import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) from fastai.vision.all import * import gradio as gr share = True def is_cat(x): return x[0].isupper() learn = load_learner('/kaggle/input/cvd1/pytorch/default/1/model.pkl') categories = ('Dog', 'Cat') def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image = "image" label = "label" intf = gr.Interface(fn=classify_image, inputs=image, outputs=label) intf.launch(inline=False, share = True)