional, the maximum number of words, default=512
    Returns
    -------
    dict, the text and whether it was truncated
    """
    # split on whitespace with regex
    words = re.split(r"\s+", text)
    processed = {}
    if len(words) > max_words:
        processed["was_truncated"] = True
        processed["truncated_text"] = " ".join(words[:max_words])
    else:
        processed["was_truncated"] = False
        processed["truncated_text"] = text
    return processed


def load_examples(src, filetypes=[".txt", ".pdf"]):
    """
    load_examples - a helper function for the gradio module to load examples
    Returns:
        list of str, the examples
    """
    src = Path(src)
    src.mkdir(exist_ok=True)

    pdf_url = (
        "https://www.dropbox.com/s/y92xy7o5qb88yij/all_you_need_is_attention.pdf?dl=1"
    )
    subprocess.run(["wget", pdf_url, "-O", src / "all_you_need_is_attention.pdf"])
    examples = [f for f in src.iterdir() if f.suffix in filetypes]
    examples = natsorted(examples)
    # load the examples into a list
    text_examples = []
    for example in examples:
        with open(example, "r") as f:
            text = f.read()
            text_examples.append([text, "base", 2, 1024, 0.7, 3.5, 3])

    return text_examples


def load_example_filenames(example_path: str or Path):
    """
    load_example_filenames - a helper function for the gradio module to load examples
    Returns:
        dict, the examples (filename:full path)
    """
    example_path = Path(example_path)
    # load the examples into a list
    examples = {f.name: f for f in example_path.glob("*.txt")}
    return examples


def saves_summary(
    summarize_output, outpath: str or Path = None, add_signature=True, **kwargs
):
    """
    saves_summary - save the summary generated from summarize_via_tokenbatches() to a text file

    summarize_output: output from summarize_via_tokenbatches()
    outpath: path to the output file
    add_signature: whether to add a signature to the output file
    kwargs: additional keyword arguments to include in the output file
    """
    outpath = (
        Path.cwd() / f"document_summary_{get_timestamp()}.txt"
        if outpath is None
        else Path(outpath)
    )
    sum_text = [s["summary"][0] for s in summarize_output]
    sum_scores = [f"\n - {round(s['summary_score'],4)}" for s in summarize_output]
    scores_text = "\n".join(sum_scores)
    full_summary = "\n\t".join(sum_text)

    with open(
        outpath,
        "w",
        encoding="utf-8",
    ) as fo:
        fo.writelines(full_summary)
        fo.write("\n\n")
        if add_signature:
            fo.write("\n\n---\n\n")
            fo.write("Generated with the Document Summarization space :)\n\n")
            fo.write("https://hf.co/spaces/pszemraj/document-summarization\n\n")
    with open(
        outpath,
        "a",
    ) as fo:
        fo.write("\n" * 3)
        fo.write(f"## Section Scores:\n\n")
        fo.writelines(scores_text)
        fo.write("\n\n")
        fo.write(f"Date: {get_timestamp()}\n\n")
        if kwargs:
            fo.write("---\n\n")
            fo.write("Parameters:\n\n")
            for key, value in kwargs.items():
                fo.write(f"{key}: {value}\n")
    return outpath