MegaTronX commited on
Commit
0cce2dc
Β·
verified Β·
1 Parent(s): 36b5ef7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -12
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import gradio as gr
2
- from transformers import AutoModelForCausalLM, AutoTokenizer
3
  import torch
 
 
4
  import spaces
5
 
6
  # Load the fine-tuned model
@@ -10,22 +11,37 @@ def load_model():
10
  model = AutoModelForCausalLM.from_pretrained(model_name)
11
  return model, tokenizer
12
 
13
- model, tokenizer = load_model()
 
 
 
 
 
 
 
14
 
15
- # Function to generate an image
16
  @spaces.GPU
17
- def generate_image(prompt):
18
- inputs = tokenizer(prompt, return_tensors="pt")
19
- outputs = model.generate(inputs["input_ids"], max_length=50)
20
- return tokenizer.decode(outputs[0], skip_special_tokens=True)
 
 
 
 
21
 
22
- # Gradio interface
23
  iface = gr.Interface(
24
  fn=generate_image,
25
- inputs="text",
26
- outputs="text",
27
- title="Image Generation with LoRA Fine-Tuned Model",
28
- description="Enter a prompt to generate an image using the fine-tuned model."
 
 
 
 
 
29
  )
30
 
31
  iface.launch()
 
1
  import gradio as gr
 
2
  import torch
3
+ from diffusers import FluxDiffusionPipeline
4
+ from huggingface_hub import hf_hub_download
5
  import spaces
6
 
7
  # Load the fine-tuned model
 
11
  model = AutoModelForCausalLM.from_pretrained(model_name)
12
  return model, tokenizer
13
 
14
+ # Load the base Flux Dev model
15
+ model_id = "black-forest-labs/FLUX.1-dev"
16
+ pipeline = FluxDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
17
+ pipeline = pipeline.to("cuda")
18
+
19
+ # Download and load the LoRA weights
20
+ lora_model_path = hf_hub_download("MegaTronX/SuicideGirl-FLUX", "SuicideGirls.safetensors")
21
+ pipeline.load_lora_weights(lora_model_path)
22
 
 
23
  @spaces.GPU
24
+ def generate_image(prompt, negative_prompt, guidance_scale, num_inference_steps):
25
+ image = pipeline(
26
+ prompt=prompt,
27
+ negative_prompt=negative_prompt,
28
+ guidance_scale=guidance_scale,
29
+ num_inference_steps=num_inference_steps
30
+ ).images[0]
31
+ return image
32
 
33
+ # Create the Gradio interface
34
  iface = gr.Interface(
35
  fn=generate_image,
36
+ inputs=[
37
+ gr.Textbox(label="Prompt"),
38
+ gr.Textbox(label="Negative Prompt"),
39
+ gr.Slider(minimum=1, maximum=20, value=7.5, label="Guidance Scale"),
40
+ gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Number of Inference Steps")
41
+ ],
42
+ outputs=gr.Image(type="pil"),
43
+ title="Image Generation with Flux Dev LoRA",
44
+ description="Generate images using a Flux Dev model with a custom LoRA fine-tune."
45
  )
46
 
47
  iface.launch()