|
import spaces |
|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
model_name = "infly/OpenCoder-8B-Instruct" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) |
|
|
|
@spaces.GPU |
|
|
|
def generate_text(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True) |
|
outputs = model.generate( |
|
inputs["input_ids"], |
|
attention_mask=inputs["attention_mask"], |
|
max_length=50, |
|
num_return_sequences=1 |
|
) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_text, |
|
inputs=gr.Textbox(label="Enter your prompt", placeholder="Start typing...", lines=5), |
|
outputs="text", |
|
title="OpenCoder 8B Instruct", |
|
description="Generate text using the OpenCoder model. Input a prompt to generate responses.", |
|
) |
|
|
|
|
|
iface.launch() |